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In this paper, direct numerical simulations in hypersonic turbulent boundary layers over a
24◦ compression ramp at Mach 6.0 are performed. The wall skin friction and its spanwise
non-homogeneity in the interaction region are analysed via the spectral analysis and drag
decomposition method. On the compression ramp, the premultiplied spanwise energy
spectrum of wall shear stress τw reveals two energetic spanwise length scales. One occurs
in the region of x/δref = 0–3 (x = 0 lies in the compression corner; δref is the boundary
layer thickness upstream of the interaction region) and is consistent with that of the
large-scale streamwise vortices, indicating that the fluctuation intensity of τw is associated
with the Görtler-type structures. The other one is observed downstream of x/δref = 3.0
and corresponds to the regenerated elongated streaky structures. The fluctuation intensity
of τw peaks at x/δref = 3.0, where both the above energetic length scales are observed.
The drag decomposition method proposed by Li et al. (J. Fluid Mech., vol. 875, 2019,
pp. 101–123) is extended to include the effects of spanwise non-homogeneity so that it
can be used in the interaction region where the mean flow field and the mean skin friction
Cf exhibit an obvious spanwise heterogeneity. The results reveal that, in the upstream
turbulent boundary layer, the drag contribution arising from the spanwise heterogeneity
can be neglected, while this value on the compression ramp is up to 20.7 % of Cf ,
resulting from the Görtler-type vortices. With the aid of the drag decomposition method,
it is found that the main flow features that contribute positively to the amplification of
Cf and its rapid increase on the compression ramp includes: the density increase across
the shock, the high mean shear stress and turbulence amplification around the detached
shear layer and the Favre-averaged downward velocity towards the ramp wall. Compared
with the spanwise-averaged value, Cf and its components at the spanwise station where
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the downwash and upwash of the Görtler-type vortices occur reveal a spanwise variation
exceeding 10 %.

Key words: hypersonic flow, shock waves, turbulent boundary layers

1. Introduction

Shock wave/turbulent boundary layer interactions (SWTBLIs) occur widely in
supersonic/hypersonic internal and external flows, and have received a considerable
amount of research attention in the past few decades due to their practical importance in the
aeronautical and aerospace industries. Shock wave/turbulent boundary layer interactions
are capable of inducing complex flow phenomena (such as unsteady shock motions,
turbulence amplification, severe wall skin friction and heat flux), which may result in
increased flight drag as well as thermal and structural failure of high-speed flight vehicles.
In consequence, it is of importance, in order to alleviate these detrimental effects, to
achieve a comprehensive understanding of these flow features and underlying mechanisms.

Wall skin friction Cf can have a significant impact on the flight drag and aerodynamic
performance. When a supersonic/hypersonic turbulent boundary layer encounters the
impinging shock or compression ramp, Cf tends to first drop at high speed caused by
the negative pressure gradient arising from the shock wave and then appears to increase in
the reattached boundary layer. Pasquariello, Hickel & Adams (2017) conducted large-eddy
simulation (LES) of supersonic impinging SWTBLI flows, and the results revealed that Cf
downstream of the reattachment point exhibited a rapid increase, exceeding two times
that in the upstream undisturbed turbulent boundary layer. Compared with supersonic
SWTBLIs, the amplification of Cf in hypersonic (here referring to flows with a Mach
number no less than 6.0) SWTBLIs appears to be much more severe. Guo et al. (2023)
conducted direct numerical simulation (DNS) of a turbulent boundary layer over a 30◦
compression ramp at Mach 6.0. With the streamwise evolution, Cf on the compression
ramp tended to increase at a high speed and the maximum Cf was more than 6 times that
in the flat-plate turbulent boundary layer. Helm & Martín (2022) carried out LES of a
turbulent boundary layer over a 24◦ compression ramp at Mach 10. They found that the
amplification of Cf was up to 11.0, while at the same compression ramp angle at Mach
2.9, the amplification factor was around 2.0. Their simulation results also revealed that
the root mean square of Cf presented a significant increment with the amplification factor,
exceeding 21.0. Generally, the existing studies focusing on Cf in hypersonic SWTBLIs
are still limited, and most of them solely show its streamwise distribution. The underlying
mechanism for the amplification of Cf and its rapid increase in the interaction region
remains unclear, and this provides the motivation for the present work. In addition,
the impact of the typical flow features such as the detached shear layer, turbulence
amplification and Görtler-like vortices on Cf will be investigated.

To explore the physical mechanisms of drag generation, a large amount of research work
has been performed to establish an explicit relation between Cf (commonly obtained via
an integration of the surface shear stress) and the spatial distributions of the flow statistics
(Fukagata, Iwamoto & Kasagi 2002; Renard & Deck 2016; Li et al. 2019; Tong, Sun &
Li 2021; Guo et al. 2022; Xu, Wang & Chen 2022; Xu, Ricco & Duan 2023a) through
appropriate integration of the Navier–Stokes equation. Fukagata et al. (2002) proposed
a momentum-based drag decomposition method (denoted as the FIK method hereafter),
which established an explicit expression between the drag coefficient and the spatial
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Wall skin friction analysis over a compression ramp

distributions of the Reynolds shear stresses and could be used to quantify the contribution
arising from the Reynolds stress to Cf . This approach is capable of providing some
new insights into the physical mechanisms of drag generation, and has been applied in
wall-bounded turbulence analysis and flow control, such as uniform wall blowing/suction
(Kametani & Fukagata 2011), spanwise wall oscillation (Yao, Chen & Hussain 2019) etc.
One drawback of the FIK method is that there is no physics-informed explanation for the
three successive integrations and the resultant linearly weighted Reynolds shear stress.
To improve this drawback, Wenzel, Gibis & Kloker (2022) and Xu et al. (2022) suggested
applying twofold repeated integrations instead of triple integrals, where the first integration
presented the force balance between the wall surface and any wall-normal stations in the
fluid domain and the second one denoted its average along the wall-normal direction.
The resultant Reynolds shear stress is no longer related to the distance away from the
wall, but unfortunately, the linearly weighted mean-convection and spatial-development
terms are included. Based on the modified FIK method, Xu et al. (2022) analysed Cf in
hypersonic transitional and turbulent boundary layers. They found that the overshoot of
Cf was dominated by the sharp change of the mean velocity profiles, especially the strong
negative streamwise gradient of the mean streamwise velocity far from the wall.

Another promising drag decomposition method is derived based on the incompressible
mean streamwise kinetic energy budget by Renard & Deck (2016) (denoted as the RD
method hereafter). They decomposed Cf into contributions from mean molecular viscous
dissipation, production of turbulent kinetic energy (TKE) and spatial growth of the
flow. This energy-based method is physically appealing, and gives an improved physical
interpretation for each component of Cf . Renard & Deck (2016) employed this method in
the turbulent boundary layer to explore the impact of Reynolds number on the generation
of Cf . Li et al. (2019) extended this method to compressible flow and investigated the
influence of density and viscosity on the skin friction of the supersonic turbulent channel
and zero-pressure-gradient turbulent boundary layers (Fan, Li & Pirozzoli 2019). Yu
et al. (2023) performed DNS of impinging SWTBLIs at Mach 2.28 and applied the RD
method to analyse the generation mechanism of Cf . Their results indicated that, in the
upstream boundary layer, Cf was mainly contributed by mean viscous dissipation and TKE
production; as the flow entered the interaction zone, the contribution from the advection
term was also significantly enhanced. Duan et al. (2023) applied the extended RD method
in impinging SWTBLI flows with two different incident angles of 33.2◦ and 28◦ at Mach
2.25. The decomposition results indicated that, for the 33.2◦ case, the contribution from
mean viscous dissipation is significantly decreased in the interaction region, owing to the
flow separation. By contrast, the contribution from TKE production was strengthened in
both cases, which is consistent with the turbulence amplification reported in the interaction
region (Dupont, Piponniau & Dussauge 2019; Fang et al. 2020; Guo et al. 2023).

The existence of streamwise Görtler-type vortices on compression ramps has been
reported (Loginov, Adams & Zheltovodov 2006; Grilli, Hickel & Adams 2013; Roghelia
et al. 2017; Cao, Klioutchnikov & Olivier 2019), caused by the curvature of the streamlines
and the resultant centrifugal instability. It is known that Görtler-type vortices can produce
spanwise periodic variation of the flow field and hence the wall heat flux (Roghelia et al.
2017; Cao et al. 2019) and skin friction (Loginov et al. 2006). Loginov et al. (2006) carried
out LES of a turbulent boundary layer over a 25◦ compression ramp at Mach 2.95. Their
simulation results showed that Cf on the ramp wall had spanwise variations of up to 50 %
with respect to the spanwise-averaged value. Therefore, it is of importance to consider
the spanwise non-homogeneity when studying the skin friction on the compression
ramp.
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In this paper, a hypersonic SWTBLI over a 24◦ compression ramp at Mach 6.0 is
studied using DNS. The objectives of this present study are: (i) to explore the underlying
mechanism for the amplification of Cf and its rapid increase on the compression ramp;
(ii) to provide an insight with regard to the spanwise non-homogeneity of wall skin
friction and its fluctuation on the compression ramp. To address these issues, the RD
method will be applied, which enables us to find out the prominent flow features
(such as the detached shear layer, turbulence amplification, Görtler-type vortices, flow
compression and negative pressure gradient) that contribute to the amplification of Cf
and its spanwise non-homogeneity on the compression ramp. Note that Renard & Deck
(2016) and Li et al. (2019) decomposed the skin friction based on a two-dimensional
Reynolds-averaged momentum equation under the hypothesis that the flow field is
spanwise uniform. Therefore, it is not rigorous to apply the existing RD method to analyse
Cf on the compression ramp. To enable it to be used in three-dimensional spanwise
periodic flow (i.e. flow on the compression ramp), we propose to extend the RD method
to include the effects of spanwise non-homogeneity by employing the three-dimensional
Reynolds-averaged momentum equation.

The rest of this paper is organized in the following way. In § 2, the computational
domain, numerical schemes and validation of the results are described. Section 3 presents
the results and discussions, including the basic flow phenomena in SWTBLIs, distribution
of wall skin friction and its premultiplied spanwise energy spectrum and skin friction
decomposition. Conclusions are drawn in § 4.

2. Methodology

2.1. Computational domain and set-up
The present study is undertaken in a hypersonic turbulent boundary layer over a 24◦
compression ramp, as seen in figure 1. The coordinate system adopted is shown with its
origin located at the compression corner. The streamwise, vertical and spanwise directions
are denoted by x, y and z, respectively. The corresponding velocity components are u, v and
w, respectively. The streamwise length and vertical height of the computational domain are
L = 96δref and H = 5.5δref , where δref = 10 mm is the flat-plate turbulent boundary layer
thickness at x = −3δref and is used as the reference length in this paper. The spanwise
width W is 3.0δref , or 6.0δref depending on the case, and will be described later. Apart
from the coordinate system (x, y, z), an additional coordinate (x∗, y∗, z) is also introduced,
where x∗ is along the wall and y∗ is perpendicular to the wall surface pointing away from
the wall. Throughout this paper, the Reynolds and Favre averages for a general variable ψ
are denoted by ψ̄ and ψ̃ , and the corresponding fluctuating components are ψ ′ = ψ − ψ̄

and ψ ′′ = ψ − ψ̃ , respectively.
The incoming Mach number Ma∞ = 6.0, temperature T∞ = 110.0 K and Reynolds

number with unit length Re∞ = ρ∞U∞/μ∞ = 20 000 mm−1, where ρ∞, U∞ and μ∞
are the incoming density, velocity and dynamic viscosity, respectively. The Reynolds
number Reθ at x = −3δref based on the momentum thickness θ (θ/δref = 0.041) of the
turbulent boundary layer is 8200. The corresponding friction Reynolds number Reτ =
ρ̄wūτ δref /μ̄w = 470, where ρ̄w, ūτ and μ̄w denote the mean density, friction velocity and
dynamic viscosity at the wall. The length quantity non-dimensionalized with ūτ and the
viscous length scale (δv = μ̄w/(ρ̄wūτ ) = μ̄w/

√
ρ̄wτ̄w) are denoted with the superscript +.

As such, Reτ represents the ratio of outer to viscous length scales, namely Reτ = δref /δv .
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Figure 1. Sketch of the computational domain with its size. Here, δref is the flat-plate turbulent boundary layer
thickness at x = −3δref . Mesh distribution in the x–y plane is presented, where the grid point is plotted every
20th grid line in each direction.

With regard to the boundary condition of the computational domain, a supersonic
outflow boundary is specified at the upper far-field surface and outlet, combined with
a progressively coarsened grid size. The no-slip and isothermal boundary condition
is employed at the wall with Tw/T∞ = 5.6, approximately 0.75 times the adiabatic
wall recovery temperature. In the spanwise direction periodicity is specified. A steady
laminar compressible boundary layer profile is imposed at the inlet, calculated by the
auxiliary simulation of a laminar boundary layer with the same incoming conditions
and wall temperature. To trigger the laminar–turbulent transition, wall blowing and
suction perturbations (Pirozzoli, Grasso & Gatski 2004) are applied in the region from
xA = −84.5δref to xB = −76.5δref (see the orange colour in figure 1). The formula of the
wall blowing and suction is expressed as

vbs = Abs fbs(x)gbs(z)hbs(t), (2.1)

where Abs represents the perturbation intensity, and Abs = 0.05U∞; fbs(x), gbs(z) and
hbs(t) define the variations with regard to the streamwise direction, spanwise direction
and time, respectively, and their expressions are given as

fbs(x) = 4 sin(θ)[1 − cos(θ)]/
√

27, θ = 10π(x − xA)/(x − xB)

gbs(z) =
13∑

n=1

Zn sin[2πn(z/W + φn)],
13∑

n=1

Zn = 1, Zn = 1.25Zn+1

hbs(t) =
4∑

m=1

Tm sin[2πm(βt + ψm)],
4∑

m=1

Tm = 1, Tm = 1.25Tm+1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.2)

where φn and ψm are random numbers ranging from 0 to 1, β denotes the basic frequency
and β = 0.35U∞/δref . The wall fluctuations have thirteen spatial modes in the spanwise
direction and four temporal modes.
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Case W/δref Nx Ny Nz 	x+ 	y+ 	z+

Baseline 3.0 7300 400 375 9.4/5.6/4.7 0.47 ∼ 3.7
Finer Mesh 3.0 8000 540 530 9.4/5.6/3.1 0.31 ∼ 2.6
Larger Width 6.0 7300 400 750 9.4/5.6/4.7 0.47 ∼ 3.7

Table 1. Domain width and mesh information for DNS cases. Here, 	x+ reveals the grid size of the three
streamwise sections in figure 1.

Three DNS cases are conducted in the present study, as shown in table 1, where the
latter two cases are performed for the grid- and domain-sensitivity study to assess the
grid resolution and the domain extent in the spanwise direction. The mesh distribution for
the baseline case in the x−y plane is shown in figure 1, where the mesh is plotted every
20th grid line in each direction for the convenience of visualization. The grid resolution
in the streamwise direction is also included in the main sections of the domain, and the
superscript ‘+’ indicates the inner scale, calculated by the wall units at x/δref = −3. In
the spanwise direction the mesh spacing is constant, while along the wall-normal direction,
the grid size tends to increase with a constant ratio.

2.2. Numerical scheme
In the present DNS, an in-house high-order finite difference code (OpenCFD-SC) (Duan
et al. 2021; Dang et al. 2022; Xu, Wang & Chen 2023b) is applied, and it has been
used successfully in many supersonic/hypersonic SWTBLI studies (Zhu et al. 2017;
Duan et al. 2021; Tong et al. 2023). The DNS code solves the three-dimensional
unsteady compressible Navier–Stokes equations in a generalized coordinate system via
the high-order finite difference method. The inviscid fluxes are discretized by a hybrid
difference scheme, and the pressure-based shock sensor by Jameson, Schmidt & Turkel
(1981) is deployed to distinguish the smooth and non-smooth flow fields. For the smooth
continuously varying flow field, seventh-order upwind discretization is used to ensure the
resolving accuracy. In contrast, the seventh/fifth-order weighted essentially non-oscillatory
scheme is applied around the region with high pressure gradient, e.g. the shock wave, to
preserve the high robustness. For the viscous fluxes, the eighth-order central difference
scheme is used, and for the time marching, the third-order total-variation-diminishing
Runge–Kutta scheme is applied.

2.3. Validation of the numerical method
The profile of the mean van Driest transformed streamwise velocity at the reference station
x/δref = −3 is presented in figure 2(a). It is clear that the present result compares well
with the DNS data by Zhang, Duan & Choudhari (2018), and is consistent with the classic
law of the wall in the logarithmic region of 30 < y+ < 100, indicating that the flow has
reached the fully developed turbulence. Figure 2(b) presents the profiles of the mean van
Driest transformed Reynolds stress at x/δref = −3. One can see that the present results
reveal a high consistency with those from Zhang et al. (2018) and Wu & Moin (2009),
verifying that the present computational method is adequate.

To assess the mesh resolution and the spanwise domain extent, figure 3 compares the
streamwise distribution of the mean wall shear stress τ̄w and pressure p̄w as well as

the root-mean-square (r.m.s.) of the wall shear stress τ̄w,rms =
√
τ ′2

w and p′
wp′

w in the
vicinity of the compression ramp. Among the three cases, it is clear that no distinguishable
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Figure 2. Profiles of (a) the mean van Driest transformed streamwise velocity and (b) the density-scaled
Reynolds stress profiles at the reference station x/δref = −3. Here, y+ = yūτ /ν̄w; ū+

vd = 1/ūτ
∫ ū
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√
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Figure 3. Streamwise distribution of the wall shear stress and pressure around the compression corner.

(a) The mean wall shear stress τ̄w and τ̄w,rms =
√
τ ′2

w; (b) the mean wall pressure p̄w and p′
wp′

w.

differences exist apart from τ̄w and τ̄w,rms downstream of the compression corner, where
the relative maximum errors are less than 6 % and 7 %, respectively. In consequence, the
grid size and spanwise domain extent of the baseline case are considered to be sufficient
for resolving the flow field with great accuracy.

3. Results and discussion

3.1. Instantaneous and mean flow characteristics
In this section, the flow field in the SWTBLI zone is examined to obtain a first
impression of the flow characteristics. The contour of the instantaneous numerical
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Figure 4. Contour of the instantaneous numerical schlieren in the x–y section at (a) z/δref = 1.0 and
(b) z/δref = 2.0.

1.5
1.0
0.5

0

1
2

3–5
–4 –3

–2 –1 0
1 2

3

1.5
1.0
0.5

0

1
2

3–2
–1 0

1 2 3
4 5

6

x/δrefx/δref

z/δref

z/δref

y/
δ r

ef

y/
δ r

ef

–12 –8 –4 0 4 8 12ωxδref /U∞: –12 –8 –4 0 4 8 12ωxδref /U∞:

(a) (b)

Figure 5. Instantaneous turbulent coherent structures visualized using the iso-surfaces of (a) Q ≡ 0.2 and
(b) Q ≡ 0.6. The iso-surfaces are coloured by the instantaneous streamwise vorticity ωx.

schlieren DS = 0.8 exp[−10(|∇ρ|)/|∇ρ|max] (Priebe & Martín 2021) in the x–y section at
z/δref = 1.0 and z/δref = 2.0 is shown in figure 4. The region with darker colour indicates
that the local fluid density gradient is higher. Downstream of the compression corner,
the shock wave can be clearly observed. Owing to the high free-stream Mach number,
the shock angle appears to be small so that the shock around the compression corner is
embedded in the turbulent boundary layer. As a result, the shock front nearby appears to
be distorted by the turbulent structures.

Figure 5(a) shows the instantaneous turbulent structures using the iso-surfaces of the
second invariant of the velocity gradient tensor Q ≡ 0.2, coloured by the streamwise
vorticity ωx = ∂w/∂y − ∂v/∂z. In the flat-plate turbulent boundary layer, the turbulent
structures appear as streamwise vortices, and behave like the leg of horseshoe vortices.
They are randomly distributed close to the wall’s surface (Humble, Scarano & Van
Oudheusden 2009; Fang et al. 2020), and their rotation direction can be obtained via the
sign of ωx. As the flow approaches the interaction region, abundant vortical structures
are produced with larger length scales, arising from the mixing layer (Fang et al. 2020).
The instantaneous iso-surface of Q ≡ 0.6 is shown in figure 5(b) to focus on the coherent
structures downstream of the compression corner. One can see that as the flow develops
downstream away from the interaction region from x/δref = 2.0, the enhancement of the
turbulent vortical structures caused by the SWTBLIs decreases gradually.

The contours of the spanwise-averaged mean streamwise velocity in the x−y plane
around the compression ramp is shown in figure 6. The blue line reveals the wall-normal
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Figure 6. Contours of the spanwise-averaged mean streamwise velocity superimposed with the streamlines in
the x–y plane. The pink line denotes the iso-line of ū/U∞ = 0; the blue line denotes the local peak of mean
pressure gradient |∇p̄| along the y direction at each streamwise point.

location where the mean pressure gradient |∇p̄| achieves the maximum value at each
streamwise point, denoting the shock wave position. As the flow approaches the
compression ramp, the streamwise velocity in the near-wall region tends to decrease
significantly, caused by the negative pressure gradient. The pink line near the compression
corner is the iso-line of ū/U∞ = 0, and the mean reverse flow occurs below this line,
resulting in a small and thin separation region. With the further evolution of the flow, the
streamwise velocity tends to increase at a high speed.

3.2. Spanwise-averaged wall shear stress
From figure 3(a), one can see that, as the flow approaches the interaction zone, the
spanwise-averaged mean wall shear stress τ̄w appears to decrease sharply, caused by the
adverse pressure gradient (figure 3b). The separation point (xs) and reattachment point (xr)
are defined as the left and right streamwise locations of zero τ̄w, and they are located at
x = −0.5δref and x = 0.1δref , respectively. The length of the separation zone Ls is the
streamwise length between xs and xr, and Ls = xr − xs = 0.6δref . Downstream of this
compression corner, the value of τ̄w appears to increase until x/δref = 5.0, and then tends
to decrease gradually. It is noteworthy that the peak value of τ̄w at x/δref = 5.0 exceeds by
5.2 times that of the flat-plate turbulent boundary layer at x/δref = −3.0.

The root-mean-square value of wall shear stress fluctuation, τ̄w,rms, is presented in
figure 7(a). The dashed lines denote the streamwise position of the separation and
reattachment points. As the flow enters the interaction region, the intensity of τ̄w,rms is
significantly increased, and the maximum value is obtained at x/δref = 3.0, approximately
6.0 times that at x/δref = −3.0. Apart from the global maximum point of τ̄w,rms, there
exist two other local peaks, located around the separation and reattachment points. These
local peaks have been reported in the study of the wall pressure fluctuations (Dolling
1993; Loginov et al. 2006; Wu & Martin 2007; Pasquariello et al. 2017). The former
local peak is a consequence of the unsteady shock-foot motion (Dolling 1993; Loginov
et al. 2006). In the present paper, the separation length (0.6δref ) is small and the resultant
shock-foot motion is expected to be weak. Consequently, only a very small peak of τw,rms
is observed near the separation point. As the separation bubble expands and contracts, the
instantaneous reattachment point moves up and down along the ramp surface, contributing
to the large fluctuations of the flow field and hence the local peak of the τw,rms and wall
pressure fluctuations (Dolling 1993).
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Figure 7. Streamwise distribution of the root-mean-square value of the shear stress fluctuation normalized
by (a) ρ∞U2∞ and (b) τ̄w. The vertical dashed lines denote the streamwise position of the separation and
reattachment points.

The streamwise distribution of τ̄w,rms normalized by the local τ̄w is plotted in figure 7(b).
In the undisturbed turbulent boundary layer, τ̄w,rms/τ̄w = 0.41. This is consistent with
the experimental result (Willert 2015) and DNS data (Diaz-Daniel, Laizet & Vassilicos
2017; Yu et al. 2022). As the flow develops in the streamwise direction, τ̄w,rms/τ̄w tends to
increase sharply, owing to increased τ̄w,rms and decreased wall skin friction. In the region
between the separation and reattachment points, τ̄w,rms/τ̄w is negative and is not shown
in this figure. Downstream of the reattachment point, τ̄w,rms/τ̄w tends to decrease from a
very large value, and gradually approaches the value observed in the upstream flat-plate
turbulent boundary layer.

Schlatter & Örlü (2010) proposed that τ̄w,rms followed a logarithmic–linear law with
Reτ , i.e. τ̄w,rms/τ̄w = 0.298 + 0.018 ln Reτ , which has been widely accepted in turbulent
boundary flows (Mathis et al. 2013; Willert 2015; Diaz-Daniel et al. 2017; Huang, Duan
& Choudhari 2022; Yu et al. 2022). The solid circle symbol in figure 7(b) denotes the
results calculated by the empirical formula. One can see that the present DNS data in
the undisturbed turbulent boundary layer agree well with the empirical correlations. In
contrast, the resulting comparison shows an obvious difference on the compression ramp,
indicating that the empirical formula is not suitable in the interaction region.

3.3. Spanwise heterogeneity of wall shear stress
Figure 8(a) shows the instantaneous wall shear stress. Upstream of the interaction
region, τw appears to be organized as streamwise elongated streaky structures, caused
by the near-wall quasi-streamwise vortices that lead to the spanwise alternating high-
and low-momentum regions. This is consistent with the turbulent structures visualized
in figure 5(a). As the flow approaches the interaction region, the streamwise streaky
structures are destroyed and instead τw behaves like the footprint of three-dimensional
structures. It appears that the high τw accumulates at some spanwise positions, leading
to spanwise heterogeneity with a spanwise length of approximately δref . This flow
phenomenon may result from Görtler vortices caused by the concave curvature streamlines
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Figure 8. Contour of the (a) instantaneous and (b) mean wall shear stress. The blue dashed and dash-dotted
lines denote the spanwise station for the maximum and minimum τ̄w.

over the corner. With the further development from x/δref = 3, the streamwise elongated
streaky structures regenerate and gradually begin to dominate the flow field. Compared
with the upstream flat-plate boundary layer, ρ̄w and τ̄w downstream of the compression
corner are significantly increased, and hence the viscous length (δv = μ̄w/

√
ρ̄wτ̄w) is

expected to have an apparent decrease. Consequently, the characteristic spanwise length of
τw normalized by the outer scale δref is much smaller than that in the undisturbed turbulent
boundary layer.

The mean wall shear stress is presented in figure 8(b), and the spanwise statistically
homogeneous τ̄w is observed in the undisturbed boundary layer. In comparison, an obvious
spanwise heterogeneity of τ̄w scaled with δref can be seen on the compression ramp, caused
by the upwash/downwash of the large-scale streamwise vortex structures, arising from the
Görtler-like vortices. This large-scale spanwise non-homogeneity has also been observed
in the interaction region in the earlier studies (Loginov et al. 2006; Grilli et al. 2013;
Roghelia et al. 2017; Cao et al. 2019).

Further evidence of the presence of Görtler-like structures is shown in figure 9, which
gives the contour of ū∗ superimposed with in-plane velocity vectors (v̄∗, w̄) in the y∗−z
plane that is perpendicular to the ramp wall at x/δref = 4. It is clear that the secondary
flow motions characterized by streamwise rotating vortices are generated, where the solid
dot symbol indicates the centre of the vortex. The downwelling motions are capable of
transporting the high-momentum fluid toward the wall, coinciding with high shear stress
regions (dashed blue lines in figure 8b). Conversely, relatively low τ̄w regions are found
where the upwelling motions are induced. A similar phenomenon has also been found
for the surface patterns with spanwise heterogeneity, e.g. alternating roughness strips
(Wangsawijaya et al. 2020), variation in wall shear (Chung, Monty & Hutchins 2018),
periodically elevated elements (Medjnoun, Vanderwel & Ganapathisubramani 2018) etc.
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Figure 9. Contours of streamwise velocity superimposed with in-plane velocity vectors in the y∗−z plane
at x/δref = 4. The dot symbol indicates the vortex centre; the blue dashed and dash-dotted lines denote the
spanwise station for the maximum and minimum τ̄w.
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Figure 10. Streamwise evolution of the streak amplitude Au normalized by U∞.

To reveal the streamwise evolution of the intensity of the Görtler-like vortices, the streak
amplitude Au, following the definition by Andersson et al. (2001) and Ren & Fu (2015), is
introduced and expressed as

Au(x) = 1
2U∞

max
y∗

[	ũ∗( y∗)], where 	ũ∗( y∗) = max
z

[ũ∗( y∗, z)] − min
z

[ũ∗( y∗, z)].

(3.1)

One can see that Au is related to the maximum streamwise velocity difference across
the spanwise direction, arising from the upwash/downwash of the Görtler-like vortices.
Figure 10 shows the streamwise evolution of the streak amplitude Au normalized by U∞.
On the compression ramp wall, the amplitude Au appears to increase first and reaches
a maximum value of 0.084 at x/δref = 0.75. Such a large amplitude contributes to an
apparent spanwise variation of the mean wall shear stress τ̄w, as seen in figure 8(b). Then,
Au tends to decease gradually and the value decreases to 0.022 at x/δref = 6.0, where the
spanwise heterogeneity of τ̄w is much less compared with that at x/δref = 0.75.
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3.4. Spectra of the wall shear stress
To analyse how the wall shear stress fluctuation is distributed across the spanwise
wavenumber (κz), the premultiplied spanwise energy spectrum of τ ′

w, κzEτ ′
wτ

′
w
/τ̄ 2

w,rms, is
presented in figure 11 as a function of the streamwise coordinate and spanwise wavelength
(λz = 1/κz). The profiles of κzEτ ′

wτ
′
w
/τ̄ 2

w,rms at several streamwise positions are also given
in figure 12 for quantitative comparison.

In the undisturbed flat-plate region, κzEτ ′
wτ

′
w
/τ̄ 2

w,rms peaks at λz = 0.2δref , and the
corresponding inner scale is λ+z ≈ 100, the characteristic length scale of streak spacing in
canonical wall-bounded turbulence. By observing the spanwise scales of the streamwise
elongated streaky structures in figure 8(a), one can infer that it is the near-wall
streak structures that dominate the most energetic wavelength of κzEτ ′

wτ
′
w
/τ̄ 2

w,rms. As
the flow enters the interaction region, the wavelength λz in the outer scale (δref )
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where κzEτ ′
wτ

′
w
/τ̄ 2

w,rms achieves the maximum value and experiences a rapid increase. At
x/δref = 1, λz is 0.52δref , and the value increases to 0.68δref at x/δref = 2. Meanwhile,
the near-wall structures of τw (figure 8a) in the range from x/δref = 0 to x/δref = 3
reveal an apparent large-scale spanwise heterogeneity along with three high τw regions.
This indicates that the energetic wavelength λz corresponds to the large-scale spanwise
heterogeneity of τw which is associated with the Görtler-like structures. This is essentially
different from that in the upstream flat-plate boundary layer, and may be the reason
that τ̄w,rms nearby does not follow the logarithmic–linear law (τ̄w,rms/τ̄w = 0.298 +
0.018 ln Reτ ), as shown in figure 7(b). It is also noteworthy that, as the flow develops
from x/δref = 1, the intensity of κzEτ ′

wτ
′
w
/τ̄ 2

w,rms at the large spanwise wavelength
decreases gradually, which is consistent with the gradually decreased large-scale spanwise
heterogeneity of τw (see figure 8a,b). This results from the reduced intensity of Görtler-like
structures (see figure 10). As the flow moves further downstream from x/δref = 3.0,
the peak around λz = 0.68δref tends to disappear, and instead another peak at a much
smaller wavelength (λz ≈ 0.08δref ) is obtained. This, on one hand, is owing to the reduced
intensity of Görtler-like structures (see figure 10) that results in the decreased large-scale
spanwise heterogeneity of τw and, on the other hand, results from the regeneration of the
near-wall elongated streaky structures (figure 8a). At x/δref = 3.0, there exist two peak
wavelengths of κzEτ ′

wτ
′
w
/τ̄ 2

w,rms that correspond to the above two vortical structures, and
it is interesting to find that the intensity of τ̄w,rms also peaks at x/δref = 3.0. Along with
further streamwise growth of the flow, the most energetic wavelength tends to gradually
decease with increased peak intensity. Nevertheless, the inner scale of the peak is still
around 300 at x/δref = 6, far exceeding that in the undisturbed flat plate.

3.5. Skin friction decomposition along with the spanwise inhomogeneity
The drag decomposition method has been found to be helpful to explore the physical
mechanisms of drag generation by establishing an explicit relation between the skin
friction and spatial distributions of the flow statistics. Based on the conservation law of
mean kinetic energy, Renard & Deck (2016) and Li et al. (2019) decomposed the skin
friction for two-dimensional incompressible and compressible wall-bounded flows into
the contributions of molecular viscous dissipation, TKE production and spatial growth of
the flow. The above derivations are under the hypothesis that the flow field is spanwise
uniform. It has been found that there exists spanwise inhomogeneity in the present flow
field, especially on the compression ramp ranging from x/δref = 0 to x/δref = 4 (figure 8).
Thus, the existing decomposition method cannot be adopted directly in the present
paper. To include the effects of spanwise heterogeneity, we derive the decomposition
method by employing the three-dimensional Reynolds-averaged momentum equation in
the streamwise (x∗) direction. The detailed derivation process is given in Appendix C, and
the skin friction coefficient, Cf = 2τ̄w/(ρ∞U2∞), can be expressed as

Cf = 2
ρ∞U2∞Ub

∫ ∞

0
τ̄y∗x∗

∂ ũ∗
∂y∗

dy∗︸ ︷︷ ︸
Cf ,v : molecular viscous dissipation term

+ 2
ρ∞U2∞Ub

∫ ∞

0
−ρ̄ũ′′∗v′′∗

∂ ũ∗
∂y∗

dy∗︸ ︷︷ ︸
Cf ,T : TKE production term

+ 2
ρ∞U2∞Ub

∫ ∞

0
(ũ∗ − Ub)ρ̄ṽ∗

∂ ũ∗
∂y∗

dy∗︸ ︷︷ ︸
Cf ,C: wall-normal mean-convection term
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Wall skin friction analysis over a compression ramp

+ 2
ρ∞U2∞Ub

∫ ∞

0
(ũ∗ − Ub)

{
−∂τ̄x∗x∗
∂x∗

+ ∂ρ̄ũ′′∗u′′∗
∂x∗

+ ρ̄ũ∗
∂ ũ∗
∂x∗

+ ∂ p̄
∂x∗

}
dy∗︸ ︷︷ ︸

Cf ,x∗ : streamwise heterogeneity term

+ 2
ρ∞U2∞Ub

∫ ∞

0
(ũ∗ − Ub)

{
ρ̄w̃
∂ ũ∗
∂z

+ ∂ρ̄˜u′′∗w′′

∂z
− ∂τ̄zx∗

∂z

}
dy∗︸ ︷︷ ︸

Cf ,z: spanwise heterogeneity term

, (3.2)

where τ̄x∗x∗ , τ̄y∗x∗ and τ̄zx∗ are the viscous normal or shear stress in the x∗-direction; Cf ,v is
associated with the molecular viscous dissipation; Cf ,T denotes the power converted into
TKE production that is ultimately dissipated into internal energy via turbulent dissipation;
Cf ,C represents the wall-normal mean convection; Cf ,x∗ and Cf ,z are generated owing to
the streamwise and spanwise heterogeneity, respectively; Ub is the projection component
of U∞ on the x∗ axis, i.e.

Ub =
{

U∞, x � 0 (upstream of the compression corner)
U∞ cos(24◦), x > 0 (downstream of the compression corner). (3.3)

The spanwise-averaged Cf calculated by the conventional method with Cf =
2τ̄w/(ρ∞U2∞) and (3.2) is shown in figure 13. In the upstream turbulent boundary layer, Cf
based on the above two methods exhibits no distinguishable difference; in the interaction
region, a comparison shows an error of less than 2.0 %, demonstrating the high accuracy
of the proposed drag decomposition method.

The streamwise distribution of Cf and its components upstream of the compression
corner is shown in figure 13(b). In the undisturbed flat plate, the sum of Cf ,v and Cf ,T
contributes more than 89 % of Cf , indicating that the molecular viscous dissipation and
TKE production dominate the drag generation. The parameter Cf ,x∗ is another strong
drag augmentation factor, counting for around 15 % of Cf . A further analysis reveals that
the predominant source of Cf ,x∗ comes from the streamwise mean-convection effect, i.e.
(ũ∗ − Ub)ρ̄ũ∗∂ ũ∗/∂x∗ (not presented here for the sake of brevity). The contribution from
the wall-normal mean convection (i.e. Cf ,C) acts to reduce Cf . This is because the spatially
developing boundary layer works to induce a positive wall-normal velocity, which tends
to decrease the near-wall momentum. In fact, it has been found that increasing the vertical
velocity by wall blowing is an efficient way of reducing the friction drag (Kametani
& Fukagata 2011). In comparison, the contribution from Cf ,z related to the spanwise
heterogeneity is negligible. As the flow enters the interaction region, Cf ,T tends to increase
significantly, owing to the turbulence amplification (Guo et al. 2023). In comparison, Cf ,C
experiences an opposite variation trend but at a faster speed, leading to the decrease of Cf .
The rapid drop of Cf ,C is not surprising since the flow deceleration caused by the negative
pressure gradient leads to an apparent increase of the wall-normal velocity.

Figure 13(c) presents the spanwise-averaged Cf and its components downstream of
the compression corner. A first impression of this figure is that the absolute value of
some components is far larger than the total drag Cf . While the components Cf ,T and
Cf ,C make dominant positive contributions, Cf ,x∗ brings a large negative contribution.
Another noteworthy phenomenon is that the value of Cf ,z is up to 20 % of Cf around
x/δref = 2.0 (figure 13d), indicating that it is necessary to include the influence of
spanwise heterogeneity when performing the drag decomposition on the compression
ramp.
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Figure 13. Streamwise distribution of the spanwise-averaged Cf and its components: (a) Cf based on the
conventional method with Cf = 2τ̄w/(ρ∞U2∞) and drag decomposition method expressed in (3.2); (b) Cf and
its components upstream of the compression corner; (c) Cf and its components downstream of the compression
corner. Panel (d) is a close-up view of figure (c).

3.6. Analysis of Cf and its components on the compression ramp
In this section, each component of spanwise-averaged Cf on the compression ramp will be
analysed in detail to explore the underlying mechanism for the rapid increase of Cf . From
figure 13(d), one can see that, along with the streamwise evolution, the value of Cf ,v shows
an increasing trend until x/δref ≈ 5.0, and then it tends to level off. According to (3.2), Cf ,v
is closely related to the velocity gradient ∂ ũ∗/∂y∗. Figure 14(a) shows the wall-normal
distribution of ∂ ũ∗/∂y∗ at several streamwise locations. It is clear that, downstream of the
compression corner, there exist two local peaks of ∂ ũ∗/∂y∗ in the region away from the
wall. One peak is located around y∗/δref = 0.25 owing to the establishment of the detached
shear layer (Helm, Martín & Williams 2021), and the other is caused by the shock wave. It
is noteworthy that the value of ∂ ũ∗/∂y∗ around the detached shear layer and the shock wave
is two orders lower than that at the wall. Figure 15(a) shows the wall-normal profile of the
integrand of Cf ,v in (3.2) at several streamwise locations and the result at the reference
station x/δref = −3 is also given for comparison. The value of the integrand around the
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Wall skin friction analysis over a compression ramp
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Figure 14. Wall-normal distribution of (a) ∂ ũ∗/∂y∗, (b) −ũ′′∗v′′∗ , (c) ρ̄, (d) v̄∗ and ṽ∗, (e) ũ∗ and ( f ) ∂ p̄/∂x∗ at
several streamwise locations.

detached shear layer and the shock wave is four orders lower than that in the near-wall
area, and consequently plays a negligible role in the generation of Cf ,v . The dominant
contribution of Cf ,v lies in the near-wall area where the large velocity gradient occurs (see
figure 14a). Since the skin friction Cf is in direct proportion to the velocity gradient at the
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Figure 16. Contours of the spanwise-averaged ϕ̄ = arctan(v̄/ū) in the x−y plane. The blue lines denote the
iso-lines of |∇p̄|δ/p∞ = 5, 30, 55 and 80; the green lines present the iso-lines of Ma = 1 and 2.

wall, it is not surprising that Cf and Cf ,v follow a similar trend as the flow develops along
the streamwise direction.

The parameter Cf ,T is associated with the TKE production, being the product
of ∂ ũ∗/∂y∗, −ũ′′∗v′′∗ and ρ̄. Owing to the detached shear layer and the resultant
Kelvin–Helmholtz instability, the intensity of −ũ′′∗v′′∗ around y∗/δref = 0.2 is significantly
amplified compared with that at x/δref = −3 (figure 14b). In addition, there exists another
local maximum peak of −ũ′′∗v′′∗ around the shock wave. The profiles of the integrand of
Cf ,T at several streamwise locations are presented in figure 15(b). In the near-wall area
below y∗/δref < 0.05, the integrand achieves the largest value, owing to the extremely
high ∂ ũ∗/∂y∗. Nevertheless, the high integrand is confined to a very thin region so that
it occupies only a small fraction of Cf ,T in the interaction region. The main contribution
of Cf ,T is obtained around the detached layer. In addition, the shock wave also makes
a positive contribution to Cf ,T . As the flow develops from x/δref = 0 to x/δref = 3, the
fluid density appears to increase, while the intensities of −ũ′′∗v′′∗ and ∂ ũ∗/∂y∗ around the
detached shear layer reveal an apparent decrease. The comprehensive result is that Cf ,T
remains at a high value with no obvious streamwise variation. As the flow moves further
downstream, Cf ,T and its integrand around the detached shear layer tend to decrease,
resulting from the gradually decreased −ũ′′∗v′′∗ and ∂ ũ∗/∂y∗.

The generation of Cf ,C is closely related to the wall-normal mean convection, being
the product of ũ∗ − Ub, ρ̄, ṽ∗ and ∂ ũ∗/∂y∗. Figure 16 shows the contour of the angle,
ϕ̄ = arctan(v̄/ū), between the local velocity direction and the free-stream flow (x-axis). If
the flow is inviscid, the oblique shock wave arises from the compression corner, and the
corresponding ϕ̄ downstream of the shock wave is expected to be 24◦, parallel to the ramp
wall. When the fluid viscosity is included, a quite different phenomenon is observed, as
seen in figure 16. In the near-wall region, the fluid velocity and the local Mach number
(figure 16) are significantly decreased compared with the free stream, and hence the
intensity of the shock wave is not as strong as that in the region far from the wall, which can
also be confirmed by the iso-lines of the pressure gradient in figure 16. The consequence
is that ϕ̄ is much smaller than the compression ramp angle (24◦), especially near the
corner. The small ϕ̄ means that the high-velocity fluid will tend to move towards the ramp
surface, acting like a jet that enhances the near-wall velocity on the compression ramp.
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Figure 17. Streamwise distribution of (a) the spanwise-averaged Cf ,x∗ and its components as well as (b) Cf ,z
and its components normalized by Cf .

The quantitative comparison of the downwash at several streamwise locations is presented
in figure 14(d). One can see that a strong downward motion is obtained on the compression
ramp. Another noteworthy phenomenon is that the magnitudes of ṽ∗ and v̄∗ have an
apparent difference, which is obviously owing to the flow compressibility that causes large
variation of the fluid density along the wall-normal direction (figure 14c). Downstream of
the corner, the absolute value of ṽ∗ is larger than v̄∗. Considering that it is ṽ∗ that is
associated with Cf ,C, it can be concluded that the density variation along the wall-normal
direction caused by the flow compressibility has a positive effect on the generation of Cf ,C.

According to the profiles of the integrand of Cf ,C in figure 15(c), it is clear that the
generation of Cf ,C on the compression ramp mainly occurs around the detached shear
layer, where high intensity of ∂ ũ∗/∂y∗ is obtained. Moreover, the fluid density nearby
is significantly increased, caused by the shock wave, and this also contributes to the
increase of Cf ,C when combined with the downward motion. As the flow develops further
downstream, the streamwise velocity tends to increase as the boundary layer recovers
gradually, and this contributes to the decrease of the absolute value of ũ∗ − Ub (figure 14e).
In addition, the intensity of v̄∗ also shows a decreasing trend, consistent with the gradually
increased ϕ̄. The consequence is that the integrand of Cf ,C decreases gradually, leading to
the decrease of Cf ,C. Apart from the region of the detached shear layer, the shock wave
itself also makes a positive contribution to Cf ,C, and the intensity appears to increase with
the streamwise evolution since the intensity of the shock wave nearby tends to increase
(figure 16). In comparison, the wall-normal velocity in the undisturbed boundary layer is
positive, leading to the negative Cf ,C with a far smaller value.

The component Cf ,x∗ arises from the streamwise heterogeneity, and according to (3.2),
it is composed of four sub-components, denoted by Cf ,x∗,v , Cf ,x∗,T , Cf ,x∗,C and Cf ,x∗,P.
Figure 17(a) shows the streamwise distribution of the four terms downstream of the
compression corner, and one can see that Cf ,x∗,v plays a negligible role. The term Cf ,x∗,T
makes a considerable negative contribution to Cf downstream of the compression corner
but with gradually decreased absolute value, and a small positive value is observed from
x/δref = 2.5. Around x/δref = 0, the turbulent fluctuations are significantly increased, and
tend to decrease as the flow develops further downstream (figure 18a). Owing to the
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Figure 18. Contours of the spanwise-averaged (a) ũ′′∗u′′∗ and (b) ρ̄ũ′′∗u′′∗ in the x−y plane.

increase of fluid density (figure 14c), the intensity of ρ̄ũ′′∗u′′∗ shows an increasing trend
from x/δref = 0 to x/δref = 2.5, before it tends to decrease, leading to the sign change of
∂ρ̄ũ′′∗u′′∗/∂x∗ around x/δref = 2.5 (figure 18b) and consequently Cf ,x∗,T .

The term Cf ,x∗,C represents the contribution from the streamwise mean convection. As
the flow moves downstream from the compression corner, the fluid density (figure 14c)
and the streamwise velocity below y∗/δref = 0.3 (figure 14e) show an increasing trend,
indicating that the streamwise mean convection conveys lower-momentum fluid from
the upstream region toward the downstream area. As a result, the integrand of Cf ,x∗,C
below y∗/δref = 0.3 is negative (figure 19a). At x/δref = 1, 2 and 3, the integrand below
y∗/δref = 0.3 plays a dominant role in the generation of Cf ,x∗,C, and the consequence
is that Cf ,x∗,C is negative. As the flow moves further downstream, the absolute value of
Cf ,x∗,C and its integrand in the near-wall region reveal a decreasing trend. Downstream
of x/δref = 3, the integrand around the shock wave plays a non-negligible role in the
generation of Cf ,x∗,C but with a positive value, and dominates the generation of Cf ,x∗,C
at x/δref = 6, contributing to a positive Cf ,x∗,C.

The value of Cf ,x∗,P is consistent with the pressure variation along the x∗ direction.
Downstream of the compression corner, a large positive pressure derivative with respect
to x∗ is obtained (figure 14f ), leading to negative Cf ,x∗,P with large absolute value.
Further downstream, the pressure derivative below y∗/δref = 0.3 gradually decreases,
and when combined with the increased ũ (i.e. decreased absolute value of ũ∗ − Ub), the
absolute value of the integrand of Cf ,x∗,P tends to decrease at a high speed and approaches
zero at x/δref = 6.0 (figure 19b), indicating that the interaction tends to play a negligible
role in the generation of Cf ,x∗,P. By contrast, the intensity of the shock wave appears to
increase, leading to the increased absolute value of the integrand (figure 19b). It can be
inferred that, as the flow moves further away from the interaction region, the intensity of
the shock wave will remain unchanged, being irrelevant to SWTBLIs. The consequence is
that the integrand of Cf ,x∗,P will become constant around the shock wave and Cf ,x∗,P tends
to level off with a non-zero constant (figure 17a).

Ther term Cf ,z originates from the spanwise heterogeneity, and according to (3.2), it
is composed of three sub-components, denoted by Cf ,z,v , Cf ,z,T and Cf ,z,C. Figure 13(d)
shows the streamwise distribution of Cf ,z. It is shown that, compared with Cf ,z in the
undisturbed turbulent boundary layer, Cf ,z in the interaction region has an apparent
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Figure 19. Integrands of (a) Cf ,x∗,C and (b) Cf ,x∗,P normalized by ρ∞U2∞Ub/δref at several streamwise
locations.

increase, with the maximum value exceeding 60 times that in the undisturbed boundary
layer. From figure 17(b), one can see that Cf ,z in the undisturbed turbulent boundary
layer contributes only 1 % of Cf . This is reasonable since the flow is statistically
two-dimensional, i.e. spanwise homogeneous. In comparison, the contribution of Cf ,z is
up to 20.7 % on the compression ramp, owing to the spanwise heterogeneity caused by
Görtler-type streamwise vortex. Among the three sub-components, Cf ,z,C contributes the
largest to Cf ,z, followed by Cf ,z,T , while the contribution from Cf ,z,v can be ignored. The
integrand of Cf ,z at several streamwise locations is presented in figure 15(e). It is clear that
the main contribution of Cf ,z is obtained below y∗/δref = 0.4, which is consistent with the
height of the Görtler-type vortex. The sign of the integrand changes around y∗/δref ≈ 0.2,
which is consistent with the centre of the streamwise vortex where the spanwise velocity
is relatively small, further confirming that Cf ,z is caused by the Görtler-type vortices. In
comparison, the shock wave makes no contribution to the generation of Cf ,z.

The integrand of Cf at several streamwise locations is presented in figure 15( f ). It is
clear that the drag contribution in the near-wall region below y∗/δref < 0.01 is dominated
by Cf ,v and Cf ,T , owing to the extremely high velocity gradient caused by the no-slip wall
surface. By contrast, the drag integrand in the range 0.01 < y∗/δref < 0.15 is negative and
dominated by Cf ,x∗ , which is relevant to the streamwise heterogeneity mainly resulting
from the increase of the streamwise velocity (∂ ũ∗/∂x∗ > 0) and pressure (∂ p̄/∂x∗ > 0).
At 0.15 < y∗/δref < 0.4, the drag generation arises from Cf ,T and Cf ,C. While the former
is closely correlated to the turbulence amplification caused by the detached shear layer,
the latter is owing to the strong downwash. Moreover, the density increase caused by the
shock wave contributes to both Cf ,T and Cf ,C. With a closer examination, it seems that the
negative and positive parts of the integrand of Cf around the shock wave approximatively
cancel out, and the overall contribution on Cf is much less.

According to the above analysis, the main flow features that contribute positively to the
amplification of Cf and its rapid increase on the compression ramp include the extremely
high velocity gradient in the near-wall region (Cf ,v), the density increase across the shock
wave (Cf ,T and Cf ,C), the turbulence amplification around the detached shear layer (Cf ,T )
and the downwash that transports high-momentum fluid towards the ramp wall (Cf ,C). It
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Figure 20. Contours of (a) −ρ̄ũ′′∗v′′∗ and (b) ρ̄˜u′′∗w′′∗ in the y∗−z plane at x/δref = 2. The dashed and
dash-dotted lines denote the spanwise stations for maximum and minimum τ̄w.

is the Favre-averaged downward velocity ṽ∗ that contributes to the generation of Cf , and
compared with v̄∗, the intensity of downwash by ṽ∗ is stronger, indicating that the density
variation along the wall-normal direction caused by the flow compressibility has a positive
effect on the generation of Cf ,C and then Cf . In addition, the streamwise variation of ũ∗
and p̄ gradually slows down, leading to the decrease of the absolute value of Cf ,x∗ that has a
positive effect on the rapid increase of Cf . The drag contribution arising from the spanwise
heterogeneity (Cf ,z) is up to 20.7 % of Cf of that on the compression ramp, caused by the
Görtler-type streamwise rotating vortex.

3.7. Spanwise variation of Cf and its components

Figure 20 shows contours of −ρ̄ũ′′∗v′′∗ and ρ̄˜u′′∗w′′∗ in the y∗−z plane at x/δref = 2. The
in-plane velocity vectors (v̄∗, w̄) are presented by subtracting the spanwise-averaged
magnitude to highlight the large-scale streamwise vortices and the spanwise heterogeneity.
One can clearly see that a pair of secondary rollers is developed, and a spanwise variation
of the flow field is induced due to the large-scale streamwise vortices. A similar spanwise
variation trend has also been observed in the incompressible boundary layer flow over the
spanwise heterogeneous surfaces caused by large-scale streamwise vortices (Vanderwel
et al. 2019). According to figure 8(b), the streamwise vortices contribute to an apparent
spanwise variation of the wall shear stress in the interaction region. In comparison, τ̄w at
z1 exhibits a local maximum value along the spanwise direction caused by the downwash
(figure 20), while τ̄w reveals a local minimum value at z2 where the upwash occurs
(figure 20).

The quantitative comparison of Cf and its components at x/δref = 2 for different
spanwise stations is presented in figure 21. The value of the bars denotes the percentage
of increment compared with the spanwise-averaged value, and one can see that Cf at z1
reveals a 17 % increment, while at z2 it is reduced by 13 %.

Figure 22(a) shows the profile of the integrand of Cf ,v expressed in (3.2) at x/δref = 2.
One can see that the main contribution of Cf ,v is obtained in the near-wall area below
y∗/δref < 0.01 where the large velocity gradient occurs (see figure 23a). As expected, the
value of the integrand at z1 is larger, resulting from the stronger downwash induced by
the streamwise vortex. It has been found that Cf ,v is mainly generated in the near wall,
and the consequence is that Cf ,v at z1 has a percentage increment of 23 % compared with
the spanwise-averaged value. In comparison, Cf ,v at z2 is reduced by 18 %, owing to the
upwash of the streamwise vortex. Apart from the near-wall region, there exists another
local peak of the integrand around y∗/δref = 0.25 caused by the detached shear layer
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Figure 21. Comparison of Cf and its components at x/δref = 2 for different spanwise positions.

resulting from the SWTBLIs, and the value at z2 is larger. Nonetheless, its contribution
to Cf ,v is so small that its impact on the spanwise variation can be neglected.

The parameter Cf ,T is a main component of Cf , and from figure 21 it is clear that Cf ,T
also makes an important contribution to the spanwise variation, with a 16 % reduction
at z1 and a 20 % increment at z2. It is also noteworthy that the absolute difference of
Cf ,T between z1 and z2 exceeds the magnitude of the spanwise-averaged Cf . In order to
gain a further insight into the underlying flow mechanism, the wall-normal distribution of
the integrand of Cf ,T at x/δref = 2 is presented in figure 22(b). It is clear that the main
difference between z1 and z2 is obtained around y∗/δref = 0.25, where the detached shear
layer occurs. In comparison, at z1 with stronger downwash, the intensity of the Reynolds
shear stress −ũ′′∗v′′∗ is reduced (see figure 23b), while the opposite phenomenon occurs at
z2. It is understandable that the turbulence intensity is stronger at the spanwise location
where the upward motion occurs. This can be attributed to the accumulation of near-wall
turbulence-rich fluid caused by the spanwise motion that transports the near-wall fluid
away from the region of downwelling toward the region of upwelling, and the upward
motion which carries the turbulence-rich fluid away from the wall. Resulting from the
detached shear layer, the wall-normal position at which ∂ ũ∗/∂y∗ (see figure 23a) peaks is
similar to that of −ũ′′∗v′′∗ (see figure 23b). Since Cf ,T is relevant to the product of ∂ ũ∗/∂y∗
and −ũ′′∗v′′∗ , the magnitude of the integrand of Cf ,T at z1 is much larger than that at z2,
approaching two times larger. Thus, it can be inferred that the existence of the detached
shear layer appears to broaden the spanwise variation of Cf ,T . Apart from the detached
shear layer region, there exists apparent spanwise variation of the integrand in the near-wall
area below y∗/δref < 0.01. Owing to the stronger mean shear stress (see figure 23a) and
higher fluid density (see figure 23c) at z1, the corresponding integrand value is higher.
The opposite phenomenon is obtained at z2 with a lower integrand. However, this region
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Figure 22. The integrands of each term in (3.2) at x/δref = 2 for different spanwise positions. Panels show
(a) Cf ,v , (b) Cf ,T , (c) Cf ,C and (d) Cf ,x∗ normalized by ρ∞U2∞Ub/δref .

is confined below y∗/δref < 0.01, and its contribution to Cf ,T is far less than that around
the detached shear layer.

The parameter Cf ,C is another main component of Cf , and from figure 21 one can see
that, compared with the spanwise-averaged value, Cf ,C at z1 is increased by 3.4 % while at
z2 it is decreased by 15 %. From the profile of the integrand of Cf ,C in figure 22(c), one can
see that the integrand below y∗/δref = 0.2 is larger at z1, owing to the stronger downward
motion (i.e. −ṽ∗, see figure 23d). Above y∗/δref = 0.2, the magnitude of the integrand at
z1 tends to be smaller than that at z2, resulting from the weaker mean shear stress ∂ ũ∗/∂y∗
(see figure 23a) and lower fluid density (see figure 23c).

The term Cf ,x∗ arises from the streamwise heterogeneity and makes negative
contributions to Cf . As the flow develops downstream of the compression corner, the
streamwise variation of the flow field, i.e. ũ∗ (figure 14e) and p̄ (figure 14f ), reduces
gradually. The consequence is that the absolute value of Cf ,x∗ shows a decreasing trend.
With a closer examination of figure 23(e, f ), one can see that, at z1, the velocity profile is
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∂ũ∗/∂y∗(δref /U∞)
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Figure 23. Wall-normal distribution of (a) ∂ ũ∗/∂y∗, (b) −ũ′′∗v′′∗ , (c) ρ̄, (d) v̄∗ and ṽ∗, (e) ũ∗ and ( f ) ∂ p̄/∂x∗ at
x/δref = 2 for different spanwise positions.
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fuller and the pressure derivative with respect to x∗ is smaller. This can be attributed to
the stronger downwash that speeds up the recovery of the flow field so that the streamwise
variation of the flow field at z1 is smaller. As a result, the absolute magnitude of Cf ,x∗ at
z1 is smaller compared with the spanwise-averaged value, and the opposite phenomenon
occurs at z2.

The term Cf ,z originates from the spanwise heterogeneity, and hence it is not surprising
that there exist significant differences at different spanwise locations with a 158 %
reduction at z1 and a 266 % increment at z2. It is noteworthy that the absolute difference
of Cf ,z at z1 and z2 exceeds four times the spanwise-averaged Cf ,z and 80 % of the
spanwise-averaged Cf . A further comparison indicates that the difference is caused by
the spanwise gradient of ρ̄˜u′′∗w′′ (figure 20b).

4. Conclusion

In this paper, DNS of a hypersonic turbulent boundary layer over a 24◦ compression
ramp is performed at Mach 6.0 flow. The amplification of the wall skin friction and its
spanwise heterogeneity on the compression ramp are analysed via the spectral analysis
and drag decomposition method. The accuracy of the computational method is validated
by comparing the velocity profile and turbulence intensity with the published data. The
results of the grid- and domain-sensitivity study indicate that the mesh resolution and the
spanwise domain extent are sufficient for the flow field of interest.

In the undisturbed turbulent boundary layer, τ̄w,rms followed a logarithmic–linear
law with Reτ , i.e. τ̄w,rms/τ̄w = 0.298 + 0.018 ln Reτ . The premultiplied spanwise energy
spectrum of τ ′

w peaks around λ+z ≈ 100, the characteristic length scale of streak spacing
in canonical wall-bounded turbulence. This indicates that the near-wall streak structures
dominate the wall shear stress fluctuations.

On the compression ramp, the premultiplied spanwise energy spectrum of τ ′
w reveals two

energetic spanwise length scales. In the region from the compression corner to x/δref =
3.0, the dominant length scale corresponds to that of the large-scale streamwise vortices,
indicating that the fluctuation intensity of τw is mainly associated with the Görtler-type
structures. This is essentially different from that in the upstream boundary layer, and may
be the reason that τ̄w,rms nearby does not follow the above-mentioned logarithmic–linear
law. Downstream of x/δref = 3.0, the dominant length scale is consistent with the
regenerated elongated streaky structures. It is interesting to find that τ̄w,rms peaks at
x/δref = 3.0, where both of the above energetic length scales are observed.

The existing drag decomposition method in compressible wall-bounded turbulent flow
by Li et al. (2019) is obtained under the hypothesis that the mean flow field is spanwise
uniform. In the present study, we extend this method to include the effects of spanwise
non-homogeneity so that it can be used on the compression ramp where the flow field
and the mean skin friction Cf reveal an obvious spanwise heterogeneity, caused by the
Görtler-type streamwise vortex structures. The results reveal that, in the upstream turbulent
boundary layer, the drag contribution arising from the spanwise heterogeneity is less than
1 % of Cf , while this value on the compression ramp is up to 20.7 % of Cf .

With the aid of the proposed drag decomposition method, it is found that the main flow
features that contribute positively to the amplification of Cf and its rapid increase on the
compression ramp include: the density increase across the shock, the high mean shear
stress and turbulence amplification around the detached shear layer and the downwash
that transports high momentum fluid towards the ramp wall. It is ṽ∗ instead of v̄∗ that
contributes to the generation of Cf ,C, and compared with v̄∗, the intensity of downwash by
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ṽ∗ is stronger, indicating that the density variation along the wall-normal direction caused
by the flow compressibility has a positive effect on the generation of Cf ,C and ultimately
Cf .

The influence of the downwash (at z1) and upwash (at z2) of the Görtler-type streamwise
vortices on Cf and its components is investigated at x/δref = 2.0. Compared with the
spanwise-averaged value, Cf at z1 reveals a 17 % increment, while at z2 it is reduced
by 13 %. Each component reveals a spanwise variation exceeding 10 %, and the term
arising from the spanwise heterogeneity contributes to a 158 % reduction at z1 and a 266 %
increment at z2, caused mainly by the spanwise variation of ρ̄˜u′′∗w′′.
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Appendix A. Influence of the spanwise domain extent on the spanwise heterogeneity
of the wall shear stress

The mean wall shear stress for the case with larger domain width (W = 6.0δref ) is
presented in figure 24, to address the effect of the spanwise domain extent on the spanwise
non-homogeneity of τ̄w. One can see that the maximum and minimum of τ̄w on the ramp
wall face are observed in an alternative manner along the spanwise direction, which is the
same as the case of W = 3.0δref (figure 8b). Moreover, when the spanwise domain width
doubles from W = 3.0δref to W = 6.0δref , the number of the maximum and minimum
τ̄w stations across the spanwise domain extent also doubles. Therefore, the domain width
W = 3.0δref is expected to provide accurate result for the spanwise heterogeneity of τ̄w.

Appendix B. Influence of the statistical time range for Cf and its components

In the present study, the non-dimensional time step for the baseline case is 0.0008δ/U∞.
After the flow reaches the statistically steady state, the instantaneous flow field is sampled
every 5 time steps. For the mean flow field in the above study, 375 000 samples of
instantaneous flow field are collected, covering a 1500δref /U∞ time range. To ensure
statistical convergence, Cf and its components from three different statistical time ranges
are compared in figure 25. One can see that the results reveal no distinguishable
differences, indicating that the flow field has reached statistical convergence.
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Appendix C. Derivation of the skin friction decomposition in the compressible
boundary layer

The three-dimensional Reynolds-averaged momentum equation in the streamwise (x∗)
direction is expressed as

∂ρu∗
∂t

+ ∂ρu∗u∗
∂x∗

+ ∂ρu∗v∗
∂y∗

+ ∂ρu∗w
∂z

= − ∂ p̄
∂x∗

+ ∂τ̄x∗x∗
∂x∗

+ ∂τ̄y∗x∗
∂y∗

+ ∂τ̄zx∗
∂z

, (C1)

where the equation is expressed in (x∗, y∗, z) coordinates (see figure 1); τ̄x∗x∗ , τ̄y∗x∗ and
τ̄zx∗ are the viscous normal stress and shear stress in the x∗-direction.
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Since the flow field is statistically steady, ∂ρu∗/∂t is definitely zero. Multiplying (C1) by
(ũ∗ − Ub)(Ub gives (3.2)), and integrating it along the wall-normal direction from y∗ = 0
to ∞, one can obtain∫ ∞

0
(ũ∗ − Ub)

[
∂ρ̄ũ′′∗u′′∗
∂x∗

+ ∂ρ̄ũ∗ũ∗
∂x∗

+ ∂ρ̄ũ′′∗v′′∗
∂y∗

+ ∂ρ̄ũ∗ṽ∗
∂y∗

+ ∂ρ̄˜u′′∗w′′

∂z
+ ∂ρ̄ũ∗w̃

∂z

]
dy∗

=
∫ ∞

0
(ũ∗ − Ub)

[
− ∂ p̄
∂x∗

+ ∂τ̄x∗x∗
∂x∗

+ ∂τ̄y∗x∗
∂y∗

+ ∂τ̄zx∗
∂z

]
dy∗, (C2)

where ρu∗u∗ = ρ̄ũ′′∗u′′∗ + ρ̄ũ∗ũ∗; ρu∗v∗ = ρ̄ũ′′∗v′′∗ + ρ̄ũ∗ṽ∗; ρu∗w = ρ̄˜u′′∗w′′ + ρ̄ũ∗w̃.
The terms in (C2) can be transformed into∫ ∞

0
(ũ∗ − Ub)

∂ρ̄ũ′′∗v′′∗
∂y∗

dy∗ =
∫ ∞

0

∂ρ̄ũ′′∗v′′∗(ũ∗ − Ub)

∂y∗
dy∗ −

∫ ∞

0
ρ̄ũ′′∗v′′∗

∂ ũ∗
∂y∗

dy∗

= ρ̄ũ′′∗v′′∗(ũ∗ − Ub)|∞0 −
∫ ∞

0
ρ̄ũ′′∗v′′∗

∂ ũ∗
∂y∗

dy∗ = −
∫ ∞

0
ρ̄ũ′′∗v′′∗

∂ ũ∗
∂y∗

dy∗,

∂ρ̄ũ∗ũ∗
∂x∗

+ ∂ρ̄ũ∗ṽ∗
∂y∗

+ ∂ρ̄ũ∗w̃
∂z

= ρ̄ũ∗
∂ ũ∗
∂x∗

+ ρ̄ṽ∗
∂ ũ∗
∂y∗

+ ρ̄w̃∗
∂ ũ∗
∂z
,∫ ∞

0
(ũ∗ − Ub)

∂τ̄y∗x∗
∂y∗

dy∗ =
∫ ∞

0

∂τ̄y∗x∗(ũ∗ − Ub)

∂y∗
− τ̄y∗x∗

∂ ũ∗
∂x∗

dy∗

= τ̄y∗x∗(ũ∗ − Ub)|∞0 −
∫ ∞

0
τ̄y∗x∗

∂ ũ∗
∂x∗

dy∗ = Ubτ̄w −
∫ ∞

0
τ̄y∗x∗

∂ ũ∗
∂x∗

dy∗,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C3)

where the Favre-averaged continuity equation (∂ρu∗/∂x∗ + ∂ρv∗/∂y∗ + ∂ ¯ρw/∂z = 0) is
applied.

Substituting (C3) into (C2) yields

Ubτ̄w =
∫ ∞

0
τ̄y∗x∗

∂ ũ∗
∂y∗

dy∗ +
∫ ∞

0
−ρ̄ũ′′∗v′′∗

∂ ũ∗
∂y∗

dy∗ +
∫ ∞

0
(ũ∗ − Ub)ρ̄ṽ∗

∂ ũ∗
∂y∗

dy∗

+
∫ ∞

0
(ũ∗ − Ub)

{
−∂τ̄x∗x∗
∂x∗

+ ∂ρ̄ũ′′∗u′′∗
∂x∗

+ ρ̄ũ∗
∂ ũ∗
∂x∗

+ ∂ p̄
∂x∗

}
dy∗

+
∫ ∞

0
(ũ∗ − Ub)

{
ρ̄w̃
∂ ũ∗
∂z

+ ∂ρ̄˜u′′∗w′′

∂z
− ∂τ̄zx∗

∂z

}
dy∗. (C4)

Since Cf = 2τ̄w/(ρ∞U2∞), (3.2) can be obtained by multiplying 2/(ρ∞U2∞)Ub on both
sides of (C4).
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