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Abstract. We are developing a software library to calculate gravitational interaction for the
Hermite scheme on parallel computing systems supported by OpenCL API. Our library is partly
compatible with a standard GRAPE-6A interface and is easily usable in existing N -body codes.
Since our library is based on OpenCL standard API, our library is working on many parallel
computing systems such as a multi-core CPU, a GPU, and a many-core architecture. We report
the performance evaluation of our library on computing platforms from various vendors.
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1. Introduction
Recent development of parallel computing architecture enable us to use multi/many-

core architecture such as CPUs, GPUs and Xeon Phi(MIC) for modeling star clusters
(e.g. Gaburov et al. 2009; Tanikawa et al. 2012; Nitadori & Aarseth 2012; Wang et al.
2015). In this paper, we report a new library to speed-up the Hermite scheme (Makino
& Aarseth 1992) on the emerging parallel architectures. Our library utilizes the OpenCL
API that is a standard API working on many parallel architectures while previous tech-
niques/libraries rely on a specific computing platform. We make our library compatible
to the GRAPE-6A library (Fukushige et al. 2005) so that it is usable as a replacement
to the GRAPE library. In the following section, we present optimization techniques used
in our library to gain high performance on GPUs and report the performance evaluation
on different GPU architectures.

2. Performance optimization
Fundamentally, there are I- and J- parallelism in GRAPE-like evaluation of N -body

kernels. “I-particle” is a particle where we want to compute the force. “J-particles” are
particles that exert the force on the I-particle. In our current implementation, each thread
running on a GPU first loads Ni I-particles and loop-over all other particles (J-particles)
to compute particle interaction such as potential energy, acceleration and jerk for the I-
particles (Makino & Aarseth 1992). In this loop, the thread loads Nj particles at a time.
A simplest case is (Ni , Nj ) = (1, 1) where each thread compute one-to-one interaction
on every iteration.

A combination of (Ni , Nj ) is a key to gain optimal performance on GPUs since GPU
architectures favor more floating-point operations per memory access operations. Larger
Ni and Nj in an N -body kernel, the number of arithmetic operations per unit memory
access is larger so that the performance of the kernel is better. In Figure 1, we compare the
performance in GFLOPS with a different combination of (Ni , Nj ). For this comparison,
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Table 1. Evaluated Architectures and Optimal (Ni , Nj )

Architecture SP peak DP peak Kernel D Kernel DS

FirePro W9100 5337 2619 (1,2)/987 (2,2)/1300
GeForce TITAN 5376 1570 (1,2)/333 (1,1)/793
Radeon 7970 3789 947 (1,1)/626 (2,2)/1063
MIC 5110P 1888 994 (1,2)/188 (2,2)/255

Figure 1. Performance of our library as a function of N with different combinations of
(Ni , Nj )

we have used Radeon 7970 GPU and N -body kernels are implemented with double-
precision (DP) operations. In this particular case, (Ni , Nj ) = (1,1) and (1,2) show the
comparable performance. We did similar evaluations on other parallel architectures and
found an optimal combination for a given architecture as shown in Table 1. In this
table, each row shows GPUs and MIC. The second and third columns show the peak
GFLOPS in single-precision (SP) and DP operations, respectively. The forth and fifth
columns present the optimal combination of (Ni , Nj ) and the performance in GFLOPS
for N = 131072. We have tested two variants of kernels as explained below. Roughly
speaking, the performance of “Kernel D” that uses only DP operations is proportional
to the peak performance in DP operations except GeForce TITAN. TITAN GPU favors
a proprietary CUDA programming API and other authors have reported much better
performance than our result on CUDA-enabled GPUs (Gaburov et al. 2009; Nitadori &
Aarseth 2012).

Also, we have appropriately used SP and DP operations in particle interactions since
GPUs are much faster on SP operations as shown in Table 1. Accordingly, we have two
variant of N -body kernels as Kernel D and Kernel DS. “Kernel D” uses only DP opera-
tions while “Kernel DS” adopts a mixed-precision technique that is similar to Gaburov
et al. (2009). Note that we use actual DP operations instead of emulated DP opera-
tions by combining 2 SP variables to represent emulated DP variable. In addition, we
use vector type variables defined in OpenCL language such as float4, double2 to explic-
itly express vectorized evaluation of the particle interaction. In Figure 2, we present the
performance of our library as a function of N . “Kernel DS” shows better performance
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Figure 2. Performance of two variants of kernels as a function of N

than “Kernel D” over 1 TFLOPS on W9100 and 7970 GPUs. Our library also works on
multi-core CPUs thanks to the standard OpenCL API.

Finally, we have further optimized Kernel DS by adopting different data storage. Per-
formance of compute kernels on GPUs is sensitive to memory access pattern of the
kernels. In “Kernel DS”, we use separate arrays to store the position, velocity and mass
of particles. This usage of data storage is a so-called structure of arrays (SoA). When
a thread load the data of I- or J-particles, the memory access is stride access in SoA.
Alternative way to store particles data is to use a structure for each particle that holds
the the position, velocity and mass of the particle. This is a so-called array of structures
(AoS). In Figure 3, we present the comparison of the performance with the data storage
as SoA and AoS on 7970 GPU. The two integers are the combination of (Ni , Nj ). AoS
is 20 - 40 % better performance than SoA at N = 131072.
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Figure 3. Performance of two variants of kernels as a function of N

3. Summary
Our GRAPE-6A compatible Hermite Scheme library shows fairly good performance

on various GPU/MIC architectures. Since the OpenCL standard works on many plat-
forms, our approach is a very effective way to implement a similar library for N -body
integrations.
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