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Abstract

Let V be an infinite-dimensional vector space over a field of characteristic 0. It is well known that the
tensor algebra T on Visa completely reducible module for the general linear group G on V. This paper is
concerned with those quotient algebras A of T that are at the same time modules for G. A partial solution
is given to the problem of determining those A in which no irreducible constituent has multiplicity greater
than 1.

2000 Mathematics subject classification: primary 20C15.

1. Introduction

Attention is drawn in this paper to a simply stated, unsolved problem involving
multiplicity-free representations of classical general linear groups. For the proofs of
several of the results stated here, the reader is referred to the research report [6].

Let V be a vector space over a field k and T — T(V) the tensor algebra on V. Denote
by E = E( V) the monoid formed by the endomorphisms of V under multiplication.
Since every element of E extends uniquely to an endomorphism of T, the latter has the
structure of a left ££-module. If an ideal J of T is at the same time a AZs-submodule,
then A = T/ J is of course both a quotient algebra, and quotient kE-module, of T :
we call A a quotient tensor algebra. Familiar examples are the symmetric and exterior
algebras on a given vector space and the algebra of«x« generic matrices over a given
field.
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The present paper is concerned with a very special class of quotient tensor algebras.
In the first place, it will be assumed throughout that k has characteristic 0 and V
countably infinite dimension. Under these conditions, T is a completely reducible
ifcE-module in which each irreducible component has finite multiplicity; and the same
is evidently true of any quotient tensor algebra A = T/J. We say that A is a model for
the tensor representations of E if every irreducible component of T has multiplicity
exactly 1 in A, and that A is multiplicity-free if every irreducible component of T has
multiplicity at most 1 in A.

In the following considerations, V and T are kept fixed. The first result is that
there are precisely two models: these are .e/(l) and s/{—\) in the general notation
introduced below. They have simple presentations. Write a o b = ab + ba, [a, b] =
ab — ba. Then srf{\) is the algebra generated by a countably infinite set X subject to
the defining relations that [x o y,z] — 0 for all x, y, z e X, and srf(—\) is defined
similarly with [[x, y], z] in place of [x o y, z]. That srf{\) is a model is proved
explicitly in [5] but is already implicit in related results for symmetric groups ([2, 3]).
My thanks are due to D.-N. Verma for pointing out that ^(—1) is a model too; his
comments and suggestions have been of considerable help to the present investigation.

Let us examine in a preliminary way the conditions for a quotient tensor algebra
A = T/ J to be multiplicity-free. Let Tn denote the subspace of T generated by the
products of n elements of V. Then Tn is a ifcE-submodule and the isomorphism types
of its irreducible constituents are parametrized by the partitions X of n: let Tk stand
generically for an irreducible of type X. The crucial observation here is that Tm has
multiplicity 2 in T3. Therefore, in order that A be multiplicity-free, J — T3 must
contain a copy of Ti2\). Now, 73 contains infinitely many such copies and they are in
fact naturally parametrized by the points q on the projective line &y = k ^ {oo}: let
W(q) be the copy corresponding to q. We define

where <#{q) is the ideal of T generated by W(q). It is easy to see that jrf(q) is a
quotient tensor algebra and our discussion shows that every multiplicity-free quotient
tensor algebra is a homomorphic image of some srf{q).

Let ak(q) denote the multiplicity of Tk in £?{q). That srf(\) and ^ ( - 1 ) are the
only models is proved by showing that

(1.2) <W<?)=0 when q2^\.

Let us now consider the inequality

(1-3) ak(q) < 1
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[3] Multiplicity-free quotient tensor algebras 281

for fixed X and varying q. Whether (1.3) holds or not for a particular q depends in
fact on the rank of a certain matrix whose elements are polynomials in q with rational
coefficients. It is easily deduced from this that there exist polynomials

(1.4) / i ( O , . . . . / , ( O € Q [ r ]

such that (1.3) holds if, and only if, q is not a common root. But since (1.3) holds
when q = 1, it follows that at least one of the polynomials (1.4) is non-zero. We
conclude that there are only finitely many q for which (1.3) does not hold and that
these exceptional q (if any) are all algebraic over Q. An immediate corollary is that
srf(q) is multiplicity-free whenever q is transcendental over Q. A refinement of this
argument is used in Section 5.2 to show that the value of ak(q) for transcendental q is
1 when X has any of the forms («), (n - 1, 1), (1"), (2, I""2) and 0 otherwise.

There is a striking contrast between the behaviour of the £/(q) as algebras and
their behaviour as modules. It is proved in Section 3 that quotient tensor algebras
T/J, T/K are isomorphic as algebras only if J = K, from which it follows that
£?(q), srf(q') are isomorphic as algebras only if q = q'. On the other hand, the results
cited above show that srf(q), srf(q') are certainly isomorphic as modules whenever
both q and q' are transcendental over Q.

The question left unresolved here is whether all £/(q) are multiplicity-free. There
is some positive evidence. Let X, ix be partitions of n. It is proved in Section 5.1 that
(1.3) holds when either X or its conjugate partition X' has at most 2 parts. A direct
calculation in [6] shows also that (1.3) holds when n < 6. A further result proved in
[6] is that, for each /u.,

(1.5) X X M ( 1 -ak{q)) >0,

where the KXli are the Kostka numbers (see [4]). The special case \x = (P) gives

(1-6) I]Ad -a,(q)) >0,

where fx is the degree of the irreducible representation of the symmetric group Sn

corresponding to X. In essence, these results are proved by reducing the elements of
srf(q) to a (not necessarily unique) normal form. One might hope to prove that srf{q)
is multiplicity-free (if this is true!) by a refinement of the method.

Section 2 is preliminary. Section 3 deals with general properties of quotient tensor
algebras. The particular algebras srf{q) are introduced in Section 4 and their properties
derived in Section 5.
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2. Preliminaries

Some basic results and notation are set down for reference. Definitions and as-
sumptions already made are for the most part not repeated here.

2.1. Grading We call Tn the nth homogeneous component of T and say that its
elements are homogeneous of degree n. The Tn provide a grading of the algebra T.
A subspace K of T is graded if K = ®nKn, where Kn = K —• Tn. A quotient
Q = K/K', where K, K' are graded, inherits the grading in the obvious way, and Qn

denotes its nth homogeneous component.
The choice of a basis

(2.1) X = {xux2,...}

of V determines a multigrading of T: a multi-index is an infinite row n = (n i, n2,. -.)
of integers n, > 0 with finite sum \n\ = £ n ; ; the corresponding multihomogeneous
component Tn is the subspace of T generated by those products of basis elements that
have degree n, in x, for all i. Multigraded subspaces and quotient spaces are defined
in the expected way, and Qn denotes the nth component of Q. It will sometimes be
convenient to refer to Qn as the (x^Xj1 • • • )-component of Q.

2.2. Module structure of T The Tn are &£-submodules and the assumption that it
is infinite ensures that every submodule of T is both graded and multigraded. We need
therefore only look at the individual Tn. Let nM denote the (xx • • -xn)-component of
T. It has basis elements

(2.2) x a =xal---xan(a e Sn),

where Sn is the symmetric group on { 1 , . . . ,n}. The natural definition axx —
xaz{a, x € Stt) turns nM into a left kSn-module, identified with the left regular module
kSn by the isomorphism

(2.3) in

Thus, the decomposition of nM into its irreducible constituents has the form

(2.4)

where summation is over the partitions X of n and where the multiplicity fk of the
irreducible constituent My is its dimension as vector space.

By a section of a module, we shall mean a quotient module of a submodule of that
module. There are natural ways of passing between sections of the fc£-module Tn
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and sections of the kSn-module nM. If Q is a section of Tn, its (x\ • • -xn)-component
is naturally identified with a section of nM : the latter is the multilinear restriction
of Q. If L/L' is a section of nM, then (kE)L/(kE)L' is a section of Tn called the
extension of L/L' . The basic result is that extension and multilinear restriction are
mutually inverse, isomorphism-preserving bijections between the set of all sections
of the jtSn-module nM and the set of all sections of the jt/s-module Tn. It follows
that Tn is a completely reducible fcE-module whose decomposition into irreducible
constituents has the form

(2.5) rn

Let R be the multilinear restriction of a section Q of Tn. Then

W=n |X|=n

with certain common multiplicities hx < fx- For convenience of notation, we intro-
duce the symbol ^w=n ^ a s m e tyPe °f both Q and 7?. The definition is extended
to arbitrary &£-submodules and sections of T in the obvious way: for example, T
itself has type X^/xA., where summation is over all partitions A. of all integers n > 0.
Analogous notation will be used for the ^£(r)-modules considered in the next section.

It will sometimes be convenient to replace the multilinear restriction R of Q by the
corresponding section /?' = ("' (R) of the kSn-modu\e kSn. We call R' the S-restriction
of Q and Q the extension of /?' (as well as of R).

The Weyl module Wk corresponding to a partition k of n is the particular irreducible
fcf-submodule of Tn of type A. defined as follows. If z\,... , zr are elements of an
associative algebra, write

(2.6) A(z , , . . . , zr) = ^ ( s g n c r ) ^ , •••zCTr.
IT€Sr

Then Wx is the ^£-module generated by the element

(2.7) A*(* , , . . . ,JCB) = A ( J C , , . . . , J : M I ) A ( X 1 , . . . , ^ 2 ) - - - ,

where /^i > n2 > • • • > /i.v > 0 are the parts of the conjugate partition /x = A.'.

2.3. Module structure of T (r) For each integer r > 0, let V(r) denote the subspace,
T(r) the subalgebra, of T generated by X(r) — {xly... , xr}. The considerations of
Section 2.1 carry over immediately to T(r): we may identify it with the tensor algebra
on V(r) and its intrinsic grading and multigrading coincide with those induced by T.
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The endomorphisms of V(r) form a multiplicative monoid E(r), and 7(r) is a left
kE (r)-module. As before, we could confine attention to the homogeneous components
Tn(r) but it is just as easy here to deal directly with T(r) itself.

There are natural ways of passing between the sections of the fcE-module T and
the sections of the kE(r)-module T(r). If Q is a section of T, let Q(r) denote the
sum of the multihomogeneous components of Q corresponding to multi-indices of
the form («i , . . . , nr, 0, 0 , . . . ) . The r-variable restriction of Q is the section of T(r)
naturally identified with Q(r). If L/L' is a section of T(r), then its extension is the
section (kE)L/{kE)L' of T.

We denote by T(r) the unique /fcif-submodule of T of type ^<w<r A -̂> summation
being over all partition X into at most r parts. The basic result is that extension and
r-variable restriction provide mutually inverse, isomorphism-preserving bijections
between the set of all sections of the it£(r)-module T(r) and the set of all sections of
the fc£-module Tir). Moreover, if X has more than r parts, the r-variable restriction
of a section of T of type X is zero. It follows that, T(r) is a completely reducible
A:£(r)-module and its decomposition into irreducible constituents has the form

(2.8) T(r) ~
t(k)<r

By the above, if X is a partition of n into at most r parts, then the element (2.7)
generates an irreducible A:£(r)-module Wk(r) of type X.

3. General properties of quotient tensor algebras

We investigate various relations between two quotient tensor algebras

(3.1) A = T/J, B = T/K.

THEOREM 3.1. The algebra B is a homomorphic image of the algebra A if, and
only if, J C K.

PROOF. We need only prove that the condition is necessary. Suppose then that
9 : A - • B is a surjective homomorphism of algebras. Since J, K are /t^-submodules
and J is generated as a &ZT-module by its multilinear elements, it will be sufficient to
show that every multilinear element g(xx,... , xn) of J is in K. We shall assume in
the proof that neither J nor K contains V, the proof being rather easy otherwise. This
assumption ensures that the vector spaces Ax and B, are both isomorphic to V and
hence infinite-dimensional.

In order to show that g(xu ... ,xn) e K, it is enough to show that there are
linearly independent elements bu ... ,bnoiBx such that g(bx,... ,bn) ~Q. Indeed,
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[7] Multiplicity-free quotient tensor algebras 285

let u ; i , . . . , wn be elements of V such that bt = w,. + K. Then the wt are linearly
independent and g(wu ... , wn) € K. Since AT is a &£-submodule and the full
linear subgroup of E permutes the sequences of n linearly independent elements of V
transitively, we have g(xt, ... , xn) e K, as required.

Since 0 is ^-linear, there exist ^-linear mappings 0O : A —*• k, 0\ : A —> Bi such
that

e(u) = eo(u)lB+9i(u) ( m o d B ) i f « < = A ,

where B = 5^j>2 Bt. Similarly, if <p : A, —• B is the restriction of 0 to Au there exist
^-linear mappings <p0 : A] ->• k, 4>\ : A{ ->• Bx such that

0(a) = 0o(a) l* + 0i(a) (mod B) i f a e A , .

Now, M e A is a ^-linear combination of products aa'a" • • • with a, a', a",... 6 A t

and we have 6(aa'a" • • •) = <j>(a)(j)(a')(p(a") • • •. A simple calculation shows that
#i(w) e im0i, whence im</>i = im^]. But di is surjective because 0 is and so </>) is
surjective too.

In particular, im (j>\ is infinite-dimensional. Evidently ker <p0 has codimension 0 or 1
in A, and so (j>\ (ker </>0) is also infinite-dimensional. Hence there exist a{,... ,an G A,
such that

where b\,... ,bn are linearly independent elements of Bt and c 1 ( . . . , cn e B. We
show that g(&i , . . . , £ > „ ) = 0 with these A,-.

We have a, = v> + J (i = 1 , . . . , n) with certain u, 6 V. Since g(x\,... , *„) e 7
and J is a ££-module, we have g(vlt ... , vn) e J and thus g{au ... , an) = 0.
Therefore, since 9 is a homomorphism,

0 = * ( 0 ( a , ) , . . . , d(an)) - «(*, + c , , . . . , bn + cn).

However, since g{x\, ... ,xn) is multilinear, g{bu ... , bn) is the homogeneous
component of g(bi + c,, ... , bn + cn) of degree n\ and since B is of course graded
we conclude that g(bt,... , bn) •= 0, as required. D

COROLLARY 3.2. The algebras A and B are isomorphic only if J = K.

The corollary justifies our calling J the kernel of A.

COROLLARY 3.3. The algebras A and B are anti-isomorphic if and only if K =
a(J), where a is the principal anti-automorphism ofT.
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The principal anti-automorphism of T is by definition the unique anti-automorph-
ism of T that fixes the elements of V. The corollary follows at once from the previous
one and the existence of or. When K = a (7) , we shall call B the opposite of A.

THEOREM 3.4. Opposite algebras A, B are isomorphic as kE-modules.

PROOF. Since A, B are opposites, we have K = a(7) and hence, for each n, K'n =
«GO. where K'n, J'n are the multilinear restrictions of Kn, Jn. But a maps xa =
xa\ •••xan to xan • • • xal = xaZn, where rn is the involution (1, n)(2, AI — 1) • • • e Sn.
Hence K'n, J'n are isomorphic fcSn-modules and so Kn, Jn are isomorphic &£-modules.
The theorem follows. D

Let P = ®nPn, Q = ®nQn be fc£-submodules of T. Let Pn", Q"n be the 5-
restrictions of Pn, Qn (see Section 2.2). We call 2 the conjugate of P, and write
Q = co(P), if, for all n, (^' = <wn(P '̂), where o>n is the sign automorphism of kSn. If
P has type £ ^AA, then w(P) evidently has the conjugate type ]T a>.̂ '-

We define the quotient tensor algebras A, B to be conjugate when their kernels 7,
£ are conjugate. The following result is obvious from our discussion.

PROPOSITION 3.5. Conjugate quotient tensor algebras have conjugate types.

PROPOSITION 3.6. The operations of forming the conjugate and the opposite of a
quotient tensor algebra commute.

PROOF. This follows from the fact that the sign automorphism &>„ and the operation
R(rn) of right multiplication by the involution xn — (1, n)(2, n — 1) • • • commute up
to sign: conR(rn) = (sgn rn)R(rn)con. •

THEOREM 3.7. Conjugate kE-submodules G, H of T generate conjugate ideals P,
QofT.

We omit the straightforward proof.

4. Definition of the

Before giving the definition, we require some preliminary information about the
left ideals of type (21) in kSj. It will make things clearer to begin with some rather
more general results in kSn.
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4.1. Blocks of kSn The blocks of kSn are, by definition, its minimal two-sided
ideals. They are parametrized by the partitions of n, the block Bk corresponding to A.
being the unique left ideal of type fkk. As an algebra, it is isomorphic to the algebra
of fx x fk matrices over k. We shall first describe Bk explicitly when k = (n) or
(n — 1, 1) (n > 2) and then transfer the results to the cases of the conjugate partitions

The identity representation of Sn of degree 1 provides a &Sn-module of type (n) :
B(n) is obviously the 1-dimensional subspace of kSn with generator

oeS,,

The permutation representation of Sn on the left cosets of 5n_i provides a kSn-

moduleof type (n) + (n — 1, 1). H e n c e / ( n _ U ) = n — 1 and so dim B(n_lA) — (n — I ) 2 .

Let A,y = J^aeD a ('>./ = !>••• . " ) ' where D:j = {a e Sn\aj = i}. It is

straightforward to verify that the elements

(4.2) A v ~ l Q ( « . y = i . - • • . " - ! )

form a basis of B(n_ij).
Let S£y. denote the set of all left ideals of kSn of type k, that is, the set of all minimal

left ideals of the algebra Bk. Choose any minimal right ideal Ro of Bk. Then

(4.3) L H> L^ Ro

gives a bijection of JCk onto the set of all 1-dimensional subspaces of /?o. Thus,
the elements of S£x are parametrized by the points of the projective space &(Ra)
corresponding to Ro. The mapping (4.3) has the additional functorial property that
the kSn -module homomorphisms L -*• L' restrict to the linear mappings L —* Ro —*•
L *"• Ro.

Let us consider now the special case k = (n — 1, 1). The subspace P, of kSn with
the elements Ay (J = I, ... , n) as basis is a right ideal of type (n) + (n — 1, 1), and
its component of type (n — 1, 1) is the subspace <2, of elements

(4.4) Yl XJ A'J with

A left ideal of type (n — 1, 1) intersects Q< in the subspace generated by a nonzero
element (4.4): it is therefore represented by the homogeneous coordinates [k\, ... , kn]
(in the usual sense of projective geometry) of a point on the hyperplane £ kj = 0 in
the projective space £?n-\ over k. Notice that, since o(YlXj A«) = J2^j ^a
a e Sn, this parametrization is independent of the choice of /.
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The sign automorphism con of kSn maps Bx to Bk>, where k' is the partition conjugate
to A.. It follows that B(in) has the single basis element

(4.5) « ' = (on(Q)

and fi(2i»-2) the (n — I)2 basis elements

(4.6) Kj-\v (ij = 1 , . . . , / i - l ) ,

where A^ = a>n(A,y). The elements

(4.7) X>,A^ with

form a right ideal <2; of type (21"~2). A left ideal of type (21""2) intersects Q't in the
subspace generated by a nonzero element (4.7), and we assign to it the homogeneous
coordinates [fi\,... , nn].

4.2. The case n = 3 We have assigned homogeneous coordinates to the kE-
submodules of Tn of types (n — 1, 1) and (n - 1, 1)' = (21""2). Here we examine the
special case n = 3, where the two types coincide.

Let us first consider (21) as a special case of (n — 1,1). Let W be a k E-submodule of
73 of type (21) and let W be its 5-restriction (see Section 2.2). If W has homogeneous
coordinates

(4.8) [^uk2,k3] (X1+X2 + A3 = 0),

then it is generated as a k 53 -module by any one of the 3 elements
3

(4.9) e, = Y,kj^v (« = 1,2,3),

and as a vector space by any two of them. Hence W is generated as a &£-module by
the element

(4.10)

It will usually be more convenient to designate W by the affine parameter

(4.11) q = -k3/ku

so that the homogeneous coordinates become

(4.12) [l,q-l,-q] (q e k)

(or[0, 1, — 1] when<7 = 00). Accordingly, W = W(q) is generated as a jt£-module by

(4.13) Q>q(xi,x2,x3) —

-q(x ix2x3
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[11] Multiplicity-free quotient tensor algebras 289

(or<t>O0(xi,x2,x3) — Cx2*3*i +xxxix2) - (*i*2*3 + *2*i*3) when q = oo).
Let us next consider (21) as a special case of (21"~2). If W has homogeneous

coordinates

(4.14) [AH.M2.M3] (Mi + M2 + M3 = 0)

in this sense, then the elements corresponding to the elements (4.9) are

3

(4.15) e;. = J > , A ; y (1 = 1,2,3).

Thus, in terms of the affine parameter

(4.16) 9' =

W is generated as a ^f-module by

(4.17) <f>^(*,,*2,*3) = (*3*1*2 -*3*2*l) + (<?' - 1)(*2*3*1 -

-x2x{x3)

(or by <$>'oo(xux2,xi) — (x2x3x{ -Xix3x2) - (* 1*2*3 -^2*1*3) when q' = 00).
The two sets of homogeneous coordinates are related as follows: since

0 , - 0 2 = (A.2 - A3)A3I + (h ~ ^i)A'32 + (A, -

we have

(4.18) [Mi,/i2,At3] = [A.2-A.3,A.3-A.,,A.I - A.2].

Thus, the parameters f̂, ^' are related by the projective involution

(4.19) 2{qq'+\) = q + q'.

DEFINITION. We define the quotient tensor algebra stf{q) to be

(4.20) s/(q) = T//{q),

where ^(q) is the ideal of T generated by W(q).

NOTATION. Let

(4.21)

(4.22)

where, in view of (4.20),

(4.23) ax(q) + bk(q) = fx.
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EXAMPLES. (1) The generator (4.13) of W(l) is -[xi o x2, x3], and the generator
(4.17) of W(-l) is -[[xux2],x3]. Thus, s/(l) and s/(-l) are as described in
Section 1.
(2) The sum of the submodules W corresponding to two different parameter values

is the unique submodule of type 2(21). If ^ is the ideal of T generated by the
latter, then s/ = T/ J? is & common homomorphic image of all s/(q). It is easy
to determine its structure. Indeed, it follows from the form of the two generators in
example (1) that s/ is generated by a countably infinite set X subject to the defining
relations that the product of any two elements of X is in the centre of si. Another
way of expressing the defining relations is to say that a product of any number, m, of
generators is unaltered by an even permutation of the m factors. It follows easily from
this that the homogeneous component s/n is of type (n) + (1") when n > 2.
(3) The result just proved, together with (4.23), shows that

(4.24) fl(.)(9) = fl<i.)(9) = l

for all n and q.

4.3. Relations between different n/(q) Applying the general results of Section 3
to the s/(q), we get

PROPOSITION4.1. s/(q) ands/(Q) are

(a) isomorphic as algebras if and only ifq = Q,
(b) opposites if and only if qQ = 1, and
(c) conjugates if and only if2(q Q+ 1) = q + Q.

PROOF, (a) is obvious from Corollary 3.2. In proving the other parts we use the
fact that the kernel J (q) of s/(q) is generated as an ideal by W(q) = ^i{q)- Thus,
in order to prove (b) we must show that a(W(q)) = W(q~l), where a is the principal
antiautomorphism of T. But W(q) is generated as a &E-module by the element <S>q in
(4.13) and we see by inspection that a(i>q) = —q<&q-' (q ^ 0), a(<i>o) = -3>oo- This
proves (b).

By Theorem 3.7, the conjugate of J1'{q) is generated by the conjugate of W(q).
Thus, in order to prove (c) we must show that a>3(W(q)) = W(Q), where 2(qQ +
1) = q + Q. Now, by its definition, uh,{W(q)) is the fcE-submodule generated
by <&'q{,x\,x2,xj), where the notation is as in (4.17). Then (4.19) shows that this
submodule is W( Q) as claimed. •

COROLLARY 4.2. The kE-modules s/(q), s/(Q) have the same type if qQ = 1,
conjugate types if2(qQ+ 1) = q + Q.
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REMARKS. (1) In accordance with Proposition 3.6, the relations between q, Qin
(b), (c) of Proposition 4.1 define commuting involutions on the projective line.
(2) srf (1) and ^(—1) are conjugates. Hence the proof that either one is a model

implies that the other is too.

5. The main results for the

5.1. Evaluating ax(q) for small l(\) It has been mentioned several times that

(5.1) fl1(l) = a i ( - l ) = l

for every partition X. Suppose now that X is a partition of n into 1 or 2 parts:

(5.2) A. = (n - r, r) (0 < r < n/2).

We shall prove here that, if q2 ^ 1,

(5.3,

There are two immediate corollaries. First, £f(l) and s/{-1) are the only quotient
tensor algebras that provide a model for the tensor representations of E. Second, for
all partitions X of n into 1 or 2 parts and all q,

(5.4) aAq) = ax(q),

where X' denotes, as usual, the conjugate of X. This follows from the results above
and Corollary 4.2.

Let si/(2, q) denote the subalgebra of $4(q) generated by the canonical images x,
y of x\,x2. Then, by Section 2.3,

(5.5)

Thus, our task here is to determine the multiplicities in (5.5). We shall exclude the
case q = oofrom the main argument, returning to it at the end.

It is easily seen from the considerations in Section 4.2 that s/(2, q) is the algebra
with generators x, y and defining relations

(5.6) f(x,y)=f(y,x) = 0,

where

(5.7) f(x,y) = [y,x]x+qx[y,x].
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It is convenient to rewrite (5.6) as

(5.8) zx = -qxz, zy = -qyz

where z = [y,x].
We shall now prove that the nth homogeneous component s/n{2, q) is generated as

a vector space by the elements

(5.9) {xlym)zr(l, m,r>0,l + m + 2r = n),

where {x 'ym) denotes the sum of the (l+/") formally distinct monomials in x, y having
respective partial degrees /, m (the latter will be referred to as (/, m)-monomials). The
result being trivial for n < 2, we assume that n > 3. Let a, b be nonnegative integers
with sum n. We will show that a given (a, fc)-monomial p can be expressed as a linear
combination of the elements (5.9).

The proof rests on the simple observation that the difference of two (a, b)-mono-
mials p, p' can be expressed as a linear combination of terms uzv, where uv is an
(a — 1, b — l)-monomial. Indeed, we have p = P\ • • • pn, where each pt is x or y, and
p' = pai • • -pan for some permutation a e Sn. If a is an adjacent transposition, our
assertion is obvious, and it follows in general because every CT is a product of adjacent
transpositions.

Since (xayb) is the sum of (n
a) (a, fc)-monomials, it follows that

-0
is likewise a linear combination of such terms uzv. But the defining relations (5.8)
show that uzv is a scalar multiple of uvz, and so p is a linear combination of {xayb)
and terms wz, where w is an (a — 1, b — l)-monomial. Our result now follows in an
obvious way by induction on n.

The next step is to prove that, for all q,

(5.10) x"^0 ( n > 0 ) ,

(5.11) x"-2z^0 (n>2),

and that, if q2 ^ 1,

(5.12) z2 = 0.

Since (5.10) and (5.11) are obvious when n < 2, we shall assume when proving
them that n > 3. It is essential here to note that stf(2,q) is multigraded. The
multihomogeneous component spanned by the (a, 6)-monomials will be called its
(a, b)-component.
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The (n, 0)-component is spanned by the single element x". The defining relations
(5.8) obviously impose no linear relation on x" and so (5.10) holds.

The (n — 1, l)-component—call it D—is spanned by the n formally different
(n — 1, l)-monomials, on which the defining relations (5.6) impose the n — 2 linear
relations

x c f ( x , y ) x d = 0 (c,d>0,c + d = n - 3 ) .

Hence dim D > 2. On the other hand, since the elements (5.9) span s/{n, q), the
elements (x"~ly) and xn~2z span D and so dim D < 2. Hence the two elements form
a basis of D and in particular (5.11) holds.

Finally, the relations (5.8) give zxy = q2xyz and zyx = q2yxz, whence z2 = q2z2\
therefore z2 = 0 if q2 £ 1.

In order to prove (5.3), we have now only to interpret the results already proved
in terms of modules. Let A. be the partition (5.2). Now the A:£'(2)-submodule ^{2)
of T(2) generated by x"~2r(x2x\ — x\X2)

r is irreducible of type k and the n — 2r + 1
elements

(x[x")(x2x1 - xix2)
r (l,m>0,l + m=n-2r)

form a basis (^1(2) is the image of Wk(2) (see Section 2.3) under the principal
antiautomorphism). Let ^ ' (2) denote the canonical image of 51(2) in #/(2,q).
Clearly, ^(2) is the fc£(2)-submodule of ^ , (2 , q) generated by x"'2rzr and it is
spanned by the elements

(5.13) (x'ym)zr (I, m > 0, l + m =n-2r).

Since &k(2) is irreducible, either x"-2rzr = 0or ^ ' (2) = ^ ( 2 ) and the elements
(5.13) form a basis of ^ ' (2) .

Now, since ^ , (2 , q) is spanned by the elements (5.9), it is the sum of the ^ ' (2)
above; and since the «̂ J.(2) are pairwise non-isomorphic, this sum is direct. If q2 ^ 1,
then, by (5.10) - (5.12) and the discussion above, ^ ' (2) = 51(2) when r < 1 and
^'(2) = (0) otherwise. Hence we have, in this case,

^ , (2 , q) = ^ , ( 2 ) 0 ^ ;_ U ) (2) = 5^(2) © ^ n _ U l (2 ) ,

thus proving (5.3).
It remains only to deal with the omitted case q = oo. Here the defining relations

(5.8) must be replaced by xz = yz = 0 and it is no longer true that the elements (5.9)
span jrfn{2, oo). There is a simple remedy: since the algebras &/(2, oo) and ̂ ( 2 , 0)
are anti-isomorphic by Proposition 4.1, the reversed elements zr{x'ym) span s#n(2, oo)
and so (5.3) holds as before. (Alternatively, £/(2, oo) and £/(2, 0) are isomorphic as
Jt£(2)-modules by Theorem 3.4.)
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5.2. The generic multiplicities ak(-) Throughout this section, X is a fixed partition
of the integer n. Write

(5.14) ak(-) = min ak(q)
q

Since ak(l) = 1, ak(-) is either 0 or 1. The following result justifies the name
generic for ak().

PROPOSITION 5.1. ak (q) > ak(-)foratmostfk values of q. Each of these excep-
tional values is either oo or algebraic over Q.

PROOF. Let u, v be the —X3, Xt in (4.11), so that q = u/v. Consider the S-
restriction of Jn(q) (see Section 2.2 and (4.20H4.23)). It is a left ideal of kSn of
type £ p bp{q)p and is generated as a vector space by finitely many, say N, elements
of the form f u + gv, where / , g € QSn. If ek is a primitive idempotent of Q5n of
type X, then the coefficient bk(q) is the dimension of the intersection of the above
5-restriction with the primitive right ideal ek(kSn). This intersection is generated as a
vector space by the N elements ek(fu + gv).

We now have all that is necessary to prove the proposition. Since dim ek(kSn) =
fx, Mg) is the rank of acertain/x x TV matrix of the form X(M, V) — uY+vZ, where
the entries of Y, Z are in Q. Let r be the rank of X(s, t), where s, t are independent
indeterminates over Q, and let F(s, t) be a nonzero r x r determinantal minor of
X(s, t). Then bx(q) < r with strict inequality only when the ratio u : v is a solution
of the homogeneous equation F(u,v) = 0 of degree r < fk. When translated into
terms of the coefficients ak(q) = fk — bk(q), this gives the proposition. •

An immediate corollary is that ax(q) — ak(-) whenever q is transcendental over Q.
The remainder of this section is devoted to calculating ak(-).

Ceil X exceptionalif it is one of (n), (n — 1, 1), (1"), (21""2) and general otherwise.
The results of Section 5.1 show that ak(-) = 1 when X is exceptional. We prove here
that

(5.15) ak(-)=0 if A. is general.

A property of srf(q) will be said to hold for almost all q if it holds for all q
apart from finitely many exceptions. Equation (5.15) will be proved in the obviously
equivalent form that, when X is general,

(5.16) ak(q) = 0 for almost all q.

The following special result is required at one point in the proof. It is proved in [6]
by a direct calculation.
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LEMMA 5.2. a^iq) = 0 ifq2 ^ 1.

NOTATION. Let the parts of A be kt > • • • > Ar > 0 and let /x with parts / i ( >
• • • > / / * > 0 be the conjugate partition A'. The Weyl submodule Wx of T is defined
in Section 2.2.

The proof that (5.16) holds when A is general rests on properties of the particular
algebra A — J/(—1). Let y\, y2, • • • be the images of xt, x2, • • • under the canonical
homomorphism T —>• A and denote by L the Lie subalgebra of A generated by the y/.
The presentation of A by generators and relations cited in Section 1 implies that L is
the free nilpotent-of-class-2 Lie algebra on the generators y, and that A is its universal
enveloping algebra.

LEMMA 5.3. A has no divisors of zero.

PROOF. This property is shared by all universal enveloping algebras: see [1, Sec-
tion 2.3]. •

For the time being, A may be either general or exceptional. Since A is a model for
the tensor representations of E, it contains a unique submodule Ak of type A..

COROLLARY 5.4. Akis the canonical image of Wx-

PROOF. Since Wk is irreducible of type X, its canonical image is either zero or
isomorphic to—and hence equal to—Ak. Thus, we have only to prove that the
canonical image of the generator (2.7) of Wk, namely

A ^ ( y , , . . . ,yn) = A(y{,...,

is nonzero.
By Lemma 5.3, it will be sufficient to prove that

for all m. Thus, the proof of the corollary has been reduced to the special case
of a partition of the form (lm). But in this case the proof is immediate: Ai\m) is
the canonical image of some submodule of T type (lm), and W^m) is the only such
submodule. •

Write af
k(q) — </ iq) ^ Tk, where Tk is the unique submodule of T of type /^A.

COROLLARY 5.5. For almost all q, Jk(q) + Wk = Tk.
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PROOF. We follow the same procedure as in the proof of Proposition 5.1: form the
5-restriction of ^x(q) + Wx; intersect this with the primitive right ideal ex(kSn). The
linear generators of this intersection are the same N elements ex(f u + gv) as in the
previous proof plus one more element % e Q5n corresponding to Wx. Thus, in place
of the previous bxx N matrix X(u, v), we get an bxx (N + 1) matrix X(u, v), where
first N columns form X(u, v) and whose final column represents exwx and thus has
entries in Q.

What the corollary asserts is that X(«, vc) has rank// for almost all q. This follows
at once from Corollary 5.4, which asserts that the rank is fx when q = — 1. •

Before proving (5.16), we point out two alternative formulations of it. Clearly,
ax(q) = 0 if and only if Jk(q) = Tk. Hence, by Corollary 5.5, (5.16) holds if and
only if

(5.17) WA c / x ( 9 ) for almost all q.

Further, since Wx is generated as a module by Ax(x\,... , xn), (5.17) in turn holds
if and only if

(5.18) Ai(z, , . . . , zn) = 0 for almost all q,

where z\,z2,... are the images of x\,x2,... under the canonical homomorphism
T -

PROOF OF (5.16). We assume that X is general and prove that (5.16) holds. The
proof rests on two simple arguments. The conjugacy argument is that, if (5.16) holds
for X, then it also holds for X'. This follows directly from Corollary 4.2, which shows
that ax(q) = ax{q'), where 2(qq' + 1) = q + q'. Let us call the partitions

( / A , ) ' , (fiu fi2)',... , ( M i , . . . , fis)' = A

the factors of k. The factor argument is that, if (5.16) holds for a factor p of X, then it
holds for X itself. This is an obvious result when we take (5.18) into account, for, by
(2.7), Ap(zu Zi,...) is a factor of Ax(zu z2, • • • )•

Consider now a general partition X. Since X ^ (1"), we have fi2 > 0. Suppose
first that fi2 > 2. Let p = (fiu M2)'- By (5.3) and (5.4), ap(q) — 0 when q2 £ 1. By
the factor argument (5.16) holds for X.

This leaves the case fi2 = I. Here, A = ( / + l , l m ) , where, since X is general,
l,m > 2. We shall use the symmetrical notation (/ + 1, lm) = [l,m], so that
[/, m]' = [m, I].

Suppose next that m = 2. Then (312) = [2, 2] is a factor of X. By Lemma 5.2,
= 0 when q2 ^ 1. By the factor argument, (5.16) holds for X.
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Consider finally the general case m > 2. By what we have just proved, (5.16) holds
for [m, 2]. It therefore holds for [2, m] = [m, 2]' by the conjugacy argument. But
[2, m] is a factor of k = [I, m], so that (5.16) holds for X. by the factor argument. •
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