Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T08:58:47.367Z Has data issue: false hasContentIssue false

6 - Sensing Magnetic Nanoparticles

Published online by Cambridge University Press:  10 February 2019

Nicholas J. Darton
Affiliation:
Arecor Limited
Adrian Ionescu
Affiliation:
University of Cambridge
Justin Llandro
Affiliation:
Tohoku University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math., 2:3(1879), 287–92.Google Scholar
von Klitzing, K., Discovery of (integer) quantum Hall effect. Nobel Lecture. (1985).Google Scholar
Laughlin, R., Störmer, H., and Tsu, D. Discovery of a new form of quantum fluid with fractionally charged excitations. Nobel Lecture. (1998).Google Scholar
Popovic, R.E., Randjelovic, Z., and Manic, D. Integrated Hall-effect magnetic sensors. Sens. Actuators A Phys., 91:1(2001), 4650.Google Scholar
Lenz, J. E. A review of magnetic sensors. Proc. IEEE, 78:6 (1990), 973–89.CrossRefGoogle Scholar
Oral, A., Bending, S. J., and Henini, M. Real-time scanning Hall probe microscopy. Appl. Phys. Lett., 69:9 (1996), 1324–6.Google Scholar
Schott, C., Burger, F., Blanchard, H., and Chiesi, L. Modern integrated silicon Hall sensors. Sensor Rev., 18:4 (1998), 252–7.CrossRefGoogle Scholar
Frazier, A.B., Zhixiang, Liub, Li, Tianc, and Parhamd, J. Miniaturized linear magnetic position sensors for automotive applications. IEEE Sensors, 2 (2002), 1565–70.Google Scholar
Mihajlović, G., Xiong, P., von Molnár, S., et al., Detection of single magnetic bead for biological applications using an InAs quantum-well micro-Hall sensor. Appl. Phys. Lett., 87:11(2005), 112502.Google Scholar
Bando, M., Ohashi, T., Dede, M., et al., High sensitivity and multifunctional micro-Hall sensors fabricated using InAlSb/InAsSb/InAlSb heterostructures. J. Appl. Phys., 105:7 (2009), 07E909.Google Scholar
Ramsden, E. Hall-Effect Sensors: Theory and Applications, 2nd edn (Burlington, MA: Elsevier/Newnes, 2006).Google Scholar
Sze, S. M. Semiconductor sensors, 1st edn (New York, NY: J. Wiley, 1994).Google Scholar
Schott, C. and Popović, R.S. Integrated 3D Hall magnetic field sensor. Transducers, 99 (1999), 710.Google Scholar
Carstens, J. R. Electrical Sensors and Transducers, 1st edn (Englewood Cliffs, NJ: Regents/Prentice Hall, 1993).Google Scholar
Dalessandro, L., Karrer, N., and Kolar, J.W. High-performance planar isolated current sensor for power electronics applications. IEEE T. Power Electr., 22:5 (2007), 1682–92.Google Scholar
Information and communications technology: Electronic compass. asia.iop.org. http://asia.iop.org/cws/article/news/42833Google Scholar
Besse, P-A., Boero, G., Demierre, M., Pott, V., and Popovic, R. Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Appl. Phys. Lett., 80:22 (2002), 4199–201.Google Scholar
Aytur, T., Beatty, P.R., Boser, B., Anwar, M., and Ishikawa, T. An immunoassay platform based on CMOS Hall sensors. Proc. Dig. Tech. Papers Solid-State Sensors Actuators Microsyst. Workshop, (2002), 126–9.Google Scholar
Togawa, K., Sanbonsugi, H., Sandhu, A., et al., High sensitivity InSb Hall effect biosensor platform for DNA detection and biomolecular recognition using functionalized magnetic nanobeads. Jpn. J. Appl. Phys., 44:49 (2005), 1494–7.Google Scholar
Manandhar, P., Chen, K-S., Aledealat, K., et al., The detection of specific biomolecular interactions with micro-Hall magnetic sensors. Nanotechnology, 20:35(2009), 355501.Google Scholar
Kumagai, Y., Togawa, K., Sakamoto, S., Abe, M., Handa, H., and Sandhu, A. Hall biosensor with integrated current microstrips for control of magnetic beads. IEEE T. Magn., 42:12 (2006), 3893–5.Google Scholar
Thomson, W. On the electro-dynamic qualities of metals: Effects of magnetization on the electric conductivity of nickel and of iron. Proceedings of the Royal Society of London, 8 (1857), 546–50.Google Scholar
Potter, R. I. Magnetoresistance anisotropy in ferromagnetic NiCu alloys. Phys. Rev. B, 10:11 (1974), 4626–36.Google Scholar
Baibich, M. N., Broto, J. M., Fert, A., et al., Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett., 61:21 (1988), 2472–5.Google Scholar
Grünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B., and Sowers, H., Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett., 57:19 (1986), 2442–5.Google Scholar
Freitas, P. P., Leal, J. L., Melo, L. V., Oliveira, N. J., Rodrigues, L., and Sousa, A. T., Spinvalve sensors exchange biased by ultrathin TbCo films. Appl. Phys. Lett., 65:4 (1994), 493–5.Google Scholar
Heim, D. E., Fontana, R. E., Tsang, C., Speriosu, V. S., Gurney, B. A., and Williams, M. L.. IEEE Trans. Magn., 30:2 (1994), 316–21.Google Scholar
Dieny, B., Giant magnetoresistance in spin-valve multilayers. J. Magn. Magn. Mat. 136:3 (1994), 335–59.CrossRefGoogle Scholar
McGuire, T. R. and Potter, R. I., Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE T. Magn., 11:4 (2003), 1018–38.Google Scholar
Berger, L., Freitas, P. P., Warner, J. D., and Schmidt, J. E., On the temperature dependence of the magnetoresistance of ferromagnetic alloys. J. Appl. Phys., 64:10 (1988), 5459–61.CrossRefGoogle Scholar
Bertram, N. Theory of Magnetic Recording. (Cambridge: Cambridge University Press, 1994).CrossRefGoogle Scholar
Smith, N. Micromagnetic analysis of a coupled thin-film self-biased magnetoresistive sensor. IEEE Trans. Magn., 23:1 (1987), 259–72.Google Scholar
Parkin, S. S. P., More, N., and Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett., 64:19 (1990), 2304–7.Google Scholar
Cardoso, S. and Freitas, P. P. Performance of dual-stripe GMR heads on tape. IEEE Trans. Magn., 35:5 (1999), 4351–60.Google Scholar
Smith, N. Micromagnetics of GMR multilayer sensors at high current densities. IEEE Trans. Magn., 30:6 (1994), 3822–24.CrossRefGoogle Scholar
Dieny, B., Speriosu, V. S., Gurney, B. A., et al., Spin-valve effect in soft ferromagnetic sandwiches. J. Magn. Magn. Mater., 93 (1991), 101–4.Google Scholar
Freitas, P. P., Ferreira, R., Cardoso, S., and Cardoso, F. Magnetoresistive sensors. J. Phys. Condens. Matter, 19 (2007), 165221.Google Scholar
Dieny, B. Spin valves. In M. Johnson, ed., Magnetoelectronics, 1st edn (San Diego, CA: Academic Press, Elsevier Inc, 2004) pp. 67377.CrossRefGoogle Scholar
Jullière, M. Tunneling between ferromagnetic films. Phys. Lett. A, 54:3 (1975), 22–6.CrossRefGoogle Scholar
Moodera, J., Nassar, J., and Mathon, G. Spin tunneling in ferromagnetic junctions. Annu. Rev. Mater. Sci., 29 (1999), 381–432.CrossRefGoogle Scholar
Wang, D., Nordman, C., Daughton, J. M., Qian, Z., and Fink, J. 70% TMR at room temperature for SDT sandwich junctions with CoFeB as free and reference layers. IEEE Trans. Magn., 40:4 (2004), 2269–71.Google Scholar
Ikeda, S., Hayakawa, J., and Ashizawa, Y., et al., Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett., 93:8 (2008), 082508.Google Scholar
Parkin, S. S., Roche, K. P., Sammant, M. G., et al., Exchange biased magnetic tunnel junctions and application to non-volatile magnetic random access memory. J. Appl. Phys., 85:8 (1999), 5828–33.Google Scholar
Cardoso, S., Gehanno, V., Ferreira, R., and Freitas, P. P., Ion beam deposition and oxidation of spin dependent tunnel junctions. IEEE Trans. Magn., 35:5 (1999), 2952–4.Google Scholar
Simmons, J. G., Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys., 34:6 (1963), 1793–803.Google Scholar
Cardoso, S., Freitas, P. P., de Jesus, C., Wei, P., and Soares, J. C. Spin-tunnel-junction thermal stability and interface interdiffusion above 300°C. Appl. Phys. Lett., 76:5 (2000), 610–2.Google Scholar
Han, X. F., Ali, S. S., and Liang, S. H. MgO(001) barrier based magnetic tunnel junctions and their device applications. Sci. China Phys. Mech. Astron., 56:1 (2013), 2960.Google Scholar
Freitas, P. P., Cardoso, S., Ferreira, R., et al., Optimization and integration of magnetoresistive sensors. SPIN, 1 (2011), 71–91.Google Scholar
Ikeda, S., Hayakawa, J., Lee, Y. M., Tanikawa, T., Matsukura, F., and Ohno, H. Tunnel magnetoresistance in MgO-barrier magnetic tunnel junctions with bcc-CoFe(B) and fcc-CoFe free layers. J. Appl. Phys., 99:8 (2006), 08A907.Google Scholar
Miltat, J. and Albuquerque, G., An introduction to micromagnetics in the dynamic regime. In Hillebrands, B and Ounadjela, K, eds., Spin Dynamics in Confined Magnetic Structures I (Berlin: Springer Heidelberg, 2002) pp. 133.Google Scholar
Fidler, J., Chantrell, R. W., Schrefl, T., and Wongsam, M. A. Micromagnetics: Basic principles. In K. H. J. Buschow, R. Cahn, M. Flemings, et al., eds., Encyclopedia of Materials: Science and Technology (Amsterdam: Elsevier Science Ltd., 2001) pp. 5642–51.Google Scholar
Chaves, R. C., Cardoso, S., Ferreira, R., and Freitas, P. P., Low aspect ratio micron size TMR sensors with permanent magnet biasing integrated in the top lead. J. Appl. Phys., 109:7 (2011), 07E506.Google Scholar
Negulescu, B., Lacour, D., Montaigne, F., et al., Wide range and tunable linear magnetic tunnel junction sensor using two exchange pinned electrodes. Appl. Phys. Lett., 95:11 (2009), 112502.Google Scholar
Ferreira, R., Paz, E., Freitas, P. P., Wang, J., and Xue, S. Large area and low aspect ratio linear magnetic tunnel junctions with a soft-pinned sensing layer. IEEE Trans. Magn., 48:11 (2012), 3719–22.Google Scholar
Wisniowski, P., Cardoso, S., Barradas, N., and Freitas, P. P. Effect of free layer thickness and shape anisotropy on the transfer curves of MgO magnetic tunnel junctions. J. Appl. Phys., 103:7 (2008), 07A910.CrossRefGoogle Scholar
Wang, S. X. and Li, G. Advances in giant magnetoresistance biosensors with magnetic nanoparticle. IEEE Trans. Magn., 44:7 (2008), 1687–702.CrossRefGoogle Scholar
Ferreira, H. and Freitas, P. P. Magnetoresistive DNA chips. In M. Johnson, ed., Magnetoelectronics, 1st edn (San Diego, CA: Academic Press, Elsevier Inc, 2004), pp. 332–73.Google Scholar
Schotter, J., Kamp, P. B., Becker, A., Puhler, A., Reiss, G., and Bruckl, H. Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection. Biosens. Bioelectron., 19:10 (2004), 1149–56.Google Scholar
Loureiro, J., Ferreira, R., and Cardoso, S., et al., Toward a magnetoresistive chip cytometer: Integrated detection of magnetic beads flowing at cm/s velocities in microfluidic channels. Appl. Phys. Lett., 95:3 (2009), 034104.Google Scholar
Pamme, N. and Wilhelm, C. Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip, 6:8 (2006), 97480.Google Scholar
Fernandes, A. C., Duarte, C. M., Cardoso, F. A., Bexiga, R., Cardoso, S., and Freitas, P. P. Lab-on-chip cytometry based on magnetoresistive sensors for bacteria detection in milk. Sensors, 14:8 (2014), 15496–524.Google Scholar
Graham, D. L., Ferreira, H. A., and Freitas, P. P., Magnetoresistive-based biosensors and biochips. Trends Biotechnol., 22:9 (2004), 455–62.Google Scholar
Boer, B. M., Kahlman, J. A. H. M., Jansen, T. P. G. H., Duric, H., and Veen, J. An integrated and sensitive detection platform for magneto-resistive biosensors. Biosens. Bioelectron., 22:9-10 (2007), 2366–70.Google Scholar
Magnomics [Internet]. [cited Oct 30, 2014]. Available from: www.magnomics.ptGoogle Scholar
Chaves, R. C., Bensimon, D. and Freitas, P. P. Single molecule actuation and detection on a lab-on-a-chip magnetoresistive platform. J. Appl. Phys., 109:6 (2011), 064702.Google Scholar
Ozbay, A., Gokce, A., Flanagan, T., Stearrett, R. A., Nowak, E. R., andNordman, C. Low frequency magnetoresistive noise in spin-valve structures. Appl. Phys. Lett., 94:20 (2009), 202506.CrossRefGoogle Scholar
Nowak, E. R., Weissman, M. B., and Parkin, S. S. P. Electrical noise in hysteretic ferromagnet–insulator–ferromagnet tunnel junctions. Appl. Phys. Lett., 74:4 (1999), 600–2.CrossRefGoogle Scholar
Jiang, L., Nowak, E. R., Scott, P. E., et al., Low-frequency magnetic and resistance noise in magnetic tunnel junctions. Phys. Rev. B, 69:5 (2004), 054407.Google Scholar
Almeida, J. M., Ferreira, R., Freitas, P. P., Langer, J., Ocker, B., and Maass, W. 1/f noise in linearized low resistance MgO magnetic tunnel junctions. J. Appl. Phys., 99:8 (2006), 08B314.Google Scholar
Freitas, P. P., Ferreira, R., and Cardoso, S., Spintronic Sensors, Proceedings of the IEEE, 104:10 (2016), 18941918.Google Scholar
Hardner, H. T., Weissman, M. B., Salamon, M. B., and Parkin, S. S. P., Fluctuation dissipation relation for giant magnetoresistive 1/f noise. Phys. Rev. B, 48:21 (1993), 16156.CrossRefGoogle Scholar
Egelhoff, W. F. Jr, Pong, P. W. T., Unguris, J., et al., Critical challenges for picoTesla magnetic-tunnel-junction sensors. Sens. Actuators A Phys., 155:2 (2009), 217–25.Google Scholar
Guedes, A., Patil, S. B., Cardoso, S., Chu, V., Conde, J. P., and Freitas, P. P. Hybrid magnetoresistive/microelectromechanical devices for static field modulation and sensor 1/f noise cancellation. J. Appl. Phys., 103:7 (2008), 07E924.Google Scholar
Valadeiro, J., Cardoso, S., Macedo, R., Guedes, A., Gaspar, J., and Freitas, P. P., Hybrid Integration of Magnetoresistive Sensors with MEMS as a strategy to detect ultra-low magnetic fields, Micromachines, 7:5 (2016), 8.Google Scholar
Leitao, D. C., Gameiro, L., Silva, A. V., Cardoso, S., and Freitas, P. P. Field detection in spin valve sensors using synthetic-antiferromagnetic multilayers as magnetic flux concentrators. IEEE Trans. Magn., 48:11 (2012), 384507.Google Scholar
Cardoso, S., Leitao, D. C., Gameiro, L., et al., Magnetic tunnel junction sensors with pTesla sensitivity. Microsyst. Technol., 20:4 (2014), 793802.Google Scholar
Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E. and Colton, R. A., A biosensor based on magnetoresistance technology. Biosens. Bioelectron., 13:7–8 (1998), 731739.Google Scholar
Ruan, C., Zeng, K., Varghese, O. K. and Grimes, C. A., A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosens. Bioelectron., 20:3 (2004), 58591.Google Scholar
Kurlyandskaya, G. V. and Fal Miyar, V., Surface modified amorphous ribbon based magnetoimpedance biosensor. Biosens. Bioelectron., 22:9–10 (2007), 2341–5.Google Scholar
Kurlyandskaya, G. V. and Cerdeira, M. A., Giant magnetoimpedance for biosensing. In Nalwa, H. S., ed., Vol. 15 of Encyclopedia of Nanoscience and Nanotechnology, (Valencia, CA: American Scientific Publishers, 2011), pp. 117.Google Scholar
Brzeska, M., Panhorst, M., Kamp, P. B., et al., Detection and manipulation of biomolecules by magnetic carriers. J. Biotech., 112:1-2 (2004), 2533.Google Scholar
Jackson, J. D., Klassische Elektrodynamik (Berlin: Walter de Gruyter GmbH & Co. KG, 2001).Google Scholar
Mohri, K., Uchiyama, T., Shen, L. P., Cai, C. M. and Panina, L.V., Sensitive micro-magnetic sensor family utilizing magneto-impedance (MI) and stress-impedance (SI) effects for intelligent measurements and controls. Sens. Actuators A, 91:1–2 (2001), 8590.Google Scholar
Kurlyandskaya, G. V., de Cos, D. and Volchkov, S. O., Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review. Russ. J. Nondestr. Test., 45:6 (2009), 377–98.Google Scholar
Antonov, A. S., Gadetskii, S. N., Granovskii, A. B., et al., Giant magnetoimpedance in amorphous and nanocrystalline multilayers. Phys. Met. Metallogr., 83:6 (1997), 612–8.Google Scholar
Harrison, E. P., Turney, G. L. and Rowe, H., An impedance magnetometer. Nature, 135 (1935), 961.Google Scholar
Landau, L. D. and Lifshitz, E. M., Electrodynamics of Continuous Media, (New York, NY: Pergamon, 1975).Google Scholar
Makhotkin, V. E., Shurukhin, B. P., Lopatin, V. A., Marchukov, P. Y. and Levin, Y. K., Magnetic field sensors based on amorphous ribbons. Sens. Actuators A, 27:1-3 (1991), 75962.Google Scholar
Beach, R. S. and Berkowitz, A. E., Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl. Phys. Lett., 64:26 (1994), 3652–4.Google Scholar
Panina, L. V. and Mohri, K., Magneto-impedance effect in amorphous wires. Appl. Phys. Lett., 65:9 (1994), 1189–91.Google Scholar
de Cos, D., Lepalovskij, V. N., Kurlyandskaya, G. V., Garc í a-Arribas, A. and Barandiar á n, J. M., High-frequency magnetoimpedance in multilayer thin films with longitudinal and transverse anisotropy. J. Magn. Magn. Mater., 320:20 (2008), e954–7.Google Scholar
Kurlyandskaya, G. V., García-Arribas, A., Fernández, E. and Svalov, A. V., Nanostructured magnetoimpedance multilayers. IEEE Trans. Magn., 48:4 (2012), 1375–80.Google Scholar
Fal-Miyar, V., Kumar, A., Mohapatra, S., et al., Giant magnetoimpedance for biosensing in drug delivery. In Bland, J. A. C. and Ionescu, A., eds., Biomagnetism and Magnetic Biosystems Based on Molecular Recognition Processes, AIP Conference Proceedings CP 1025 (Melville, NY: American Institute of Physics, 2008), pp. 131–8.Google Scholar
Blanc-Béguin, F., Nabily, S., Gieraltowski, J., Turzo, A., Querellou, S., and Salaun, P.Y., Cytotoxicity and GMI bio-sensor detection of maghemite nanoparticles internalized into cells. J. Magn. Magn. Mater., 321:3 (2009), 192–7.CrossRefGoogle Scholar
Safronov, A. P., Terziyan, T. V., Istomina, A. S., and Beketov, I. V., Swelling and contraction of ferrogels based on polyacrylamide in a magnetic field. J. Polym. Sci. A, 54:1 (2012), 2633.Google Scholar
Kurlyandskaya, G. V. and Levit, V. I., Advanced materials for drug delivery and biosensors based on magnetic label detection. Mater. Sci. Eng. C, 27:3 (2007), 495503.Google Scholar
Tartaj, P., Morales, M. P., Veintemillas-Verdaguer, S.., Gonzales-Carreño, T., and Serna, C. J., Synthesis, properties and biomedical applications of magnetic nanoparticles. In Bushow, K. H. J., ed., Vol. 16 of Handbook of Magnetic Materials (Amsterdam: Elsevier, 2006), 403–82.Google Scholar
Jun, Y-W., Seo, J-W. and Cheon, J., Nanoscaling laws of magnetic nanoparticles and their applications in biomedical sciences. Acc. Chem. Res., 41:2 (2008), 179–89.Google Scholar
Llandro, J., Palfreyman, J. J., Ionescu, A. and Barnes, C. H. W., Magnetic biosensor technologies for medical applications: A review. Med. Biol. Eng. Comput., 48:10 (2010), 977–98.Google Scholar
J. Aphesteguy, C., Jacobo, S. E., Schegoleva, N. N. and Kurlyandskaya, G. V., Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method, J. Alloys Compd., 495:2 (2010), 509–12.Google Scholar
Kotov, Yu. A., Electric explosion of wires as a method for preparation of nanopowders. J. Nanoparticle Res., 5:5–6 (2003), 539–50.CrossRefGoogle Scholar
Kurlyandskaya, G. V., Bhagat, S. M., Safronov, A. P., Beketov, I. V. and Larrañaga, A., Spherical magnetic nanoparticles fabricated by electric explosion of wire. AIP Adv., 1:4 (2011), 042122Google Scholar
Safronov, A. P., Leiman, D. V., Blagodetelev, D. N., Kotov, Y. A., Bagazeev, A. V. and Murzakaev, A.M., Aggregation of air-dry alumina powder nanoparticles redispersed in an aqueous medium. Nanotechnol. Russ., 5:11–12 (2010), 777–85.Google Scholar
Beketov, I. V., Safronov, A. P., Medvedev, A. I., Alonso, J., Kurlyandskaya, G. V. and Bhagat, S. M., Iron oxide nanoparticles fabricated by electric explosion of wire: Focus on magnetic nanofluids. AIP Adv., 2:2 (2012), 022154.Google Scholar
Adelman, N. B., Beckman, K. J., Campbell, D. J. and Ellis, A.B., Preparation and properties of an aqueous ferrofluid. J. Chem. Educ., 76:7 (1999), 943–8.Google Scholar
Kurlyandskaya, G. V., Sanchez, M. L., Hernando, B., Prida, V. M., Gorria, P., and Tejedor, M., Giant-magnetoimpedance-based sensitive element as a model for biosensors, Appl. Phys. Lett., 82:18 (2003), 3053–5.Google Scholar
García-Miquel, H., Kurlyandskaya, G. V. and Levit, V. I., Magnetic properties of electroplated wires coated by ferrofluid. J. Magn. Magn. Mater., 300:1 (2006), e55–8.Google Scholar
Kurlyandskaya, G. V., Jantaratana, P., Bebenin, N. G., and Vaśkovskiy, V. O., Magnetic properties and magnetoimpedance of electroplated wires. Solid State Phenom., 190 (2012), 581–4.Google Scholar
Kurlyandskaya, G. V., Giant magnetoimpedance for biosensing: Advantages and shortcomings. J. Magn. Magn. Mater., 321:7 (2009), 659–62.Google Scholar
Cerdeira, M. A., Kurlyandskaya, G. V., Fernandez, A., Tejedor, M. and García-Miquel, H., Giant magnetoimpedance effect in surface modified CoFeMoSiB amorphous ribbons. Chin. Phys. Lett., 20:12 (2003), 2246–9.Google Scholar
Garcia, J. A., Saad, A., Elbaile, L. and Kurlyandskaya, G. V., Surface magnetic properties and magnetoimpedance in Metallica glasses for new sensor applications. In Dirote, E. V. ed., New Development in Nanotechnology Research (New York, NY: Nova Science Publishers, 2007), pp 142.Google Scholar
Buznikov, N. A., Safronov, A. P., Orue, I., Golubeva, E. V., Lepalovskij, V. N., Svalov, A. V., Chlenova, A. A., and Kurlyandskaya, G. V., Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in tissue embedded magnetic nanoparticles detection, Biosens. Bioelectron., 17 (2018), 366–72.Google Scholar
Laurita, N., Chaturvedi, A., Bauer, C. H., et al., Enhanced giant magnetoimpedance effect and field sensitivity in Co-coated soft ferromagnetic amorphous ribbons, J. Appl. Phys., 109:7 (2011), 07C706.Google Scholar
Chaturvedi, A., Stojak, K., Laurita, N., Mukherjee, P., Srikanth, H. and Phan, M-H., Enhanced magnetoimpedance effect in Co-based amorphous ribbons coated with carbon nanotubes, J. Appl. Phys., 111:7 (2012), 07E507.Google Scholar
Bethke, C., Yakabchuk, H., Tarasenko, V., et al., Detection of superparamagnetic markers with GMI-sensors. Tech. Mess., 70:12 (2003), 574–6.Google Scholar
Kurlyandskaya, G. V. and Levit, V. I., Magnetic Dynabeads® detection by sensitive element based on giant magnetoimpedance. Biosens. Bioelectron., 20:8 (2005), 1611–6.Google Scholar
Chiriac, H., Tibu, M., Moga, A-E. and Herea, D. D., Magnetic GMI sensor for detection of biomolecules. J. Magn. Magn. Mater., 293:1 (2005), 671–6.Google Scholar
Chiriac, H. and Herea, D-D., Magneto-impedance sensor for biomedical applications. Int. J. Appl. Electrom., 25:1–4 (2007), 453–9.Google Scholar
Chiriac, H., Herea, D-D. and Corodeanu, S., Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype. J. Magn. Magn. Mater., 311:1 (2007), 425–8.Google Scholar
Yand, H., Chen, L., Lei, Ch., et al., Giant magneto-impedance-based microchannel system for quick and parallel genotyping of human papilloma virus type 16/18. Appl. Phys. Lett., 97:4 (2010), 043702.Google Scholar
García-Arribas, A., Martínez, F., Fernández, E., et al., GMI detection of magnetic-particle concentration in continuous flow. Sens. Actuators A, 172:1 (2011), 103–8.Google Scholar
Denoual, M., Harnois, M., Saez, S., Dolabdjian, C. and Senez, V., Microfluidic microsystem for magnetic sensing of nanoparticles with giant magneto-impedance technology. Proceedings of Solid-State Sensors, Actuators and Microsystems Conference, Transducers’11 Conference, Beijing, China, June 5–9 (2011), 80–3.Google Scholar
Chen, L., Bao, C-C., Yang, H., et al., A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells, Biosens. Bioelectron., 26:7 (2011), 3246–53.Google Scholar
Yuvchenko, A. A., Lepalovskij, V. N., Vas’kovskii, V. O., Safronov, A. P., Volchkov, S. O. and Kurlyandskaya, G. V., Magnetic impedance of structured film meanders in the presence of magnetic micro- and nanoparticles. Tech. Phys., 59:2 (2014), 230–6.Google Scholar
Lodewijk, K. J., Fernandez, E., Garcia-Arribas, A., et al., Magnetoimpedance of thin film meander with composite coating layer containing Ni nanoparticles, J. Appl. Phys., 115:17, (2014), 17A323.Google Scholar
Kurlyandskaya, G. V., Fernández, E., Safronov, A.P., Blyakhman, F. A., Svalov, A. V., Burgoa Beitia, A., and Beketov, I. V., Magnetoimpedance biosensor prototype for ferrogel detection. J. Magn. Magn. Mater., 441 (2017), 650–5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×