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1. Introduction. Given a function f(z), continuous on C: \z\ = 1 in the 
complex plane, there is a close analogy between approximation in the sense of 
least squares by polynomials on the unit circle and interpolation by poly
nomials in the nth roots of unity to the same function. For detailed discussion 
of the problem and its generalization for a suitable Jordan curve one can refer 
to Walsh (3) or to a recent paper by Curtiss (2). More recently, Curtiss (1) 
has considered the problem of interpolation by polynomials in non-equally 
spaced points on the unit circle and has pointed out the limitations inherent 
in the problem. He has shown that if f(z) is analytic in \z\ < 1, continuous in 
\z\ < 1, and sufficiently smooth in the neighbourhood of £ (where |f| = 1 
and £ is not a root of unity), then the polynomial Ln(f\z) which interpolates 
to f(z) in the (n — l ) th roots of unity and £ has the property that 

(1) l imL„(/;s) = / (* ) for \z\ < 1. 
n^co 

lif(z) is only R-integrable on C, then he has shown that without the hypothesis 
of analyticity for \z\ < 1, but with the assumption that the divided difference 
d(f\z, £) defined in (4) is R-integrable on C, (1) becomes 

(2) lim Uif; z) = ~~ f -f®-dt - ~ f d(f\t, £)*, for \z\ < 1. 

Curtiss has has also shown that a similar situation prevails when more 
"mavericks" are included with the roots of unity. The object of this note is to 
study a similar situation for interpolatory polynomials Pm>n{z, z~l) of degree 
m in z and n in zr1. I t will be shown that if we set 

(3) PWin(s, r-i) ss q„^(z) + rn™ (s"1) 

where qm
in)(z) is the polynomial component and rn

{m)(z~l) is zero at infinity, 
then under the smoothness conditions required by Curtiss, qm

(n) (z) has the 
same property as Ln(f; z) above, except that the extra term on the right in (2) 
does not appear. A similar result is true for rn

(m) (z~l) for \z\ > 1. 
The polynomial component qm

(n) (z) is not an interpolatory polynomial in 
general, but it has the property that it preserves polynomials of degree <m. 
We do not want to emphasize this property of qm

(n) (z) as a linear operator, but 
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INTERPOLATION BY POLYNOMIALS 17 

we shall illustrate its efficacy by stating an analogue of a result of Walsh 
(3, p. 153). 

2. Interpolation in certain strong equidistributions. Consider a set 
of points Sm+n+iv formed of (m + n — v + l ) th roots of unity and the v points 
SV(SV: £i, £2, . . . , £„) which are not roots of unity, v being a fixed non-negative 
integer with |£t-| = 1 ; i = 1, 2, . . . , v. These points, m + n + 1 in number, 
are strongly equ id is tribu ted in the classical sense (3, p. 166). Let 

d(f |2,Éi),d(f |s ,Éi,fc), . . . 

be the divided differences of order 1,2, . . . given by 

(4) 2 " h 

Z — & 

We shall prove the following theorem. 

THEOREM 1. If Pmfn(z,z~1', Sm+n+iv) = PWtn(z,z~l) is the polynomial of 
form (3) in z and z_1, of degree m in z and of degree n in z~l interpolating to f(z) 
in the points Sm+n+i\ where f(z) together with 

d t fMi ,É2 , . . . ,& t ) (k = 1,2, . . . , „ ) 

is R-integrable on C, then 

lim qm
in)(z) = ô—: I , — d t , \z\ < 1, n > v and fixed, 

lim rn
{m) ( - ) = ^~. f P^Ldt, \z\ > 1, m > v and fixed. 

n_,œ \z/ 2wt Jct - z ' 

If f(z) is analytic for \z\ < p > 1, but has a singularity on \z\ = p, then 
QmW (z) converges maximally to f(z) on C. 

Moreover if sm(z\ Sv) is the polynomial of degree m whose difference from f(z) 
has a zero of order (m — v) at the origin and vanishes in the point set Sv, then 

(6) lim [sm(z; Sv) - q(:\z)} = 0 
m->oo 

for \z\ < p2+a, uniformly for \z\ < Z < p2+a where 

lim (n/m) = a. 
m,n-$co 

Also 

(7) lim rj"> ( ; ) = 0 

for \z\ > (l /p)1 / a and uniformly for \z\ > Z > (l/p)1 / a . 

(5) 
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Remark. A sequence of polynomials pn(z) is said to converge to f(z) on C 
maximally or with the greatest geometric degree of convergence, if 

l/(^) -Pn(z)\ <M/R\ zonC, 

for every R < p, when M depends on R but not on n or z. Equivalently 

lim sup jji1/n = - , fin = max {\f(z) — pn(z)\, z on C}. 

For the sake of simplicity, we shall prove the theorem for v = 2. Then 
znPm,n(z, z~l) is the polynomial of degree m + n interpolating to znf(z) in the 
points Sm+n+i2. Hence 

np x " ^ T 1 „ | r t f , K ( ^ - x - 1) (* - fr) (* - b)tf 

«P-fc* )= g » /(»)(„ + „_ 1)(z _ ^)Y - I0(^ - «,) 
_L t nt(t \ (zT O +"~ — 1 ) Q — & ) • fcn r / t x ( 2 m + n ~ — l ) ( z — g t ) 

+ i i / (?i) ( { r * - i _ 1 ) ( £ i _ ? 2 ) + &/««) a r + n - i _ 1 ) f e _ b ) . 

where w is a (m + w — l ) th root of unity with wm+n~l = 1. 
A simple calculation shows that for n > v, 

m+n—l nPkr/ k\ k 

Çm {Z) ~~ h (m + n-l)(wk-i r i (m + n - 1) (Ve - fa) (w* - fa) 

_m+l o (m+l)A; 
__ 

S — W 

- (fa + fa) -5 V + fa fa-- - , 
z — w z — w J 

, ( g " - { , ^ % y f t i ) , €»"/(€») ( « " - f i ^ - 1 ) 

Since 

( 2 m+i _ w ( m + i ) t ) _ ( ^ + J 2 ) ( s m _ ^ m * ) + f j ^ ( ^ - 1 _ w 0 * - l ) * ) 

= s^"1^ - fa)(2 - fa) - wmk-k(wk - fa)(w* - fa) 
and since 

» 1 m+n—l nk k 

x 1 ^ w "w 
x — 1 m + n — I f~i w — x 

we can rewrite 
gww(s) = h + h + h + U 

where 
mf-1 wnk-f{wk)wk-zm~\z - Sx) (g - fe) 

Jl él („ + „_i)(w*_£1)(V-&)(*-«>*)' 
y 1 wmk+nk-j(wk) _ 
*=i (w + « — 1 )0 — wk) ' 

m+n—l r/y \ nk k / m y m—l\ 

7 _ Y" / ( faV -w (z - faz ) 

/< = - E fci 0 » + » - ! ) ( « < " - f c ) ( É * - £ i ) 
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Using the definition of divided differences (4), we obtain on combining 7i, 
J3, and I4: 

qm (z) = 12 — 2 2-^ 7 1 i w * \ 
fcl (w + » — l)(w — z) 

m+n—1 wfc * 
2£J • 2£J 

m+w—1 nfc fc 

The last three sums can be looked upon, after multiplying and dividing by 2, 
as Riemann sums for the integrals 

and 

^7 f tnd(f\t,h,h)dt, 
Zirt J\t\=i 

respectively and since f(t), d(f\t, £i), and d(f|£, £i, £2) are by hypothesis 
R-integrable, the result follows at once for fixed n > v, since |z[ < 1. For 
w-^ » , the result again follows by the Riemann-Lebesgue theorem. 

The proof for the second part of (5) is similar. We just give the expression 
for rn™ (zr1) (m > v): 

+ ttl«+-i.i)ftl-.£l) + ftl«4-i_1)ttt_£i) • 
where 

a(z, «/*) = -z~n(z - fi)(2 - f2) + wm*-*(£i - w*)fe - wk). 

After rearrangement, one can rewrite 

r.^V1) = - /i - s-" E 
w+n—1 — mk r/„..k\ „„Jc 

k=\ {m + n - l )(s - wfc) 

m+n— 1 —mfc+fc * 

For |z| > 1, the result now follows as in the first case. 
If f(z) is analytic in a circle \z\ < p, but has a singularity on |z| .= p, we can 

prove maximal convergence of qm
{n) (z) on C by observing that 

n—l.m/ 
fM - n « M - JL f ^ ~ V ( g - t l ) ( « - f » ) - (< - f r ) ( * - fa ) /«) 

where T is the circle \z\ = R, 1 < R < p. 
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The details of the rest of the proof are omitted. 

3. I t is interesting to observe that (5) is independent of the extra term that 
occurs in (2). However both results require the existence of integrals involving 
divided differences of / ( / ) at the points £*. This is not surprising, as is seen by 
taking f(z) = zr1, and v = 1 in the above theorem. The Lagrange polynomial 
of interpolation Lm(f;z) is given by 

(1, p. 873) and so 

lim Lm(f;z) = - for \z\ < 1, 
ra->oo s 

whereas znPw>n(z, z~l) = zn~l gives for n > 1, qm
(n) (z) = 0 for all m. However, 

if n = 0, qm
i0) (z) = Lm (f; z) —-> l/£ for \z\ < 1 as m —> oo. 

The assumption n > *> is necessary in the theorem, since for n < v, the extra 
terms of the type which occur in (2) begin to appear in formula (5). 

4. Analogue of a theorem of Walsh. We shall now give an analogue of 
a theorem of Walsh (3, p. 153) which appears to be stronger than the original. 
We formulate 

THEOREM 2. Letf(z) be analytic for \z\ < p > 1 but have a singularity on the 
circle \z\ = p (the case p infinite is not excluded). Let Pm>n(z1z~1) be a polynomial of 
degree minz and n in z~l given by (3 ), which interpolates tof(z) at the (m + n — 1 ) th 
roots of unity; then qm

(n)(z) converges maximally to f(z) on C: \z\ = 1. 
Moreover, if sm(z) is the polynomial of degree m in z which coincides with f(z) 

at the origin up to order m + 1, then 

(8) lim [sm(z) -qm
(n)(z)] = 0 

for \z\ < p2+a uniformly for \z\ < Z < p2+a where 

(9) lim -- = a. 

Also 

(10) lim rn
{m)(z~l) = 0 

for \z\ > p~1/a uniformly for \z\ > Z > p~1/a. 
Further, if Pm,n'(z, z~l) is a polynomial of degree m in z and of degree nf in 

z~l, interpolating to f(z) at the (m + n' + l ) th roots of unity with 

(11) Pw,n' (z, s"1) = qJn/) (z) + rn,™ (s-i) 

where qm
(n)(z) and rn

{m)(z~l) have obvious meanings as above, then 

(12) lim [qm
(n,)(z)-qjn)(z)] = 0 

n,n' ,m->co 
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for \z\ < p£+2, uniformly for \z\ < Z < p&+2 where 

lim (ri/m) = 0 with @ < a. 
n' ,m->co 

We omit the proof. 

Some special cases are of interest. If n = km, (8) holds for \z\ < p2+lc and 
(10) for \z\ > p~u\ If n = k + m, (8) holds for |z| < p3 and (10) for \z\ > p~\ 
For n = k (a fixed positive integer) (8) holds for \z\ < p2, which is the case 
treated by Walsh (3) for * = 0. 

Similarly for m = n'k, (8) holds for \z\ < p2+1/fc and (9) holds for \z\ > p~k; 
for m = ri + *, (8) holds for |z| < p3 and (10) for \z\ > p~\ 

Results about the degree of convergence of qm
(n)(z) to/(z) and of rn

{m)(z~l) 
to zero can be also obtained. Indeed, we have 

(13) lim sup [maxj \rn
im) (z'1) \, z on C) ]1/n < (-) '* 

where 

lim 
W,W->oo 

and 

(14) lim sup [max{ \f(z) - qm
M(z)\, z on C}]1,m = - . 

Looking upon gw
(w) and rw

(m) as operators that map every continuous function 
f(z) defined on the unit circle into the polynomials of degree m in z and of 
degree n in z~l respectively by interpolation, as described earlier, we see that 
they are obviously linear operators. This observation enables us to formulate 
our result for functions that are analytic in an annulus. We thus have the 
following 

COROLLARY. Let f(z) be analytic for 1/p < \z\ < p > 1, but not for 
\/p < \z\ < p', p > p. Let Pm<n(z, z~l) be the polynomial of degree m in z and 
n in z~l which interpolates to f(z) at the (m + n + l ) th roots of unity and let 
(3) hold. If f — / i + fi where f\ is analytic for \z\ < p and f2 is analytic for 
\z\ > 1/p, then gw

(w) converges maximally to f\{z) and rn
<Jfl){z~l) converges 

maximally to fi{z). 
Moreover, if sm(z) is the polynomial of degree m in z which coincides with fi(z) 

at the origin up to order m + 1, then 

(15) lim [sm(z) - q%\z)] = 0 

for \z\ < pa, uniformly for \z\ < Z < pa> where a is given by (9). 
If tn{z~l) is the polynomial of degree n in z~~l which coincides with fi{z) in the 

point at infinity, up to order n + 1, then 

(16) lim Uz-1) - r^iz-1)] = 0 
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for \z\ > p~1/a, uniformly for \z\ > Z > p~1/a. 
If Pm,nf(z, 2_1) has the form (11) and if 

lira (n'/m) = /3 < a, 
n' ,n,m->oo 

then 

(17) Urn [qm
W\z) - qm

{n\z)] = 0 

/or |s| < p^, uniformly for \z\ < Z < p^; a similar relation holds for rn
m(z~l). 

Further 

(18) l i m s u p [ m a x { | / 1 ( 2 ) - 2 J ' " ( S ) | > 2 o n q ] 1 / m = {1
1/p' * > J' 

(19) lim sup [max( |/2(S) - r™(z)\,z on Q f" = { J 1 / ^ " ' a J }' 
w,w-4oo W P , a ^ 1. 

I t is enough to mention the following example. The formal proof of Theorem 2 
and its corollary is exactly as in Walsh (4). 

Let f(z) = f1(z) +f2(z) where 

Mz) = (P - ~)~\z - p)-\ Mz) = ( - 1 ) ( P - i ) _ 1 ( S - i)"1; 

then 

1 1 nm+i i jjnrn -« i 
•r ^ n (wVo^ - 1 L _ f>z — l j _ P z — l 1 

Jl\Z) — Cm \Z) — 1 / * m+n+l -, ~T m+n+l -, * -, / 
p — 1 / p Z ~ p p — 1 p — 1 2 — 1 / p and 

« m+1 
f /9\ _ («V^-1^ - x z — p J _ z — p x 

J2\Z) rn \Z J — , . n+m+1 i \ . n ' "T" n / m+n+l i \ „ \ /n 

p — 1/p (p — l)z z — p z (p — I) z — 1/p 
Also 

-, Jtn+1 m+1 •* 
c (r\ - ( n ) / ^ A Z — p 1 

mm— 1 
P 2 1 

P — 1 / P P (P — 1) 2 — p P
m+"+1 - l ' z -- 1 / P 

and 

1 cn n 1 

t (r-l\ ,. (m)/ - K 1 S — p 1 i"nV> ) rn \o j — 1 , m+n+l -, ' / \ w 
p — 1/p p — 1 (2 — p)2 

pnzn - 1 1 
I n n( m+n+l i \ _ ^ I ' 

Z P (P — 1 ) 2 — 1 / p 

5. If /(2) is only given to be continuous (or R-integrable) on the unit circle, 
interpolation by polynomials Pm>n(z, 2-1) has the same character as when 
m = n (3, p. 180). To be more explicit, we state without proof the following 
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THEOREM 3. Letfiz) be R-integrable on C: \z\ = 1. Let Pm,n(z, s - 1) , qm
in)(z)> 

rn
{m) (%~l) have the same meaning as in Theorem 2, and let Pm,n{z> s -1) interpolate 

to f(z) at the (m + n — l ) th roots of unity. Then 

(lim ft.w(s) = 5 ^ f 4®-*. W < 1 . 

) l imr„ ( r o ) ( Z - 1 )=^ - . f p£-dt, H , > 1 , 
VW-K» ^ ^ JC t — Z 

the last integral being taken in the clockwise sense. The convergence is uniform for 
\z\ < r < 1 and \z\ > 1/r > 1 respectively. 

U f(z) is analytic in the annulus 1/p < \z\ < p > 1 (iw particular, for 
\z\ < 1 or \z\ > 1) /&e equations (20) are valid for \z\ < p and \z\ > 1/p respec
tively, with uniformity for \z\ < R < p awJ |z| > l/i£ > 1/p respectively. Also 
Pm,n(z, 2_1) —>f(z) uniformly for 1/R < |z| < i£ < p. 

The first part is Theorem 2 in (5). If in (20) we set 

fi(z)=W-- ( -f®-dt = ao + a1z+..., \z\ < 1, 

one might suspect, in analogy with Theorem 2, that the equation 

lim [qm(n)(z) — (a0 + axz + . . . + amzm)\ = 0 
m->oo 

could be established for certain values of z in modulus greater than R, at least 
if f(z) has no singularity for \z\ > R. That this is not so can be verified exactly 
as in Walsh (3), by the example of the function 

l / ( s - p), 0 < p < 1. 

The author is grateful to Professor Walsh and Professor Curtiss for many 
helpful suggestions and advice. 
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