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Polycharacters of Cocommutative Hopf
Algebras
Yuri Bahturin, Mikhail Kochetov and Susan Montgomery

Abstract. In this paper we extend a well-known theorem of M. Scheunert on skew-symmetric bichar-
acters of groups to the case of skew-symmetric bicharacters on arbitrary cocommutative Hopf algebras
over a field of characteristic not 2. We also classify polycharacters on (restricted) enveloping algebras
and bicharacters on divided power algebras.

1 Introduction

In the paper [1] the authors looked into the structure of bicharacters of certain Hopf
algebras, which are close to coquasitriangular. One of the results proven there states
that any skew-symmetric bicharacter β : H⊗H → R where R is a commutative alge-
bra and H is a Hopf algebra over a field K can be written as a skew-symmetrization
of a 2-cocycle σ : H⊗H → R in the following cases (see the precise meaning below):

1. H is a pointed cocommutative Hopf algebra over a field of characteristic 0;
2. H is a Hopf algebra of the form H = H0 # K[G], where H0 is generated by

primitive elements.

One of the main results of this paper is the proof of this result in the case of arbitrary
cocommutative Hopf algebras even in the case of positive characteristic p provided
that p �= 2. This is our Corollary 4.7 to Theorem 4.1. Among the other results of
[1] one can find the description of the group of all (symmetric, skew-symmetric)
bicharacters of certain connected Hopf algebras such as enveloping algebras and re-
stricted enveloping algebras over a field of positive characteristic. Here we find the
description of this group for yet another example of co-commutative Hopf algebras,
the divided power algebras; see Theorem 3.9. It should be mentioned that a complete
description of bicharacters on the finite abelian groups is given by A. Zolotykh [7].

We refer the reader to [1] for some applications of the results about bicharacters to
certain generalized Lie algebra structures on H-comodule algebras. Actually (see all
definitions in [1]), it follows from our results in the present paper that, given such an
H-comodule algebra L, with a generalized Lie structure defined by a skew-symmetric
bicharacter β : H⊗H → R, where H is now an arbitrary cocommutative Hopf algebra
over a field of characteristic different from 2, there exists a 2-cocycle σ such that L,
twisted by σ, is either an ordinary Lie algebra or an ordinary Lie superalgebra.
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12 Yuri Bahturin, Mikhail Kochetov and Susan Montgomery

2 Definitions and Preliminary Results

Let K be a field, H a cocommutative Hopf algebra over K, R a commutative algebra
over K. The following (Sweedler’s or sigma) notation is standard throughout the
paper. Given an element h in a Hopf algebra H, it is conventional to denote the value
of the coproduct map∆ on h by

∆h =
∑
(h)

h1 ⊗ h2 or simply∆h =
∑

h1 ⊗ h2 or even∆h = h1 ⊗ h2.

In the following definition and some other places of the paper we write the com-
ponents of the tensor∆hi =

∑
(hi)1 ⊗ (hi)2 simply as hi

1 and hi
2.

Definition 2.1 An r-multilinear function α : H × · · · × H → R is called an r-
character if it is convolution invertible and, for any i = 1, . . . , r, the following two
conditions are satisfied:

α(h1, . . . , hi−1, 1, hi+1, . . . , hr) = ε(h1 · · · hi−1hi+1 · · · hr),(1)

α(h1, . . . , hi−1, kl, hi+1, . . . , hr)

=
∑
α(h1

1, . . . , h
i−1
1 , k, h

i+1
1 , . . . , h

r
1)α(h1

2, . . . , h
i−1
2 , l, h

i+1
2 , . . . , h

r
2),

(2)

for all h1, . . . , hi−1, k, l, hi+1, . . . , hr ∈ H.

It is easy to verify that all r-characters form a group under the convolution product
(since H is cocommutative). We will denote this group by Chr(H,R).

Let Sr be the symmetric group on r elements. Then for any π ∈ Sr we can consider
an r-character

(π ◦ α)(h1, . . . , hr) = α(hπ(1), . . . , hπ(r)),

for any h1, . . . , hr ∈ H.

Definition 2.2 An r-character α is called symmetric if, for any π ∈ Sr, we have
π ◦ α = α. All symmetric r-characters form a group, which will be denoted by
Symr(H,R).

Definition 2.3 An r-character α is called skew-symmetric if for any π ∈ Sr , we have
π ◦ α = αsgn π. All skew-symmetric r-characters form a group, which we denote
Altr(H,R).

In the case of r = 1 we simply obtain the algebra maps from H to R, which we
will simply call characters. In the case of r = 2 our definitions agree with those of
bicharacters and skew-symmetric bicharacters given in [1].

The situation with the complete description of the group of all r-characters for the
most popular cocommutative Hopf algebras is as follows.

If H = KG is a group algebra, then the r-characters of H with values in R are in
one-to-one correspondence with the group r-characters of G with values in the group
U (R) of invertible elements of R.
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Polycharacters of Hopf Algebras 13

The structure of the r-characters of (restricted) universal enveloping algebras will
be described explicitly in the next section. For r = 2 the complete descriptions are
given in [1].

Now we consider a Hopf algebra H with the coalgebra structure isomorphic to
a divided power coalgebra D, that is, H possesses a K-basis of the form x(n), where
n = (n1, . . . , nd), n j are nonnegative integers, for j = 1, . . . , d, such that

∆x(n) =
∑

k+l=n

x(k) ⊗ x(l).(3)

Then H∗ ∼= K[[t1, . . . , td]] = K[[t]] as an algebra, and the multiplication map
H⊗H → H induces the homomorphism∆ : H∗ ∼= K[[t]]→ (H⊗H)∗ ∼= K[[u, v]].
In its turn,∆ determines a formal group law u ◦ v = ∆(t) = (∆t1, . . . ,∆td) so that
we obtain (∆φ)(u, v) = φ(u ◦ v), for any φ ∈ K[[t]]. In fact, given a formal group
law ◦, one can recover the corresponding divided power algebra H as the algebra of
pointed distributions on the formal group (see [3]).

We have a natural isomorphism of K-spaces Hom(H⊗r,R) ∼= R[[t1, . . . , tr]],
which sends f ∈ Hom(H⊗r,R) to

f̂ (t1, . . . , tr) =
∑

(n1,...,nr)

f (x(n1), . . . , x(nr))(t1)n1

· · · (tr)nr

.(4)

Actually, this is an algebra isomorphism by (3) and the definition of the convolution
product in Hom(H⊗r,R).

Using this isomorphism we can rewrite in terms of the formal group law ◦ the
conditions (1), (2) of α ∈ Hom(H⊗r,R) being an r-character:

α̂(t1, . . . , ti−1, 0, ti+1, . . . , tr) = 1,(5)

α̂(t1, . . . , ti−1, u ◦ v, ti+1, . . . , tr)

= α̂(t1, . . . , ti−1, u, ti+1, . . . , tr)α̂(t1, . . . , ti−1, v, ti+1, . . . , tr),
(6)

for any i = 1, . . . r.
In other words, α is an r-character on H if and only if α̂ is an r-character on the

corresponding formal group. Obviously, α is symmetric (skew-symmetric) if and
only if α̂ is symmetric (skew-symmetric).

We will later need the following general results about the r-characters, which are
straightforward generalizations of the bicharacter versions given in [1].

Proposition 2.1 Let H be a cocommutative Hopf algebra, R a commutative algebra
over K. Let α ∈ Chr(H,R). Then α vanishes on the ideal I 	 H, generated by the
commutators kl − lk, for all k, l ∈ H, i.e., α(H, . . . , I, . . . ,H) = 0, for any position of
I among the arguments of α.

Proposition 2.2 Let I 	 H be any Hopf ideal of H, H̄ = H/I. Then the r-characters
ᾱ of H̄ are in one-to-one correspondence with the r-characters α of H such that
α(H, . . . , I, . . . ,H) = 0, for any position of I. This correspondence is given by

α(h1, . . . , hr) = ᾱ(h1 + I, . . . , hr + I),
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14 Yuri Bahturin, Mikhail Kochetov and Susan Montgomery

for any h1, . . . , hr ∈ H.

The proofs are left to the reader.
These two propositions allow us to reduce the study of r-characters of any cocom-

mutative Hopf algebra to those of a Hopf algebra which is both commutative and
cocommutative.

3 Polycharacters of Enveloping Algebras and Divided Power Algebras

The main aim of this section is an explicit description of the groups of r-characters
for universal enveloping, restricted enveloping and divided power algebras. For the
first two cases we use an appropriate extension of the method given in [1].

At first we consider the polynomial algebra H = K[X], where X is any set of
variables (not necessarily finite), and∆x = x ⊗ 1 + 1⊗ x, for any x ∈ X.

Proposition 3.1 Let w1 = x1
1 · · · x

1
m1 , . . . ,wr = xr

1 · · · x
r
mr be monomials, α an r-

character on K[X]. Then α(w1, . . . ,wr) = 0 unless m1 = · · · = mr = m, and in the
latter case we have

α(w1, . . . ,wr) =
∑

π2,...,πr∈Sm

α(x1
1, x

2
π2(1), . . . , x

r
πr(1)) · · · · · α(x1

m, x
2
π2(m), . . . , x

r
πr(m)).

(7)

In particular, α is completely determined by its values on X.

Proof Induction on m1, . . . ,mr using the definition of the r-character.

Proposition 3.2 Let α be an r-character of K[X], char K = p > 0, r ≥ 2. Then α
vanishes on the ideal generated by xp, for all x ∈ X.

Proof Let w1 = xp, w2, . . . ,wr any other monomials. Then by Proposition 3.1
α(w1, . . . ,wr) = 0, unless all w2, . . . ,wr have degree p. In the latter case by (7) we
obtain

α(w1, . . . ,wr)

=
∑

π2,...,πr∈Sp

α(x, x2
π2(1), . . . , x

r
πr(1)) · · · · · α(x, x2

π2(p), . . . , x
r
πr (p))

= p!
∑

π3,...,πr∈Sp

α(x, x2
1, x

3
π3(1) . . . , x

r
πr(1)) · · · · · α(x, x2

p, x
3
π3(p), . . . , x

r
πr(p))

= 0.

The proposition follows.
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Polycharacters of Hopf Algebras 15

Now let L be a Lie algebra over K, H = U (L) the universal enveloping algebra
of L. By Propositions 2.1 and 2.2, the r-characters of H are in one-to-one corre-
spondence with the r-characters of H̄ = U (L/[L, L]) ∼= K[X], where X is any basis
of L/[L, L]. Let α be any r-character of H, ᾱ the corresponding r-character of H̄
and A the restriction of ᾱ on the subspace L/[L, L]. By Proposition 3.1, ᾱ is com-
pletely determined by A. On the other hand, it can be easily verified that (7) defines
an r-character on K[X] for any given values on the elements of X. It follows, that
the correspondence α �→ A is one-to-one, and it is actually an isomorphism of the
Abelian groups Chr(U (L),R

)
and Hom

(
(L/[L, L])⊗r ,R

)
, sinceα ∗ β(x1, . . . , xr) =

(ᾱ ∗ β̄)(x1, . . . , xr) = ᾱ(x1, . . . , xr) + β̄(x1, . . . , xr), for any x1, . . . , xr ∈ X. Obvi-
ously,α is (skew-)symmetric if and only if A is (skew-)symmetric. So we have proved
the following.

Theorem 3.3 For any Lie algebra L, commutative algebra R and r ≥ 1

Chr(U (L),R
)
∼= Hom

(
Tr(L/[L, L]),R

)
,

Symr
(

U (L),R
)
∼= Hom

(
Sr(L/[L, L]),R

)
,

Altr(U (L),R
)
∼= Hom

(
Λr(L/[L, L]),R

)
,

as Abelian groups.

Here Tr(V ), Sr(V ) or Λr(V ) stand for the tensor, symmetric or skew-symmetric
power of a vector space V , respectively.

Let L be a restricted Lie algebra over K, char K = p > 0, and H = u(L) the
restricted enveloping algebra of L. We want to describe the r-characters of H, r ≥ 2.
By Propositions 2.1 and 2.2 we may assume L Abelian. Fix a basis X in L. Then
u(L) ∼= K[X]/ ideal(xp − x[p] | ∀x ∈ X). By Proposition 2.2, the r-characters of
u(L) are in one-to-one correspondence with the r-characters of K[X] that vanish on
ideal(xp − x[p] | ∀x ∈ X). But by Proposition 3.2, any r-character of K[X] vanishes
on ideal(xp | ∀x ∈ X), so the r-characters of u(L) are in one-to-one correspondence
with the r-characters of K[X] that vanish on ideal(x[p] | ∀x ∈ X), and the latter are
in one-to-one correspondence with the r-characters of K[X]/ ideal(x[p] | ∀x ∈ X) ∼=
u(L/L[p]). So we have proved the following.

Theorem 3.4 For any restricted Lie algebra L, commutative algebra R and r ≥ 2

Chr(u(L),R
)
∼= Hom

(
Tr
(

L/([L, L] + L[p])
)
,R
)

Symr
(

u(L),R
)
∼= Hom

(
Sr
(

L/([L, L] + L[p])
)
,R
)

Altr(u(L),R
)
∼= Hom

(
Λr
(

L/([L, L] + L[p])
)
,R
)

as Abelian groups.
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16 Yuri Bahturin, Mikhail Kochetov and Susan Montgomery

Theorems 3.3 and 3.4 together cover the case of cocommutative Hopf algebras
generated (as algebras) by their primitive elements, since any such Hopf algebra H
is isomorphic to either U (L) in characteristic zero or u(L) in positive characteris-
tic, where L = P(H). If char K = 0, then such Hopf algebras exhaust the class of
connected cocommutative Hopf algebras, but this is not true if char K > 0.

In the case r = 1 one can find non-trivial characters even in the case of u(L) where
L is a restricted Lie algebra with L[p] = L. It suffices to take L of dimension 1 with
a basis x and x[p] = x. Then u(L) ∼= K[x]/(xp − x). Any of the maps x �→ 1,
x �→ 2, . . . , x �→ p − 1 extends to a homomorphism of u(L) as above, providing us
with p − 1 pairwise different characters of this Hopf algebra.

There is no known complete description of connected cocommutative Hopf alge-
bras in positive characteristic, although some partial results are known. For example,
we have the following fact, which is a corollary of Theorems 2 and 3 in [5] (see also
[6]).

First we need a definition.

Definition 3.1 Let H be a Hopf algebra. A sequence x(0), x(1), . . . , x(T) of elements
of H, either finite or infinite (T = ∞), is called a sequence of divided powers if
∆x(n) =

∑
k+l=n x(k) ⊗ x(l), for any n = 0, . . . ,T. In particular, x(0) is group-like and

x(1) is (x(0), x(0))-primitive.

Theorem 3.5 Let H be a connected cocommutative Hopf algebra over a perfect field K

of characteristic p > 0. Assume also that d = dim P(H) < ∞. Then there exists a
basis x1, . . . , xd of P(H), nonnegative integers N j or N j = ∞ and sequences of divided

powers x(0)
j = 1, x(1)

j = x j , . . . , x(pN j +1−1), for j = 1, . . . , d, such that the monomials

x(n1)
1 · · · x(nd)

d , 0 ≤ n j < pN j +1, j = 1, . . . , d, form a basis of H.

Setting x(n) = x(n1)
1 · · · x(nd)

d for n = (n1, . . . , nd), we see that H has the coalgebra
structure isomorphic to the subcoalgebra D(N), N = (N1, . . . ,Nd) of the divided
power coalgebra D, spanned by x(n), n ≤ pN, that is, n j < pN j +1, for all j = 1, . . . , d.

As we already mentioned, in the case N1 = · · · = Nd =∞ an r-character on H is
the same as an r-character on the corresponding formal group.

Now we are going to describe the r-characters for the ordinary multiplication of
divided powers, which is given by

x(k)x(l) =

(
k + l

k

)
x(k+l)(8)

and corresponds to the formal group law u ◦ v = u + v. Then (6) takes the form:

α̂(t1, . . . ,u + v, . . . , tr) = α̂(t1, . . . ,u, . . . , tr)α̂(t1, . . . , v, . . . , tr).(9)

Assume for a moment that char K = 0, and so H is isomorphic to K[x1, . . . , xd].
Then the general solution of (9) is

α̂(t1, . . . , tr) = exp
(
A(t1, . . . , tr)

)
,
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Polycharacters of Hopf Algebras 17

where A(t1, . . . , tr) is an arbitrary r-linear form. Obviously, α is (skew-) symmetric

if and only if A is. Moreover, if β̂ = exp(B), then α̂ ∗ β = α̂β̂ = exp(A + B). So we
have obtained another proof of Theorem 3.3 in the case of finite-dimensional abelian
Lie algebras.

Now we return to char K = p > 0. Moreover, we will not restrict ourselves to
the case N1 = · · · = Nd = ∞. From now up to the end of this section H = D(N),
the Hopf subalgebra of D spanned by x(n), 0 ≤ n j < pN j +1, j = 1, . . . , d, with
comultiplication (3) and multiplication (8).

Note that since we passed from the whole algebra D to its Hopf subalgebra D(N),
we must replace Hom(D⊗r,R) ∼= R[[t1, . . . , tr]] by

Hom
(

D(N)⊗r,R
)
∼= R[[t1, . . . , tr]]/I,

where

I = ideal
(

(t i
j )

pN j +1

| i = 1, . . . , r, j = 1, . . . , d such that N j <∞
)
.

We keep the notation (4), but the indices should be appropriately restricted. Then
the r-character condition (9) is still valid if understood modulo I.

Proposition 3.6 Any r-characterα on H is completely determined by its values on the
elements of the form x(pse j ), where e j is the multi-index with 1 on the j-th place and 0
on the others.

Proof Fix some 1 ≤ i ≤ r. Let us collect the terms of α̂ containing ti :

α̂(t1, . . . , tr) =
∑

n

ai
n(t1, . . . , ti−1, ti+1, . . . , tr)(ti)n.

Then (9) is equivalent to

ai
k · a

i
l =

(
k + l

k

)
ai

k+l,(10)

and also we must have ai
0̄ = 1.

We need the following well-known lemma about the binomial coefficients modulo
p, sometimes called The Lucas Theorem. We also keep the usual convention for the
binomial coefficients

(a
b

)
= 0 if a ≤ b.

Lemma 3.7 Let a, b, c, d be nonnegative integers. Then

(
a + bp

c + dp

)
=

(
a

c

)(
b

d

)
(mod p).
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18 Yuri Bahturin, Mikhail Kochetov and Susan Montgomery

From this lemma and the definition of the binomial coefficients of multi-indices it
follows that, for any multi-index n �= 0 not of the form pse j , there are multi-indices
k, l �= 0 such that k + l = n and

(n
k

)
�= 0 (mod p).

Hence, (10) defines all ai
n by induction as soon as ai

pse j
are known, for all j =

1, . . . , d, s = 0, . . . ,N j . Applying this fact for i = 1, . . . , r recursively we can cal-
culate all coefficients of α̂ if we know the coefficients of the monomials of the form
(t1)ps1 e j1 · · · (tr)psr e jr .

Let rad R denote the nil radical of the ring R.

Corollary 3.8 Let H = D
(

(∞, . . . ,∞)
)

and rad R = 0. Then the groups of r-
characters Chr(H,R) are trivial, for all r ≥ 1.

Proof Keeping the notation of the previous proof we notice that (10) implies that

(ai
n)p = 0,(11)

for any n �= 0̄. But since N1 = · · · = Nd = ∞ and rad R = 0, Hom(Dr,R) ∼=
R[[t1, . . . , tr]] does not have nonzero nilpotent elements, hence all ai

n = 0, except
for ai

0̄ = 1.

If N j <∞ for some j, then there are nontrivial r-characters for r ≥ 2 even in the
case rad R = 0 (although 1-characters are obviously trivial). We will give the explicit
description of the groups of bicharacters (i.e., r = 2) with an additional assumption
rad R = 0.

Theorem 3.9 Let H = D(N) and rad R = 0. Then

Ch2(H,R) ∼= Hom
(

T2(V ),R
)

Sym2(H,R) ∼= Hom
(

S2(V ),R
)

Alt2(H,R) ∼= Hom
(
Λ2(V ),R

)

as Abelian groups, where

V = 〈x(pN j e j ) | j = 1, . . . , d and N j <∞〉.

Proof We keep the notation of the proof of Proposition 3.6, but we will write α̂(u, v)
instead of α̂(t1, t2) for brevity.

Applying (11) for i = 2 we obtain that monomials of the form um1
1 · · · u

md
d , m j <

pN j for all j = 1, . . . , d, cannot occur in a2
n(u) (because taking a minimal of such

monomials occuring in a2
n we immediately get a contradiction with rad R = 0).

For the bicharacter α this implies that α(x(ps ′ e j ′ ), x(ps ′ ′ e j ′ ′ )) = 0, for all s ′ < N j ′ ,
s ′′ < N j ′ ′ . By Proposition 3.6 we conclude that α is completely determined by its
restriction to the space V .
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Polycharacters of Hopf Algebras 19

It suffices to prove now that for any bilinear form A on V there exists a bicharacter
α such that α|V = A, and that the convolution product of bicharacters corresponds
to the summation of bilinear forms. We will achieve both aims by giving an explicit
formula for α, as follows:

α̂(u, v) = exp
(
Â(u, v)

)
,(12)

where

Â(u, v) =
∑

j ′, j ′ ′ : N j ′ ,N j ′ ′<∞

A(x(p
N j ′ )

e j ′ , x(p
N j ′ ′ )

e j ′ ′ )up
N j ′ e j ′ vp

N j ′ ′ e j ′ ′ .

Note that the “exponential series” (which is actually finite in this case) still makes
sense in spite of characteristic p > 0 because of the following lemma.

Lemma 3.10 Suppose c1, . . . , cT are some elements of a commutative algebra C over
a field K of characteristic p > 0. Let (c1)p = · · · = (cT)p = 0. Then the “exponential
series”

exp(a1 + · · · + aT) =
∑

n1,...,nT

1

n1! · · · nT !
an1

1 · · · a
nT
T

is well-defined.

Proof of Lemma Whenever ns! ≡ 0 (mod p) for some s = 1, . . . ,T we also have
ans

s = 0.

Now α defined by (12) is obviously a bicharacter as well as α|V = A. Finally

α̂ ∗ β = α̂β̂ = exp(Â) exp(B̂) = exp(Â + B̂) = exp(Â + B), for any bicharacters α,
β such that α|V = A, β|V = B.

From Theorems 3.3, 3.4 and 3.9 the reader might conjecture that the groups of
r-characters always have the additional structure of K-spaces; in particular, αp = ε
under the convolution product, for any r-characterα. But this is not true, as is shown
by the following example for r = 1. We can look into the formal law u◦v = u+v+uv.
Then the associated Hopf algebra will be a divided power coalgebra in one variable x,
with multiplication

x(k)x(l) =
k+l∑

m=min(k,l)

(
m

k + l−m,m− k,m− l

)
x(m).

We set α̂ = 1 + t , that is, α(x(0)) = α(x(1)) = 1 and α(x(i)) = 0 for i ≥ 2. Then
α̂n = (1 + t)n �= 1 for all natural n. The case r ≥ 2 remains open.
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4 Scheunert’s Theorem for Hopf Algebras and Generalizations

Now we will explore the structure of groups of r-characters, with a special interest
in bicharacters. At first we assume that H is connected. Our aim is to prove the
following result.

Theorem 4.1 Let H be a cocommutative connected Hopf algebra over K, m a positive
integer such that char K � m. Letα be an r-character on H with values in a commutative
algebra R over K. Then there exists a unique r-character β such that α = βm (under
the convolution product). Moreover, if α is symmetric (or skew-symmetric), then so is
β.

We first consider a slightly more general situation. Suppose we have a multilinear
map of r variables f : H× · · ·×H → R, which is normalized with respect to the i-th
variable in the sense that

f (h1, . . . , hi−1, 1, hi+1, . . . , hr) = ε(h1 · · · hi−1hi+1 · · · hr),

for any h1, . . . , hi−1, hi+1, . . . , hr ∈ H.
We define a multilinear map by setting

f0(h1, . . . , hr) = f (h1, . . . , hr)− ε(h1 · · · hr), ∀ h1, . . . , hr ∈ H.(13)

Given a coalgebra C and an algebra R, one can define a natural action of the alge-
bra Hom(C,R) (under convolution) on the vector space C ⊗ R:

f ◦ (c ⊗ a) =
∑

c1 ⊗ f (c2)a,

for any f ∈ Hom(C,R), c ∈ C , a ∈ R. This action is always faithful.

Lemma 4.2 Let C be a coalgebra, R an algebra. Let f ∈ Hom(C,R), then the follow-
ing conditions are equivalent:

1. for any c ∈ C there exists an integer N such that f m(c) = 0, for any m ≥ N,
2. the action of f on C ⊗ R is locally nilpotent.

Proof Assume the first holds. Let a ∈ R, c ∈ C ,∆c =
∑

j k j ⊗ l j . Then there is an
integer N such that for any m ≥ N , f m(l j) = 0, for all j. Therefore, f m ◦ (c ⊗ a) =∑

j k j ⊗ f m(l j)a = 0. This proves that the action of f on C ⊗ R is locally nilpotent.
Now, let the action of f be locally nilpotent. Then for any c ∈ C there is an integer

N such that f m ◦ (c ⊗ 1) =
∑

c1 ⊗ f m(c2) = 0, for any m ≥ N . Applying ε ⊗ 1 to
both sides, we get f m(c) = 0, for all m ≥ N .

In our situation, take C = H⊗r . Then Hom(H⊗r,R) acts on H⊗r ⊗ R as follows:

f ◦ (h1 ⊗ · · · ⊗ hr ⊗ a) =
∑

h1
1 ⊗ · · · ⊗ hr

1 ⊗ f (h1
2, . . . , h

r
2)a,(14)
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for any f ∈ Hom(H⊗r,R), h1, . . . , hr ∈ H, a ∈ R.
Since the action is faithful, we obtain an imbedding η : Hom(H⊗r,R) ↪→

End(H⊗r ⊗ R), where H⊗r ⊗ R is viewed as a vector space.
In the following proposition H is not necessarily cocommutative (but it is still

assumed connected). It should be mentioned that our way of arguing is fairly close
to Lemma 5.2.10 in [2] belonging to Y. Takeuchi.

Proposition 4.3 Let f0 be defined as in (13). Then f0 is locally nilpotent in the sense
of either of the equivalent conditions of Lemma 4.2.

Proof Without loss of generality we may assume i = 1.
Let H0 ⊂ H1 ⊂ · · · ⊂ H be the coradical filtration of H. It is known (see [2]) that

H =
⋃∞

n=0 Hn and∆Hn ⊂
∑

i+ j=n Hi ⊗H j . Iterating the latter formula yields

∆sHn ⊂
∑

i1+···+is=n

Hi1 ⊗ · · · ⊗His ,(15)

where∆s : H → H⊗s is the iterated comultiplication map.
Since H is connected, we have H0 = K · 1. It follows that f0(H0,H, . . . ,H) = 0,

because f0(1, h2, . . . , hr) = 0. Now look at

f 2
0 (h1, . . . , hr) =

∑
f0

(
(h1)1, . . . , (hr)1

)
f0

(
(h1)2, . . . , (hr)2

)
.

If h1 ∈ H1 then∆h1 =
∑

(h1)1 ⊗ (h1)2 ∈ H1 ⊗H0 + H0 ⊗H1, which forces

f 2
0 (h1, . . . , hr) =

∑
f0

(
(h1)1, . . . , (hr)1

)
f0

(
(h1)2, . . . , (hr)2

)
= 0,

for any h2, . . . , hr ∈ H.
More generally, if h1 ∈ Hn, then applying (15) with s > n we see that

every summand in ∆n+1h1 must contain at least one factor from H0, which
forces f s

0 (h1, h2, . . . , hr) = 0, for all h2, . . . , hr ∈ H. So we have proved that
f s
0 (Hn,H, . . . ,H) = 0. Since H =

⋃∞
n=0 Hn, it follows that f0 is locally nilpotent

(take N = n + 1 if h1 ∈ Hn).

Let N denote the set of all f ∈ Hom(H⊗r,R) that are locally nilpotent in the sense
of Lemma 4.2. Then, given a formal power series A(t) = a0 + a1t + a2t2 + · · · with
coefficients in R, we can define a linear map A( f0) = a0 +a1 f0 +a2( f0)2 +· · · : H⊗r →
R, for any f0 ∈ N, since for any particular element of H⊗r only finitely many terms
of the series take nonzero values. Moreover, we will have

A( f0) ◦ (h1 ⊗ · · · ⊗ hr ⊗ a) =
∑

h1
1 ⊗ · · · ⊗ hr

1 ⊗ A( f0)(h1
2, . . . , h

r
2)a

= a0 ◦ (h1 ⊗ · · · ⊗ hr ⊗ a) + a1 f0 ◦ (h1 ⊗ · · · ⊗ hr ⊗ a)

+ a2( f0)2 ◦ (h1 ⊗ · · · ⊗ hr ⊗ a) + · · · ,

https://doi.org/10.4153/CMB-2002-002-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-002-3


22 Yuri Bahturin, Mikhail Kochetov and Susan Montgomery

for any h1, . . . , hr ∈ H, a ∈ R. Therefore,

η
(

A( f0)
)
= a0 + a1η( f0) + a2

(
η( f0)

) 2
+ · · ·

in End(H⊗r ⊗ R).
Note that the identity element of Hom(H⊗r,R) under the convolution product is

ε(h1 · · · hr), so a0 means a0ε(h1 · · · hr) in the definition of A( f0).

Lemma 4.4 The set 1 + N is an Abelian group under the convolution product.

Proof Let f0, g0 ∈ N, then (1 + f0)(1 + g0) = 1 + f0 + g0 + f0g0 and we want to
prove that f0 + g0 + f0g0 ∈ N. By Lemma 4.2, this is equivalent to showing that
η( f0 + g0 + f0g0) = η( f0) + η(g0) + η( f0)η(g0) is a locally nilpotent operator. But it is
straightforward that a sum or a product of commuting locally nilpotent operators is
again a locally nilpotent operator.

Finally, if f0 ∈ N, then 1 + f0 + ( f0)2 + · · · is the inverse of 1 − f0, since we have

η
((

1 + f0 + ( f0)2 + · · ·
)

(1− f0)
)
=
(

1 + η( f0) +
(
η( f0)

) 2
+ · · ·

)(
1− η( f0)

)
= 1,

and f0 + ( f0)2 + · · · ∈ N, since η( f0) +
(
η( f0)

) 2
+ · · · is obviously a locally nilpotent

operator.

Proposition 4.5 For any multilinear map f : H × · · · × H → R, normalized with
respect to the i-th variable (or, more generally, such that f − ε is locally nilpotent), there
exists a unique multilinear map g : H × · · · × H → R, normalized with respect to the
i-th variable, such that f = gm under the convolution product, provided char k � m.

Proof Since char k � m, we can consider the formal power series

A(t) = (1 + t)
1
m = 1 +

1

m
t + · · · .

Set g = A( f0). Obviously, g is normalized with respect to the i-th variable, and
f = gm by construction. It remains to prove the uniqueness of such g.

Suppose we have two normalized multilinear maps g ′, g ′′ : H×· · ·×H → R such
that g ′m = g ′′m. Then we can write g ′ = 1 + g ′0, g ′′ = 1 + g ′ ′0 and g ′0, g ′′0 are locally
nilpotent. So we have

(1 + g ′0)m = (1 + g ′′0 )m,(16)

and we want to show that g ′0 = g ′′0 .
By Lemma 4.4, we can divide the left side of (16) by the right side, so it suffices to

prove that (1 + g0)m = 1 implies g0 = 0 for g0 locally nilpotent. But

1 = (1 + g0)m = 1 + mg0 +

(
m

2

)
g2

0 + · · ·

yields g0 = −
1
m

(m
2

)
g2

0−· · · (recall char k � m), which contradicts the local nilpotency
of g0 if g0 �= 0.
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Proof of Theorem Since the r-characters are normalized with respect to any vari-
able, we can apply Proposition 4.5 to α : H × · · · × H → R, obtaining a normalized
r-linear function β : H × · · · × H → R such that α = βm. It remains to prove that
β is an r-character on H. To do so we have to show (2) for β, for any i = 1, . . . , r.
Since α = βm is an r-character, we have

βm(h1, . . . , kl, . . . , hr) =
∑
βm(h1

1, . . . , k, . . . , h
r
1)βm(h1

2, . . . , l, . . . , h
r
2).(17)

Set

f (h1, . . . , k, l, . . . , hr) = β(h1, . . . , kl, . . . , hr) and

g(h1, . . . , k, l, . . . , hr) =
∑
β(h1

1, . . . , k, . . . , h
r
1)β(h1

2, . . . , l, . . . , h
r
2).

Then f and g are multilinear maps, normalized with respect to any variable except
the (i + 1)-st, and (17) can be rewritten as f m = gm (we use the cocommutativity).
Applying Proposition 4.5 again, we conclude that f = g, which is exactly (2) for β.
Note that in the case r = 1 f and g are not normalized, but they are still nilpotent
(the proof is analogous to that of Lemma 4.3), so we can apply Proposition 4.5 in this
case as well.

The proof of the invertibility, symmetry or skew-symmetry of β is similar (and
simpler).

Let us define two operators:

sym: Chr(H,R)→ Symr(H,R) : α �→
∏
π∈Sr

(π ◦ α),

and
alt: Chr(H,R)→ Altr(H,R) : α �→

∏
π∈Sr

(π ◦ α)sgn π,

for any cocommutative Hopf algebra H.

Corollary 4.6 If H is connected and r < char K or char K = 0, then sym and alt are
projections of Chr(H,R) on Symr(H,R) and Altr(H,R), respectively.

In particular, we obtain the following corollary, which extends Proposition 3.16
of [1] on the skew-symmetric bicharacters on universal enveloping and restricted
enveloping algebras.

Corollary 4.7 Let H be a connected cocommutative Hopf algebra over a field K of
characteristic not equal to 2. Let α be a skew-symmetric bicharacter on H with values
in a commutative algebra R. Then there exists a (unique) skew-symmetric bicharacter
β such that

α(h, k) = β2(h, k) = β(h, k) ∗ β−1(k, h).
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Now we can pass to arbitrary pointed cocommutative Hopf algebras, in Theo-
rem 3.20 of [1]:

Theorem 4.8 Let H be a pointed cocommutative Hopf algebra over a field K of char-
acteristic not equal to 2. Let α be a skew-symmetric bicharacter on H with values in a
commutative algebra R. Then α can be written in the form

α(h, k) = σ(h, k) ∗ σ−1(k, h),

for some 2-cocycle σ if and only if α(g, g) = 1 for any group-like element g ∈ H. If this
condition is not satisfied then we can write α in the form

α(h, k) = α0(h, k) ∗ σ(h, k) ∗ σ−1(k, h)

where σ is a 2-cocycle and α0 is the sign bicharacter of H.
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