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Introduction

The study of radicals in general categories has followed several lines of develop-
ment. The problem of defining radical properties in general categories has been
considered by Kurosh and Shul'geifer, see (7). Under mild conditions on their
categories they obtain sufficient conditions for the existence of radical functors which
are closely related to radical properties. Another approach is by Maranda (5) and
Dickson (3) who studied idempotent radical functors and torsion theories in abelian
categories. Our aim has been to study radical functors in as general a category as
possible. To this end we introduce the concept of an /^-category. The categories of
rings, modules, near-rings, groups and Jordan algebras are all examples of R-
categories.

In the first part we describe a general procedure for producing radical functors in
Jf-categories and show that every radical functor is obtainable by this procedure.

Although our procedure produces all radicals in abelian categories it does not give
the common radicals of ring theory etc. To produce these we amend our definition of
radical functor so that its domain is a certain subcategory of the R-category. In a
similar wa'y all such functors are classified and these give rise to the usual radicals in
ring theory etc. Carreau (2) and Wiegandt (8) have obtained partial characterisations
of radical functors under different conditions.

In the second half of this paper we examine the problem of describing a suitable
generalisation of the concept of a special radical from the theory of rings to the theory
of categories. This is then applied to the case of the theory of near-rings and gives us
some interesting new insights into the radicals of near-rings. All that is needed is
enough structure in our categories to enable the first and second isomorphism
theorems to hold.

A general reference for terminology and presentation is Mitchell (6).

1.

In this section we introduce the categories in which we propose to define radical
functors. We require first two definitions:

Definition 1.1 A category <€ is said to have N-intersections if, given any object X of
<€ and any set {w,- : Xt -* X\i G 1} of kernels of <£, then the intersection n,e,M,-: n,e/X, -* X
exists.

I l l
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Definition 1.2. A category <£ is called N-locally small if every object A of ^
possesses a representative set for its normal subobjects. [If {Ai\i G 1} is a represen-
tative set for the normal subobjects of A and for each i G /, g,: A, -».A then we
sometimes refer to {gi\i G /} as a representative set of kernels of A],

Now we describe the type of categories in which our theory is developed.

Definition 1.3. A category •£ is said to be an JR-category if
(i) %> has kernels and cokernels,

(ii) <# has N-intersections and is AT-locally small,
(iii) every morphism of <£ factors through a cokernel followed by a monomor-

phism,
(iv) for every cokernel t:X-*Y and kernel Z - » Y w e have t(t'\Z)) = Z.

These conditions seem to be fairly easily investigated in any specific category and
were chosen because of this.

The following elementary results are recorded without proof. They can be
established in more general categories than if-categories and this is indicated.

Lemma 1.4. Let <€ be an arbitrary category
(i) i /A ,CA 2 Ci4 are objects of <<? and A\ is a normal subobject of A then At is a

normal subobject of A2.
(ii) // <£ has kernels and cokernels and f: K -* A is a kernel then coker(ker /) = /.

(iii) if <# has kernels then <£ has inverse images of normal subobjects and these
inverse images are normal. If f:A-*B and B'—*B is the kernel of B-*B", then
f~\B')-* A is the kernel of A-+B-+ B".

Lemma 1.5. Let ^ be a category with kernels, cokernels and N-intersections. If
{UJ : X; -» X\i G /} is a set of kernels in c€, then n,G/M,: n,G,X, -> X is a kernel in c€.

Corollary 1.6. Let ^ be a category with kernels, cokernels and N-intersections. If
{Bi-» B\i G /} is a set of kernels and f:A-+B then /"'(n,6/B,) exists and /"'(n,€;B,) =
rw~!(B*).

Lemma 1.7. Let ^ be a category with kernels and cokernels. Consider the
commutative diagram

A,-> A2-+ A3

4 1 I
Bi-^B2^Bi

i I I
c, c2 c3

/ / the initial morphisms of each row and column are kernels and the final morphisms
are cokernels of the initial morphisms, then there exist morphisms Cx-*C2, C2-*C}
such that the augmented diagram is commutative and C2->C3 = coker(C]-» C2).

Corollary 1.8. Let ^ be a category with kernels and cokernels, such that every
morphism a : A-* B of <€ can be factored into A-* I -> B where A-* I is a cokernel and
/-»fi is a monomorphism. Then, in the diagram of Lemma 1.7, d - » C 2 is a
monomorphism.
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Lemma 1.9. Let <# be a category with kernels and cokernels, such that every
morphism a.A^B of <6 can be factored into A -* / -> B where A^lis a cokernel and
I -* B is a monomorphism. Then <# has epimorphic images, I -» B being the epimorphic
image of a:A-* B.

One of the essentials of our theory is a generalisation to fl-categories of the First
Isomorphism Theorem of abelian categories. We require a preliminary result.

Lemma 1.10. Let <# be an R-category. Let t:X-*Y be a cokernel with kernel
Z-» X and let W-* X be any kernel such that Z C W. Then t( W)-» Y is a kernel.

Proof. Suppose X-> T = Coker(W-»X). Then W^X = ker(X-> T); so there
exists a morphism Y -* T such that the diagram

w

X —
\

T

is commutative since Z-*X^>T = Z->W^>X^>T = 0. LetK->y = ker( Y -» T). Now
W^X^Y^T= W-»X^>T = 0; hence W^t(W)-+ Y -»• T = 0.

Now W-*t(W) is a cokernel; thus t(W)-* y-> T = 0. It follows that a monomor-
phism f(W)-»IC exists such that <(W)-> Y = f(W)-»/C-» y. Hence t{W)QK. Since
((^ '(X))C X, we have a commutative diagram

\ \

Kr'(K))->K

so r'(X)-*Ar^-T = 0. But M^^X = ker(X^T); so there exists a monomorphismsuch that t'\K)^X = r ' (X)-» W-»X. Hence r ' ( K ) C W and
). Since « is an ^-category, t(rl(K)) = K we have K C I ( f ) . Thus

we conclude that K = f(W); so f(W)-> y = ker(y-»• T).

Theorem 1.11 Lc< ^ be an R-category. If A{-* A and A2^> A are kernels such that
C A2 then (AIA])l(A2IAt) is isomorphic to A\A2.

Proof. At-* A2 is a kernel by Lemma 1.4. Hence we have a commutative diagram

I I I
I I

A2IA\ A\A\ A\A2
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satisfying the hypotheses of Lemma 1.7. From this lemma and Corollary 1.8 we
conclude that there exist morphisms A2IAi~*A\Au A/Ai-* A/A2 such that

(i) the diagram is commutative,
(ii) A2IAt-> AIA\ is a monomorphism,

and (iii) A\AX-* AIA2 = coker(A2/Ai-» A/Ax).
It only remains to show that A2/A,-» A/Ai = ker(A/A,-» A/A2). Let t: A-* A\AX be the
cokernel of A,-*A. Since AtQA2, it follows by Lemma 1.9 that f(A2)-»A/A, is a
kernel. Now A2-»A/Ai = A2-»A2/A(-»;4/A,, where A2-»A2/Ai is a cokernel and
A2/A!~» A/Ai is a monomorphism; so by Lemma 1.7, A2/Ai-»A/Ai is the image of
A2-+AIAU i.e. A2/A, = t(A2).

Since A2/Ai-»A/A, is a kernel with cokernel A/Ai-»A/A2,

A2\A, -• A/A, = ker( A/A, H> A/A2)

the result follows.

2. The classification of r-functors

Definition 2.1. Let <£ be an /f-category. A convariant functor r : ^ - * ^ is called
an /-functor if

(i) r is a subfunctor of the identity functor on <<£,
(ii) for all C 6 « , r(C) is a normal subobject of <g,

(iii) for all C e « , r(C/r(C)) = 0.
This is a natural generalisation of the concept of a radical functor in an Abelian
category.

Definition 2.2. Let M be a non-empty class of objects of an R-category <€. For
each A G *£ we define the subobject

rad^A = n{kera |«G [A:M]^, M £ i ) .

Note that we may represent the class of morphisms which arise as kernels of
morphisms in {[A: M]^\M E.M} as a set, since <€ is AT-locally small. In many
situations we denote this set by {g,: A, -» A\i € /} and then rad^A -^ s * A is a kernel by
Lemma 1.1.

Theorem 2.3. Suppose that <# is an R-category and M is a non-empty class of
objects of C. If A e C and B is a normal subobject of A such that B C rad«A, then

T&dM(AIB) = (rad.«A)/B.

Proof. From the results in §1, B->rad.«A is a kernel. Consider the set {g,:A,->
A| /G/} of kernels of morphisms in { [ A : M ] , , A f e i } ; then B-» A = B-> A,—^U A
for all i G /, where B -» A, = B -» rad.*A —» A,, and thus B -» A, is a kernel for all / G /
by Lemma 1.4.

We show first that for every morphism u from A\B to an object M in M there is
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an index i in / such that ker u = (AJB -* AlB). To do this, suppose ker u = X -* AlB.
If t: A -» A/B is the cokernel of B ^>A, then A -» A/B -* M has kernel A, -» A for
some i e / and r ' (X)-» A-» A/B-> M = 0 implying r''(X)CA/. Thus X =
t(t~\X))(Z t(Aj). From the proof of the isomorphism theorem, f(A,) = AJB and hence
XCAJB. However A,--> A-> A/B -+M = 0 so Af-M(Aj)-» AIB-*M = 0. Now A,--»
f (A,-) is an epimorphism with t(A,) = A,7B and therefore A,7B -» A/B -» M = 0 whence
X = AJB.

Next we show that for every index / in / there is a morphism from AlB to some
object M in M with kernel (AJB -* AlB). Suppose g, :Ai-+ A is the kernel of (A -> M).
We have A->M = A-*A/Aj-*M where A-»A/A, is the cokernel of A,-»A and
AIAi-*M is a monomorphism. Consider the commutative diagram

A,- » A *AIA-,

1 1 I
A,/B * AlB > A/A,

where the vertical morphisms are cokernels, At^>A, AJB->A/B are kernels and
A-»A/A,-, A/B -» A/A,- their cokernels. Define AlB -* M = AlB -> A/A,--» M. Then
ker(A/B -»• M) = ker(A/B -»• A/A,,^ M) = ker(A/B -» A/A,) since A/A,-»M is a
monomorphism. Therefore ker(A/B -» M) = A,7B -» A/B.

This shows that rad^A/B = n(A//B).
We finally show that n(A,/B) = (nA,)/B = (rad^A)/B. Let f.A^A/B be as

before. Then r ' ( n(A,/B)) = n(r'(A,/B)). The proof is completed by showing
that rl(AjB) = Ah for then rad^(A/B) = t(t~'(n(AJB))) = /(HA,) = t(radMA) =
(rad^A)/B. Consider the commutative diagram:

A >A/B

If y->,4, Y^A,/B are morphisms such that Y^>A-*AlB = Y-+ A,/B^A/B then
Y ̂  A -> A/B -> A/A, = Y -» AJB ->• A/B -> A/A/ = 0. Thus Y^>A^> AIA-, = 0, and so
there is a morphism Y^>A-, such that Y^A= Y-*A,-»A. Now Y-• A,-->A,7B-»
A/B = Y -» A, ^ A -+ AlB =Y^>A^> AlB = Y -» A,7B -» A/B. However A.7B -» A/B is
a monomorphism, so Y-*AJB= Y -> Aj-> AJB. This proves that the diagram is a
pullback and so f~'(A//B) = A,.

Corollary 2.4. Let M be any non-empty class of objects in an R-category (€. Then
rad^(A/rad^A) = 0, for all AE.%.

Let A and B be objects of <#, f G[A, B]^; we propose to define a morphism
rad.«/:rad^A-*rad^B. To do this let {hj:Bj-*B\jGJ} be a representative set of
kernels of morphisms B -* M, M G M. Given a kernel h, :Bj-*B of a morphism B -* M

then there exists / G / such that g, -.A.^A is the kernel of A -^B -»M. The following
diagram is commutative:
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rad uA > A

A,

B, > B *M.
hi

Since A/• -» A -» B -> M = 0, there is a morphism A, -» B, such that A, -> A -» B = A, -»
By -» B. Therefore there is a morphism /,: rad^A -* By such that rad^A -» By = rad^A -»
A,--»By. This is true for each / £ / and so there is a morphism t:radMA -»rad^B such
that

rad^A -* By = rad^A -* rad^B -> By, for all j G /.

Since A, -» A^>B = A, -» B, -» B we have

rad^A -» A -* B = rad^A -» By -» B, for all ; G /

= rad^A -> rad^B -» B, -* B, for all ; G /
= rad^A -> rad^B -» B.

If we write rad^/ = f, then the diagram

rad^A

hi (*)

is commutative.

Theorem 2.5. Let M be a non-empty class of objects of an R-category (€. Then
the assignment rad^ : A *-* rad^A, is an t -functor in c€.

Proof. By Lemma 1.5 rad^A is a normal subobject for each A in c€. By Corollary
2.4 we see that rad^CA/rad^A) = 0 for each A in <#. If / = \A in the diagram (*) then
1A • fig,;= figiradJ«l/4^>radJ<(lA= lrad^. Finally let f.A^B, f'-.B^C be
morphisms in <£. Denote by {k,: Q -* C\l G L} a representative set of kernels of
morphisms of C into objects M of M. Then rad^C = r\Ct. If t' = rad^ ' then the
following diagram is commutative:

t t'
rad^A * rad,«B * rad^C

ngi | nhy rut,

>B *C

Define /" = rad^{/'/), then by construction
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/ ' / • ngi = n*, • t", thus nit, • t" = rut, • ft

But C\ki is a monomorphism and so f" = f'f. Therefore rad^: A-*radMA is a covariant
functor and is in fact a subfunctor of the identity functor on <#, the natural
transformation 17 :rad,«-»/« being given by the inclusion Dg,- :rad,«A-» A, A 6 ? .

Theorem 2.6. Lef <£ fee an R-category. A functor r: <<£-»• <g is an / -functor if and
only if r is naturally equivalent to rad^, for some non-empty class M of objects of C6.
If r is an t -functor, the class M can be taken as the class {A. G <£|r(.4) = 0}.

Proof. We have already established that for each M. rad^ is an * -functor.
Suppose conversely that r: <€ -• <£ is an / -functor and let &> = {A G <€|r(A) = 0}. We
consider the / -functor rady. Since r(A/r(A)) = 0, A/r(A) e S for all A E i Now
r(A)-> A is the kernel of A -* Alr(A) and so rad^A C r(A), thus radyA -> A = rad^A -»
r(A)^>A (*). Since radyA-* A is a monomorphism, rad^A -» r(A) is a monomorphism.
Now consider a kernel A, -* A of a morphism A -> S where S G 5̂ . Since r(S) = 0 and r
is a subfunctor of the identity functor we have the commutative diagram

Thus r(A)-» A-» S = 0 and so there exists a morphism r(A)-»-A, such that r(A)-> A =
r(A)-*Ai-* A, and this occurs for each / G /. Consequently there exists a morphism
r(A)-»rady(A) such that r(A)->radyA-» A, = r(A)-*A-, for every / G /. Now r(A)^>A
is a monomorphism, as also is r(A)-*Ai. Thus r(A)->rad#.A is a monomorphism.
Consequently r(A)-» A = r(A)-*radyA^ A and this combined with (*) proves that
r(A)-»radyA is an isomorphism. Hence r and rady are naturally equivalent since the
correspondence is natural.

This theorem determines all radical functors in an abelian category, and all
/-functors in an R-category. It should be noted that different classes M, M' of objects
of the If-category *#, could give rise to the same functor rad^ = rad^., and in general,
when studying an /-functor r : ^ -»<g it is probably more usual to consider it to be
represented in the form rady: <€ -»<£, where Sf = {A G ^|r(A) = 0}, that is the class of
'r-semi-simple objects'. Furthermore, for any non-empty class M of objects of an
R-category <€, we have

MC{AG. <€\ra&MA = 0},

and so the class of semi-simple objects with respect to the radical functor is the
maximum class that can define the functor.

3. The classification of R -functors

Although the notion of /-functor defined in §2 generalises that of radical functor in
an abelian category, it is in some ways unsatisfactory, in that it does not enable us to
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consider those radicals of rings, near-rings, groups, etc. which do not have a
representation in an abelian category.

Consider, for example, the category of rings, *3ti. Let S be a radical property
defined on 0ti, see Divinsky (2), and let r: S?i-» 0ti be the rule which assigns to each
ring R its 5-radical, S(R). Then r is not an /-functor, since given a ring-homomor-
phism f:R-+R', by construction r(f) = f\S(R) and r(f)(S(R)) =f(S(R)), which is an
S-subring and not necessarily an S-ideal of R', and so is not necessarily contained in
S(R').

However, we do know that if / : R -*R' is an onto-homomorphism, i.e. a cokernel
in gti, then f(S(R)) is an S-ideal, so f(S(R)) C S(R') and r(f): S(/?)-» S(R'). It is then
evident that if we let %(^ki) denote the category whose objects are rings and whose
only morphisms are onto-homomorphisms, then r: g(<%j)-» ^?* defined by r(R) =
S(R), and r(J) = f\S(R), where R is a ring and / an onto-homomorphism, is a functor,
being a subfunctor of the inclusion functor 3?(0?*)-*£%*• Of course, we also have the
properties that r(R) is an ideal and r(Rlr(R)) = 0.

Furthermore, if one considers those well-known radicals which have represen-
tations as intersections of ideals, i.e. kernels in 0li, one sees that the ideals are the
kernels of onto-homomorphisms, i.e. cokernels in Sfci, into some class of objects.

With this in mind we proceed to develop the theory of £% -functors to accommodate
this situation.

Theorem 3.1. Let <g be an R-category. If / : A -> B and g.B^C are cokernels in C
then gf.A^Cis also a cokernel.

Proof. Let u:U-*A, v.V^B be the kernels of /, g respectively. Then / =
coker u,g = coker v. From the pullback

f~\V) > V

'I ['
A *B

f
it is clear that /"'(V) -» A -» C = 0, i.e. (gf)x = 0. We shall show that in fact x = ker gf.
So suppose y->A->B-»C = 0. Then there exists a morphism Y-* V such that the
diagram

Y

B

is commutative, and so there exists a morphism Y-*f '(V) such that Y-*A = Y-»
/"'(V)-» A Hence x = ker gf.

We now show that gf = coker x. So suppose dx = 0 where d:A-+D. We can
construct a commutative diagram
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D
as follows: (1) fu = 0=>g/w =0=> there exists a morphism z: l/->/~'(VO such that
xz = M,(2) dx = 0 => d*z = 0 => dw = 0, so there exists a morphism h:B^*D such that
d = /i/. Since /(/"'(V)) = V and hfx = dx=0, it follows that hv = 0, so there exists a
morphism l:C-*D such that h = /g. Finally we see that d = hf = Igf. So gf = coker x.

Definition 3.2. Let <£ be an U-category. By the cokernel subcategory, <?(<£) of <g
we mean the subcategory whose objects are the objects of % and whose only
morphisms are the cokernels of <#, so [A:B]gW = {/G [A:B]^\f is a cokernel}. The
previous result ensures that %(<%) is a subcategory of (€. We now define a new radical
functor as follows:

Definition 3.3. Let <# be an /?-category. A covariant functor r from <£(<£) to ^ is
called an £% -functor if

(i) r is a subfunctor of the inclusion functor ; : %(%)^> <&,
(ii) for all C G ^ , r(C) is a normal subobject of C,
(iii) for all C G « , r(Clr(C)) = 0.

If r satisfies the further condition
(iv) for all c £ c€, if K is a normal subobject of C such that r(K) = K, then

K C r(C),
we say that r is complete.

Definition 3.4. Let M be a non-empty class of objects of an /{-category c€. For
each object A GE *#, we define the subobject

V = n{ker a\aG[A: M]W), M e ^ } .

Corresponding to Theorem 2.3 and its corollary, we have:

Theorem 3.5. Suppose that <# is an R-category and M is a non-empty class of
objects of <<?. If AG^ and B is a normal subobject of A such that B C Rad^A, then
RadM(AIB) = (RadMA)IB.

Corollary 3.6. Let Ji be any non-empty class of objects in an R-category <€. Then
RadM(AIR&dMA) = 0, for all AGC.

Theorem 3.7. Let Jibe a non-empty class of objects of an R-category <#. Then the
assignment Rad,« : A -» RadMA is an 0i-functor from %W) to c€.

Proof. The method of proof employed in Theorem 2.5 can again be used.
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However, given / G [A: B]%(<gh there is a simpler method of constructing Rad^ in this
case. If C -» A = ker /, then / = coker (C-» A), so B = A/C. Let {g,: A, -»• A|/ G /} be a
representative set of kernels of cokernels A -* M, M G M. Then if {gt: Ak -> A|fc £ K c
/} is that subset such that Ak D C if and only if fc e X, it is easy to see that the set
{AJC-* AIC\k G K} is a representative set of kernels of cokernels AIC->M, ME.M.
Now RadMA/C = nkEK(AiJC) = r\ksK{Ak)IC and there exists a natural morphism
Rad^A -* Rad^B given by

Rad^A = n A,- -»• D At -> n At/C = Rad^A/C = Rad^fi

such that commutativity of the diagram

A

-A \
Rad^A • Rad^B

is assured. We take this morphism Rad^A -> Rad^B to be
As before, it is evident from the construction that if f:A-*B and g:B-*C are

cokernels, then Rad^(g/) = Rad^g Rad^/ and, for any A G C, Rad^U = IRZAMA- Again,
the natural transformation 17: Rad,# -» j which ensures that Rad^ is a subfunctor of the
inclusion functor is given by the inclusions rig,: Rad^A -» A, for A G <&.

As one might hope, we can again assert that all £%-functors of a given R-category
^ arise essentially as Rad^ for some non-empty class M of objects of (€:

Theorem 3.8. Let <£ be an R-category. A functor r: %(<€)-* <€ is an ^-functor if
and only if r is naturally equivalent to Rad^, for some non-empty class M of objects of
c€. If r is an ^-functor, the class M may be taken as the class {A G ^|r(A) = 0}.

Proof. See Theorem 2.6.

We observe again that different classes M, M' of an R-category <€ could give rise
to the same 0?-functor, r, but that there is a maximum class Sf which can be used to
represent r in the form Rady, namely the class Sf = {A G 9?|r(A) = 0} of "r-semi-simple
objects". The following definition is a straightforward translation of the definition of a
radical property as given by Divinsky (4).

Definition 3.9. Let <# be a category with kernels and cokernels and let S be a
property that an object of <# may possess. An object of <£ is called an S-object if it
possesses property S, and is said to be S-semi-simple if it contains no non-zero
normal S-subobjects. S is said to be a radical property if the following conditions
hold:

1. if A is an S-object and / : A-»B is a cokernel, then B is an S-object,
2. every object A G ^ contains a normal S-subobject 5, which contains every other

normal S-subobject of A,
3. for all AG.<€, AIS is S-semi-simple.

S is called the S-radical of A.
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In studying the relation between radical properties and radical functors, the idea of an
idempotent functor has proved important. In the situation in which we find ourselves
here, we cannot consider an 5?-functor to be idempotent as a functor since its domain is
not the same as its codomain. However, since the objects of the domain and
codomain coincide, we can still talk of an £%-functor r as being idempotent if
r(r(A)) = r(A) for all A £ C.

With this weaker notion of idempotence, we can relate 0?-functors and radical
properties in U-categories.

Theorem 3.10. Let C be an R-category and /•:£(<<?)-»•<<? be an idempotent
complete @t -functor. Then the property S: r(A) = A is a radical property and

(i) for all A £ « , r(A) is the S-radical of A,
(ii) the class of S-semi-simple objects is precisely the class {A £ ^r^A) = 0} of

r-semi-simple objects.

Proof. Let A be an S-object and / : A -> B be a cokernel in (€. Since r(A) = A we
have a commutative diagram

from which it follows that r(B) = B, so B is an S-object.
By definition of idempotence and completeness, it follows immediately that r(A) is

a normal S-subobject of A, which contains every other normal S-subobject of A, and
since r(Alr(A)) = 0, Alr(A) is S-semi-simple.
Note: If one were to relax the definition of radical property so that the property S
should satisfy only two of the three conditions, namely that the class of S-objects is
closed under cokernels, and that every object A of ^ possesses a normal subobject
S such that AIS is S-semi-simple, then every 5?-functor r would give rise to a radical
property.

As a partial converse of the above result we have:

Theorem 3.11. Let <6 be an R-category and S be a radical property defined on (€. If the
property S gives rise to an 01-functor r under the assignment A -* S(A), its S-radical,
then r is an idempotent complete Sft-functor and r = Rad^, where Ji is the class of
S-semi-simple objects.

Proof. The only thing that needs to be proved is that r = Rad^. We first observe
that if r: A -* S(A) is an 01 -functor, then S(A) is the unique minimal normal subobject
of A such that AIS(A) is S-semi-simple. Suppose I-* A is a kernel and All is
S-semi-simple; then from the commutative diagram
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we see that S(A)^A -» AH = 0 so S(A) C /.
Let M e.M and suppose that A -* M is a cokernel with kernel / -» A Then M = All
so ID S(A). Hence Rad.^4 D S(A). On the other hand, AIS(A) G M and SC4)-> A =
ker(A -• A/S(A)); so 5(A) D Rad^A. Hence r(A) = Rad^A.
Clearly, if / : A->B is a cokernel in <#, r(/) = Rad /̂".
Note: A sufficient condition for every radical property S of an U-category <# to give
rise to an 01 -functor is that <# satisfies the additional condition: If t:X-*Y is a
cokernel and W-*X is a kernel, then f(W)-» Y is also a kernel.

4. Complete radical functors

Having introduced the notions of idempotence and completeness for 3?-functors
we now turn to the problem of finding conditions on a class M which will ensure that
the corresponding S?-functor Rad^ enjoys these properties. The motivation for this
investigation is as follows: it is known that in the category of rings all radicals are
idempotent and complete, but no such general results are known in many other
categories. In the category of near-rings it is not known if all the Jacobson type
radicals are idempotent. It is thus of interest to study the situation in a general
categorical context with the aim of finding tests for idempotence and completeness
and possibly discovering whether idempotent and complete radicals are the rule or the
exception. It turns out that for completeness the problem is straightforward, but for
idempotence it appears to be rather deep.

We assume as before that <€ is an S?-category, but we also require that "# has
arbitrary unions of normal subobjects and that the second isomorphism theorem is
valid in <€. Thus we require that if At, A2 are normal subobjects of an object AG <£
then

(A,UA2)/A1«A2/(A,nA2).

Again this can be deduced from the elementary conditions on the category. Let <€ be
an 9t-category.

Definition 4.1. A class $£ of objects of <# is said to have condition (E) if for every
object A of 3? and every non-zero normal subobject B of A there is a non-zero object
X in S£ such that [B: X]«,^, is non-empty. This concept is a straightforward general-
isation of the ring theoretic terminology, see, for example Divinsky (1).

Lemma 4.2. Let r: g(<#)-> <# be an ^-functor with semi-simple class M. Then r is
complete if and only if At has condition (E).

Proof. First we suppose that r is complete. Let Y GJi and let .XV 0 be such that
X is normal in Y. If there is no non-zero object M E.M such that [X, M ] ^ , ¥• 0, then
r(X) = X and so X C r( Y) = 0. This is a contradiction.
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Now suppose that M has condition (E). We first of all note that if A -»B is a
cokernel and r(A) = A then r(B) = B, since the diagram

A >B

A >r(B)

is commutative. Let K be normal in an object A with r(K) = K; now
r(KIK D r(A)) = r(K)l(K n r(A)) = K/(K D r(A)) and thus [/C/(# f~l r(A)): X]tm = 0
for all XE.M. However this implies that [(K U r(A)lr(A): X]m) = 0 for all X £ M and
yet (K Ur(A))/r(A) is normal in A/r(A) which belongs to M. Thus (K U r(A))lr(A) = 0
and so K U r(A) C r(A) and thus K C

Theorem 4.3. / / M is any class of objects of <# satisfying condition (E) then
is a complete Sft-functor.

Proof. Let / = { A 6 ^|Rad^A = 0} be the class of semi-simples with respect to
Rad^. We show that Jf, too, has condition (E). Suppose that NE.N and K^O is a
normal subobject of N. We can find a representative set of cokernels {/,:Af-»M,;
Mi EM, / £ / } with kernels {L,--> JV | / £ / } such that n,e ,L, = 0. If /,(/£) = 0 for all
i £ / then K C L, for all i ; s o K C OieiLi = 0. Therefore there exists io £ / such that
fio(K) ¥• 0. Since f,o: N -* M-,o is a cokernel and K is normal in N we have f,o(K) normal
in Mio. By condition (E) there exists a non-zero ME.M such that [fio(K), M ] g w ^ 0.
Since K-*fio(K) is a cokernel we have [X, M]g(«)^0 and hence Jf also satisfies
condition (£) . By Lemma 4.2 the S?-functor Rad^ is complete.

5. Special radical functors

We introduce a new construction reminiscent of the upper radical for rings.

Definition 5.1. Let M be a non-empty class of objects of c€. Define 5^ =
{R £ ^|[i?, M]jrW = 0, V0 # M £ ^ } . Now for each object C of % we form the union
of all the normal subobjects of C that are also objects of yM- We call this union the
upper M-object of C and denote it by aUSfM{C).l)

It is immediate from the definitions that 'UifjiiC) is a normal subobject of C, for
any C £ *#, and furthermore this construction is idempotent in the following sense:-

Proposition 5.2. Let M be a non-empty class of objects of <&. For each object C in
is a normal subobject of C and

Proof. Clearly for any C £ <g, aU.&>
M{sU.y>

M(C)') C %5^(C). Now suppose that X is
any normal subobject of C that belongs to yM, it lies in %5^«(C) and is also normal in

and consequently belongs to

"Clearly 0 is in <fM and so 0C <U<fM(C).
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In general, this construction may not give rise to a radical functor. However, in
the category <%t of rings, when M satisfies certain conditions we obtain the upper
radical defined by M.

If we start with a general class of objects M of <#, we can then describe two basic
constructions, namely

Rad^(C) and %5^(C) for any C £ « .

In the general case there is no clear relationship between these two constructions but
in the category of rings they are equal in certain circumstances, for example when the
class M is a special class of rings.

In the general situation we adapt the definition of a special class of rings to the
abstract categorical context and then prove a generalisation of the result in ring
theory, namely that for a special class of objects the two constructions Rad^(C) and
°UyM(C) are equal for all C £ ^ . An immediate corollary of this result yields the fact
that Rad^ is an idempotent £%-functor.

The procedure of transforming the concept of a special class of rings into a
categorical setting requires some adaptation to make it suitable for future ap-
plications, including the theory of near-rings.

We have to introduce some terminology. As usual 9? will denote an /f-category
with unions of normal subjects. Let ifC#) be the category of short exact sequences in
<# and define if*(<#) to be the subcategory of ifC#) formed as follows:- the objects of
if*(<#) are triples of the form A-^B^C where A-»B is a kernel of <# and B-»C is a
cokernel of <<?. If A -» B -> C and A'-»B'-»C" are objects of if*(<£), the morphisms
are commutative diagrams of the form

A *B >C

I I J
A' >B' *C

where A-»A', B-»B', C-»C" are all cokernels of <£.

Definition 5.3. Let F : if *(<#)-» if (<#) be a covariant functor and suppose that
>B^>C) = AF-»BF->.CF where (A -> B -» C) £ if*(<g) and (AF ^ BF -»• CF) G
. We call F a neutral functor if BF = B is always true.

Example 5.4. The following are neutral functors in the case % = 0ti, the category
of rings.

(i) F, : (A-* K-»K7A)->(Ar->#-»£/Ar) where Ar is the right annihilator of the
ideal A in the ring K

(ii) F2:(A->K->'K7A)-»(A*-»K-»K/A*) where A* is the two-sided annihilator
of the ideal A in the ring K.

Definition 5.5. Let F : if*(<g) -» if (<#) be a neutral functor and d£ a class of objects of
c€. We call i?f an F-special class if and only if:

(i) (A -• B -+ C) G if*(<g) with B = AF and A 6 Sf implies A = 0,
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(ii) A G %! implies that all non-zero normal subobjects of A belong to #f,
(iii) (A -> B ->• C) G .£*(<£) with A G % implies CF G %,
(iv) I is a normal subobject of K, I is a normal subobject of T and 77 J G #f

implies 7 is a normal subobject of K,
(v) 22f is closed under isomorphisms.

In some categories and with certain types of neutral functor the condition (iv)
above is unnecessary since it can be deduced from the others. Condition (i) is related
to the concept of a prime ring in the category 9ii with F either of the functors in
Example 5.4. Using this notion of an F-special class we can deduce an important
result concerning the equality of the two main constructions that are under study.
Rad^ and %5^. It is also possible to show that a certain type of primitive near-ring
gives rise to an F-special class and this provides the application for the theory in the next
section.

Theorem 5.6. Let F: &*(<£) -* i?(<£) be a neutral functor and M an F-special class
of objects of c€. Then, for each CE.^

Rad^C = <USf>
M(.C)

Proof. Choose any C G <<? and let H(M, C) be the set of the normal subobjects of
C belonging to &M. Then %^<(C) = DP£H(M.aP. Now let P G H{M, C), so that
[P, M]jf(<g) = 0 for all O J ' M E I Then Rad^P is the empty intersection and so
Rad^P = P. Since M satisfies condition (ii) of Definition 5.5 it also satisfies condition
(£) of 4.1 and by Theorem 4.3, Rad^ is complete. Therefore P is a subobject of
Rad^C. Clearly %y*(C) is a subobject of Rad^C.

Now let A = Rad^C and suppose that A is not ./#-radical, i.e. there exists a
non-zero a:A^> AH with / normal in A and AH G M. Thus A& H(M, C). By (iv) of
5.5 / is normal in C and so

(All -* CII -+ (CII)I(AII)) G .£*(«),

and so by (iii) of 5.5, ((C//)/(A//))F G M. Now suppose that ((C//)/(A//))F = (CU)I(QII)
for some normal subobject Q of C and where QH = (AH)F. Now ((CH)I(QH))&M.
and so QQE.M as M is closed under isomorphisms. Since C^CIQ is a cokernel and
CIQ 6 l w e have that A is a subobject of Q. Thus

(All -> QII -»(QII)I(AID) G .£*(<£)

with All EM, QH = (AII)F and so by (i) of 5.5, All = 0. Therefore A must be
^-radical and so A = Rad^C is a subobject of aUSfM(C). This leads us to the final
conclusion that

Rad^C = %5^(C) for any C G <€.

Corollary 5.7. Let F\££*(<&}^> <£(<%} be a neutral functor and M an F-special
class of objects of c€. Then Rad^: ^(^)-» £(<£) is an idempotent and complete
Si-functor.

Given an F-special class M, for some neutral functor F we can now talk about the
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F-special radical, Rad^(C) of an object C. We will also describe the functor
Rad.^ : gC#)-» %W) as an F-special 0t-functor. Since there may be many types of neu-
ral functor associated with a category <€ it is possible that there are distinct types of
F-special 5?-functor, that is, an 3?-functor may be F-special with respect to one F but
not with respect to another. However little seems to be known in this area. We turn
now to a particular application of this theory.

6. An application in the theory of near-rings

The radical that has received the most study in the theory of near-rings" is the
radical J2 (see, for example Betsch (1)). This radical is a generalisation of the
Jacobson radical for rings and it inherits many of its properties. The radical J2 may be
defined as the 9?-functor Rad^ in the category of near-rings and near-ring homomor-
phisms where M is the class of 2-primitive near-rings. The situation in the theory of
rings suggests that M may be F-special for some suitable neutral functor F but this
question is still open. We can however show that the class of 3-primitive near-rings is
F-special for a particular F and this is the content of this section.

Definitions 6.1. Let AT be a near-ring. An N-module (or N-group) 7" is of type 3 if and
only if :-

(i) r-N*(0)
(ii) F has no non-trivial N -subgroups

(iii) y • n = y' • n for all n G AT=>"y = y', where y, 7' G F.
A near-ring N is called 3-primitive if there exists a faithful N-module F of type 3.
We define now the class Mj of all 3-primitive near-rings. It is clear from the definition

that a 3-primitive near-ring is 2-primitive but the converse it not true generally.
The radical J3 is then defined to be the radical generated by the class M^. Thus, for any

near-ring N.

UN) = Rad*,(JV)

and so /3 can be considered to be an <%-functor from "S{Jf) to Jf where Jf is the category of
near-rings and near-rings homomorphisms. We show that /3 is in fact an F-special
01 -functor for a suitable neutral functor F:if*(jV)^-i?(jV). First of all we define the
neutral functor.

Let F3:iC*(jV)^if(^) be defined by

F3(A -» K -» KIA) = (Ar^K -* K/Ar)

where K is a near-ring, A is an ideal of K and Ar is the right annihilator of A in K.
We claim:-

Theorem 6.2. J3 is an F^-special ^-functor in the category Jf.

Proof. The proof consists of verifying the conditions of Definition 5.5 in this
particular case.

" All near-rings considered here satisfy the condition: O./i = 0 for all elements n of the near-ring.
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(i) Let (A -• K -+ KIA) E £*(#) with A e ^ , a n d K = A,. If F is an A-module of
type 3 then (F)r = (0) but A C K C Ar and so TA = -yAA = 0 for some 0 * y E F. Thus
A C (r) r = (0) and so A = (0).

(ii) Let i 4 G i j and suppose that / is a non-zero ideal of A. Let F be an A-module
of type 3 then F is also an /-module. Note that F/ = 0^> / C (F)r but (F), = (0) and so
/ must then be zero. Furthermore, let A be an /-subgroup of F and suppose that there
exists 5 G A with 5*0. Then 5/ is an A-subgroup of F and 5/ = 0 or F. If 5/ = F then
4 = F, so we assume that 5/ = 0; then SAI = 0 and so F/ = 0 since SA = F when
5*0. This contradiction establishes the fact that F contains no non-trivial /-sub-
groups. Finally we suppose that y', y" G F exist such that y'i = -y"/ for all i G /. There
exists eE I such that y' = -y'e, otherwise both y' and -y" are zero. The right anni-
hilators in N of y' and 7" are equal. Now y' • (n-en) = 0 for all n E. N and so
-y" • (n-en) = 0, thus y"n = y"en for all « G N and so -y"=y"e. For any n'EN,
y'n' - y" • n' = y' • en' — y" • en' = 0 since en' G / and so y' = -y". Therefore F is an
/-module of type 3. Hence / is 3-primitive i.e. / G Mi.

(iii) Let (A-»K-»• X/A)G .S?*(JV) with A 6 i ) and consider K/A,. We must show
that KIAr G ^ 3 . First we define a K-module structure for an arbitrary faithful
A-module F of type 3. Given y G F with 7*0, then -yA = F and so given any y' E F
there exists a'G A with y' = y • a'. Now, for any kEK we define y' • k = y • (a'k).
This operation is well-defined, for suppose that y'= y • a" (a"EA), then, for any
kEK and any a G A, k • a E A and (y • a')(ka) = (y • a")(ka). Therefore y(a'k)a =
y(a"k)a which holds for all a E A and implies y(a'k) = y(a"k). It is clear that F is a
K-module. Now we consider K\AT and note that A D Ar = (0), since F is faithful as an
A-module. Furthermore for x E An y' • x = y(a'x) = 0, where y' = ya' is an element of
F. Define y' • (k + Ar) = y' • k for any kEK, y' G F and we see that F is a K/Ar-
module. Furthermore F • (KIAr) * 0 and F contains no non-trivial (K/Ar)-subgroups.
Finally if y\ • (k + Ar) = y'[(k + Ar) for all k + A, E KIAr then y\ • a = y'[ • a for all
a E A and so y\ = y'[. Therefore F is a KMr-module of type 3. Now if x E K with
Fx = 0, then yAx = 0 for any y E F. Therefore TAx = 0 and so Ax = 0 i.e. x E A,. Thus
the annihilator of F in K/Ar is zero. Consequently therefore K/Ar is 3-primitive and
must belong to Mi.

(iv) Suppose that T is an ideal of K, I is an ideal of T and T// is 3-primitive. We
must show that / is an ideal of K. Let F be a faithful T//-module of type 3. Then F is,
in a natural way, a T-module of type 3 and the annihilator of F in T, (F)r is /. As
before F is also a K-module and we consider the annihilator of F in K, denoted by
(F)?. This is an ideal of K and, furthermore / = T D(F)?. Since / is the intersection of
two ideals of K it must also be an ideal of K.

(v) Finally it is straightforward to verify that if A G M^ and B is isomorphic to A
then B E My. This completes the proof. Therefore /3 is F3-special. Consequently for any
near-ring N,

UN) = Rad^3 N =

This completes the generalisation of the result in ring theory that states that the
Jacobson radical of a ring is a special radical. Further, immediate deductions are that
the /3 radical for near-rings is complete and idempotent.
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