Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T10:42:43.769Z Has data issue: false hasContentIssue false

A method for in-situ measurements of the growth in the bulk of deformed single crystals at the 3DXRD microscope

Published online by Cambridge University Press:  15 March 2011

S. Schmidt
Affiliation:
Center for Fundamental Research: Metal Structures in Four Dimensions Risoe National Laboratory, DK-4000 Roskilde, Denmark
D. Juul Jensen
Affiliation:
Center for Fundamental Research: Metal Structures in Four Dimensions Risoe National Laboratory, DK-4000 Roskilde, Denmark
Get access

Abstract

With the Three Dimensional X-ray Diffraction microscope (3DXRD) located at the European Synchrotron Radiation Facility (ESRF) full 3D spatial information of grains in the interior of a sample can be measured non-destructively. In this paper we discuss the possibility of an extension to this scenario, namely in-situ annealing studies, where the 3D spatial grain shape can be monitored as function of time. Consequently, local boundary migration rates can be estimated and compared to the deformed microstructure. Such information may reveal to what extend the deformed microstructure influences the growth of a grain during recrystallization.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kolmogorov, A.N., Izv. Akad Nauk. USSR-Ser. Matemat., 1, 1937, 335359.Google Scholar
2. Johnson, W.A., Mehl, R.F., Trans. AIME, 135, 1939, 416458.Google Scholar
3. Avrami, M., J. Chem. Phys., 7, 1939, 11031112; ibid., 8, 1940, 212-224; ibid., 9, 1941, 177-184.Google Scholar
4. Godfrey, A., Jensen, D. Juul and Hansen, N., in Proc. Recrystallisation and Grain Growth, eds. Gottstein, G. and Molodov, D. A., Springer Verlag 2001, 843848.Google Scholar
5. Lauridsen, E.M., Poulsen, H.F., Nielsen, S.F., Jensen, D. Juul, Acta Metall. Mater., 51, 2003, 44234435.Google Scholar
6. Poulsen, H.F., Garbe, S., Frello, T., Reidenhans'l, R., Graafsma, H., J. Synchrotron Rad., 4, 1997, 147154.Google Scholar
7. Lienert, U., Schulze, C., Honimäki, V., Tschentscher, T., Garbe, S., Hignette, O., Horsewell, A., Lingham, M., Poulsen, H.F., Thomsen, N.B., Ziegler, E., J. Synchrotron Rad., 5, 1998, 226231.Google Scholar
8. Lienert, U, Poulsen, H.F., Honimäki, V., Schulze, C., Hignette, O., J. Synchrotron Rad., 6, 1999, 979984.Google Scholar
9. Poulsen, H.F., Lauridsen, E.M., Schmidt, S., Margulies, L., Driver, J.H., Acta Metall. Mater, 51, 2003, 25172529.Google Scholar
10. Beck, P.A., Adv. In Physics, 3, 1954, 245324.Google Scholar
11. Kohara, S., Parthasarathi, M.N., Beck, P.A., J. Appl. Phys., 29, 1958, 11251126.Google Scholar
12. Poulsen, H.F., Fu, X., J. Appl. Cryst., 36, 2003, 10621068.Google Scholar