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Abstract

We show that complete uniform visibility manifolds of finite volume with sectional curvature −1 ≤ K ≤ 0
have positive simplicial volume. This implies that their minimal volume is nonzero.
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1. Introduction

The minimal volume of a smooth manifold M is defined as the lower bound of the
total volumes of all complete Riemannian metrics on M whose sectional curvatures are
bounded in absolute terms by one. Gromov [8] introduced the notion of the minimal
volume and proved that the minimal volume is bounded from below by the simplicial
volume, which is a type of topological invariant. In the same paper, the question
was naturally raised as to which manifolds have nonzero simplicial volume. Gromov
conjectured that nonpositively curved closed manifolds with negative Ricci curvature
have positive simplicial volume.

First, it was verified by Gromov [8] and Thurston [17] that complete Riemannian
manifolds of finite volume with pinched negative sectional curvature have positive
simplicial volume. Subsequently, research has focused on the simplicial volume of
locally symmetric spaces of noncompact type, in an effort to explore the simplicial
volume of Riemannian manifolds with nonpositive sectional curvature. It was
proved by Lafont and Schmidt [11] that the simplicial volume of closed locally
symmetric spaces of noncompact type is positive. Also, closed visibility manifolds
with nonpositive sectional curvature, another type of manifold in the category of
nonpositively curved manifolds, have positive simplicial volume [3].
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Unlike the closed manifolds discussed above, the simplicial volume of noncompact
Riemannian manifolds of finite volume is somewhat odd. For locally symmetric spaces
of noncompact type, Löh and Sauer [13] show that the simplicial volume of locally
symmetric spaces with Q-rank of at least 3 vanishes. On the other hand, it was verified
that Q-rank 1 locally symmetric spaces covered by the product of R-rank 1 symmetric
spaces have positive simplicial volume [10, 14]. The other Q-rank 2 case remains
open.

In the case of noncompact visibility manifolds of finite volume, little is known
about their simplicial volume and minimal volume. The aim of this paper is to verify
the positivity of the simplicial volume of noncompact uniform visibility manifolds
with finite volume.

T 1.1. Let M be a complete uniform visibility manifold of finite volume with
sectional curvature −1 ≤ KM ≤ 0. Then, the simplicial volume of M is strictly positive.

Let dim M = n. The curvature condition −1 ≤ KM ≤ 0 gives a lower bound on the
Ricci curvature of M, that is, RicciM ≥ −(n − 1). This guarantees the estimate of the
minimal volume of M given by Gromov [8], as follows:

‖M‖ ≤ (n − 1)nn! ·Minvol(M).

Hence, we immediately obtain the following corollary.

C 1.2. The minimal volume of complete uniform visibility manifolds of finite
volume with sectional curvature −1 ≤ K ≤ 0 is positive.

Visibility manifolds were introduced by Eberlein and O’Neill [6] as a generalization
of strictly negative sectional curvature. Eberlein [5] shows that if M is a complete
uniform visibility manifold of finite volume with sectional curvature 1 ≤ KM ≤ 0,
then M is tame, that is, M is the interior of some compact manifold with boundary.
Visibility manifolds are closely related to Gromov-hyperbolic spaces. Indeed, it
turns out that the notion of uniform visibility is equivalent to the notion of Gromov-
hyperbolicity. Recent works on relatively hyperbolic groups allow us to explore the
simplicial volume of noncompact uniform visibility manifolds.

2. Visibility manifold and hyperbolic space

The notion of visibility can be generalized to CAT(0) spaces. Eberlein and
O’Neill [6] first introduced the notion of visibility for Hadamard manifolds. Here,
we recall the notion of visibility for CAT(0) spaces in [2]. Let X be a CAT(0) space.
For x, y, p ∈ X, let [x, y] denote the unique geodesic segment from x to y in X and xp̂y
be the angle between [p, x] and [p, y] at p.

D 2.1. A CAT(0) space X is said to be locally visible if for every p ∈ X and
ε > 0, there exists R(p, ε) ≥ 0 such that if a geodesic segment [x, y] lies entirely outside
the ball of radius R(p, ε) about p, then xp̂y < ε. Moreover, X is said to be uniformly
visible if the constant R(p, ε) can be chosen independently of p ∈ X.
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A Riemannian manifold M is said to be a visibility manifold if its universal cover is
locally visible. Also, M is said to be a uniform visibility manifold if its universal cover
is uniformly visible. It is well known that complete, simply connected Riemannian
manifolds with strictly negative sectional curvature are uniformly visible.

T 2.2 (Eberlein [5]). Let X be a visibility manifold satisfying the curvature
condition −b ≤ K ≤ 0. If Γ is any nonuniform lattice in X, then M = Γ \ X has
only finitely many ends, and each end is a parabolic, Riemannian collared end. In
particular, Γ is finitely generated.

Theorem 2.2 specifies that a noncompact, complete visibility manifold M of finite
volume with sectional curvature −1 ≤ KM ≤ 0 is tame. At this point, we recall the
notion of Gromov-hyperbolic space.

D 2.3. Given δ > 0, a geodesic metric space X is said to be δ-hyperbolic if for
every geodesic triangle ∆ ⊂ X, each edge of ∆ is contained in the δ-neighborhood of
the union of the other two sides. X is said to be hyperbolic if it is δ-hyperbolic for
some δ > 0.

The original ideas about the notions of visibility and hyperbolicity came from
strictly negative sectional curvature. It turns out that the notion of uniform visibility is
equivalent to the notion of hyperbolicity under the assumption of nonpositive sectional
curvature.

P 2.4 (Bridson [2]). Let X be a CAT(0) space.
• X is hyperbolic if and only if X is uniformly visible.
• If X is cocompact and locally visible, then it is uniformly visible (and hence

hyperbolic).

Proposition 2.4 clearly shows that the fundamental group of closed visibility
manifolds is a hyperbolic group. This implies that the simplicial volume of closed
visibility manifolds is positive.

3. Complete uniform visibility manifolds

The notion of a relatively hyperbolic group was formulated by Gromov [9].
Indeed, fundamental groups of noncompact, complete, finite volume Riemannian
manifolds with pinched negative sectional curvature are the motivating examples
for formulating relatively hyperbolic groups. Bowditch [1] gives two definitions of
relatively hyperbolic groups, which are equivalent to the definition given in [9]. Here,
we recall one of them.

D 3.1. Let Γ be a group and P be a set of infinite subgroups. Then, Γ is
hyperbolic relative to P if Γ admits a properly discontinuous isometric action on a
path-metric space X with the following properties.
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(1) X is proper and hyperbolic.
(2) Every point of the boundary of X is either a conical limit point or a bounded

parabolic point.
(3) The elements of P are precisely the maximal parabolic subgroups of Γ.
(4) Every element of P is finitely generated.

Let M be a noncompact, complete, finite volume Riemannian manifold with
pinched negative sectional curvature. Let Γ be the fundamental group of M, and let P
be the set of all maximal parabolic subgroups of Γ. In this case, Farb [7] shows that Γ

is hyperbolic relative to P. As the fundamental group of a closed visibility manifold
is hyperbolic, we observe that the fundamental groups of noncompact, complete
uniform visibility manifolds of finite volume with sectional curvature −1 ≤ KM ≤ 0
are hyperbolic relative to the set of all maximal parabolic subgroups, as follows.

P 3.2. Let M be a complete uniform visibility manifold of finite volume with
sectional curvature −1 ≤ KM ≤ 0. Then, Γ is hyperbolic relative to P, where Γ is the
fundamental group of M and P is the set of all maximal parabolic subgroups of Γ.

P. Let X be the universal cover of M. Because M is a uniform visibility manifold,
X is uniformly visible and hence hyperbolic. If M is closed, the Cayley graph of Γ is
quasi-isometric to X. Thus, Γ is hyperbolic relative to P = ∅, that is, hyperbolic.

At this stage, we suppose that M is not closed. According to Theorem 2.2,
M has only finitely many ends with each end being a parabolic, Riemannian
collared end. More precisely, there exists a neighborhood UE of E, a compact C2

codimension 1 submanifold NE of M for each end E of M and a C1-diffeomorphism
F : NE × (0,∞)→ UE such that the curves t→ F(n, t), n ∈ NE , are unit speed distance
minimizing geodesics of M that intersect each hypersurface F(NE × {s}) orthogonally.
Indeed, NE is the projection of an invariant horosphere in X at a point p ∈ ∂X fixed
by a maximal parabolic subgroup of Γ, and UE is the projection of the corresponding
open horoball in X. Hence, M is the interior of a compact manifold with boundary.

The tameness of M implies that Γ is finitely generated and that this is also true for
each maximal parabolic subgroup of Γ. Clearly, Γ acts properly discontinuously on
X. Furthermore, it is clear that conditions (1), (3) and (4) are satisfied. Now, we only
need to show condition (2); that is, every point of the boundary of X is either a conical
limit point or a bounded parabolic point.

Let ∂X denote the boundary of X and p ∈ ∂X be a parabolic point associated with a
maximal parabolic subgroup P of Γ. Then, (∂X − {p})/P is homeomorphic to NE , as
above, for some end E of M. Because NE is compact, p is a bounded parabolic point
according to this definition. Thus, every parabolic point is a bounded parabolic point.

Let Π be the set of all bounded parabolic points in ∂X with respect to Γ. It is
clear that Π is Γ-invariant. Moreover, Π/Γ is finite because M has finitely many ends.
According to [1, Proposition 6.11], there exists an invariant system B of horoballs,
that is, a collection, (B(p))p∈Π, indexed by Π, such that B(p) is a horoball about p and
B(γp) = γB(p) for all γ ∈ Γ and all p ∈ Π. In this case, we have a closed Γ-invariant
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subset
Y(B) = X −

⋃
p∈Π

int B(p).

The closed subset Γ \ Y(B) is a compact manifold with boundary NE . According
to [1, Proposition 6.14], it can be concluded that every point of ∂X/Π is a conical limit
point. We refer the reader to [1, Section 6] for a more detailed explanation of this.
Hence, every point of ∂X is either a conical limit point or a bounded parabolic point,
which implies that Γ is hyperbolic relative to P. �

If −b ≤ KM ≤ −a < 0, every maximal parabolic subgroup of Γ is virtually nilpotent
according to the Margulis lemma. This does not hold for general uniform visibility
manifolds with nonpositive sectional curvature. However, we observe that every
maximal parabolic subgroup of Γ is virtually nilpotent for a nonuniform lattice Γ in
a uniform visibility space X.

P 3.3. Let Γ be the fundamental group of a noncompact, complete uniform
visibility manifold M of finite volume with sectional curvature −1 ≤ KM ≤ 0. Then,
every maximal parabolic subgroup of Γ is virtually nilpotent.

P. Let X be the universal cover of M. Let P be the set of all maximal parabolic
subgroups of Γ. Then, Γ is hyperbolic relative to P, as shown in Proposition 3.2.
Dahmani and Yaman [4] prove that every element of P is virtually nilpotent if and
only if X is geometrically bounded. Recall that a space X is geometrically bounded if
there exists a function f : R+→ R+ such that for all R > 0, every ball of radius R can
be covered by f (R) balls of radius 1 and every ball of radius 1 can be covered by f (R)
balls of radius 1/R.

Now, we claim that X is geometrically bounded due to the sectional curvature
condition of −1 ≤ KX ≤ 0. Let dim X = n. Let Bκ(R) be the geodesic ball of radius
R in the complete, simply connected Riemannian model space of constant curvature
κ. It follows from the comparison of the volumes of geodesic balls given by Bishop–
Günther–Cheeger–Gromov that for every p ∈ X, we have the inequality

Vol(B0(R)) ≤ Vol(Bp(R)) ≤ Vol(B−1(R)),

where Bp(R) is the geodesic ball of radius R centered at p. Let V be a finite set of
points in Bp(R) such that:
• any point ofV lies at distance at least 1/2 from the boundary of Bp(R);
• any two points ofV lie at a distance at least 1 from each other; and
• for all x ∈ Bp(R), there exists y ∈ V so that the distance from x to y is less than 1.
A setV is obtained by successively marking points in X at pairwise distances greater
or equal than 1, until there is no more room for such points. Then, it becomes clear that
{Bx(1)}x∈V is a covering of Bp(R) and that {Bx(1/2)}x∈V is the set of pairwise disjoint
balls totally contained in Bp(R). Hence, we have the inequality

|V| · Vol(B0(1/2)) ≤
∑
x∈V

Vol(Bx(1/2)) ≤ Vol(Bp(R)) ≤ Vol(B−1(R)).
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Let f1(R) be the nearest integer to Vol(B−1(R))/Vol(B0(1/2)). Then, every ball of
radius R in X can be covered by f1(R) balls of radius 1. By a similar argument, every
ball of radius 1 in X can be covered by f2(R) balls of radius 1/R, where f2(R) is the
nearest integer to Vol(B−1(1))/Vol(B0(1/2R)). Define f : R+→ R+ by

f (R) = max{ f1(R), f2(R)}.

Then, we can conclude that X is geometrically bounded. This completes the proof. �

L 3.4. Let M be a complete uniform visibility manifold of finite volume with
sectional curvature −1 ≤ KM ≤ 0. Then, the simplicial volume of M is finite.

P. If M is closed, this is clear. Suppose that M is noncompact. Then, M is the
interior of a compact manifold V with boundary. According to Proposition 3.3,
the fundamental group of ∂V is virtually nilpotent and hence amenable. Note that the
bounded cohomology of an amenable group vanishes. Due to the duality between
the `1-homology and the bounded cohomology in [12, Corollary 5.1], the `1-homology
of ∂V also vanishes. This means that the fundamental class of ∂V vanishes in the
`1-homology of ∂V . According to the finiteness of the criterion in [12, Theorem 6.4],
the simplicial volume of M is finite. �

R. The sectional curvature condition −1 ≤ K ≤ 0 in Lemma 3.4 is essential.
Here is a counterexample. Let M be a closed hyperbolic n-manifold and N be a
totally geodesic, embedded, codimension 1 closed submanifold of M. Delete the ε-
tubular neighborhood U of N for a sufficiently small ε > 0. Let W be a component of
M − U. Then, W admits a complete metric of finite volume with sectional curvature
KW ≤ −1 [16].

It follows from the sectional curvature condition KW ≤ −1 that W is a complete
uniform visibility manifold of finite volume. Furthermore, W is tame. However,
a component of W is homeomorphic to the closed hyperbolic manifold N. As the
simplicial volume of N is strictly positive, it is impossible for the fundamental class of
N to vanish in the `1-homology of N. Hence, the simplicial volume of W is not finite.
We refer the reader to [16] for more details about the construction of W.

4. Simplicial volume and minimal volume

We now prove that complete uniform visibility manifolds of finite volume with
sectional curvature −1 ≤ K ≤ 0 have positive simplicial volume and therefore their
minimal volume is nonzero.

4.1. Relative hyperbolicity and bounded cohomology. First, we need to look at
the definition of relative hyperbolicity as given by Mineyev and Yaman in order to use
their result on the bounded cohomology of relatively hyperbolic groups. In fact, they
slightly generalize Bowditch’s combinatorial formulation of relative hyperbolicity, as
follows.
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D 4.1. Let Γ be a group and P = {Γi | i ∈ I} be a family of its subgroups. Γ is
called relatively hyperbolic with respect to P if there exists a graphK on which Γ acts
such that the following conditions are satisfied.
• Γ is finitely generated.
• I is finite and each Γi is finitely generated.
• K is fine and has thin triangles.
• There are finitely many orbits of edges and each edge stabilizer is finite.
• There exists a Γ-invariant subset V′ such that V∞ ⊂V′ ⊂V and the stabilizers

of vertices inV′ are precisely Γi and their conjugates.

Definition 4.1 allows the elements of P to be finite as well as infinite. In contrast,
Definition 3.1 only allows the elements of P to be infinite. Note that the family P
of subgroups is the set of all maximal parabolic subgroups in Definition 3.1, but in
Definition 4.1, P should be thought of as the set of conjugacy classes of maximal
parabolic subgroups. Clearly, Definition 3.1 implies Definition 4.1.

L 4.2. Let V be a compact manifold with boundary whose interior is
homeomorphic to a complete uniform visibility manifold of finite volume with
nonpositive sectional curvature bounded from below. Then,

Hk
b(V, ∂V)→ Hk(V, ∂V)

is surjective for all k ≥ 2.

P. Let M be a complete uniform visibility manifold of finite volume with sectional
curvature bounded from below that is homeomorphic to the interior of V . We can
assume sectional curvature −1 ≤ KM ≤ 0 by scaling the metric on M. Let Γ be the
fundamental group of M and let P be the set of all maximal parabolic subgroups of Γ.

As shown in Proposition 3.2, Γ is hyperbolic relative to P. There are finitely
many conjugacy classes of maximal parabolic subgroups of Γ, as M has finitely
many parabolic, Riemannian collared ends. Let [P1], . . . , [Pl] denote the conjugacy
classes of P, where P1, . . . , Pl are the maximal parabolic subgroups in P. We set
P = {Pi | i = 1, . . . , l} with a slight abuse of notation. Then, the pair (Γ, P) is also
hyperbolic in the sense of Mineyev and Yaman. It follows from [15, Theorem 59] that
the relative comparison map

c : Hk
b(Γ, P)→ Hk(Γ, P)

is surjective for all k ≥ 2.
Each end of M is associated with a conjugacy class of the maximal parabolic

subgroups of Γ. Let Ei denote the end of M associated with Pi for each i = 1, . . . , l.
Then, there exists an open horoball Hi in X such that Ui = Pi \ Hi is a neighborhood
of Ei which is diffeomorphic to Ni × (0,∞) for each i = 1, . . . , l, where Ni is the
projection of a horosphere in Hi fixed by Pi. Moreover, Ui are pairwise disjoint
subspaces of M.
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Note that M is a classifying space of Γ because X is contractible. Also, every
horoball in X is contractible; hence, Ui is a classifying space of Pi. Let U =

⋃l
i=1 Ui.

Then, (M, U) is a classifying space for (Γ, P) in the sense of [15, Section 9.1].
This implies that the comparison map Hk

b(M, U)→ Hk(M, U) is identical to the map
Hk

b(Γ, P)→ Hk(Γ, P) for all k ≥ 0. Given that U is the collared neighborhood of ∂V
in V , it is clear that (M, U) and (V, ∂V) are homotopy equivalent. Finally, we can
conclude that the comparison map Hk

b(V, ∂V)→ Hk(V, ∂V) is identical to the map
Hk

b(Γ, P)→ Hk(Γ, P) for all k ≥ 0 and is hence surjective for all k ≥ 2. �

4.2. Simplicial volume. Let X be any topological space and Y be a subset of X.
The `1-norm in the real singular chain complex C∗(X) is defined by ‖c‖1 =

∑
|ai| for

c =
∑

aiσi in C∗(X). Then the simplicial `1-norm of a relative chain in the relative
singular chain complex C∗(X, Y) is given by the infimum of the `1-norms of its
representatives. This `1-norm gives rise to a seminorm on the homology H∗(X, Y),
as follows:

‖α‖1 = inf ‖z‖1,

where z runs over all singular cycles representing α ∈ H∗(X, Y).
For a compact manifold M, the simplicial volume ‖M, ∂M‖ of M is defined as the

seminorm of the relative fundamental class [M, ∂M] of M. If ∂M = ∅, the simplicial
volume of M is denoted by ‖M‖.

If M is an n-dimensional noncompact manifold, its fundamental class is well
defined in the locally finite homology Hlf

∗ (M) of M with trivial coefficients. The locally
finite homology Hlf

∗ (M) of M is defined as the homology of the locally finite chain
complex Clf

∗ (M). More precisely, let S k(M) be the set of singular k-simplices of M and
let S lf

k (M) denote the set of all locally finite subsets of S k(M); that is, if A ∈ S lf
k (M),

any compact subset of M intersects the image of only finitely many elements of A. The
locally finite chain complex Clf

∗ (M) is then defined by

Clf
∗ (M) =

∑
σ∈A

aσ · σ
∣∣∣∣∣ A ∈ S lf

∗ (X) and aσ ∈ R

 .
Similarly to the way the `1-seminorm on H∗(M) is induced, the `1-seminorm on

Hlf
∗ (M) is induced from the `1-norm on the locally finite chain complex Clf

∗ (M) with
respect to the basis given by all singular simplices. Because Hlf

n (M, Z) � Z, the
fundamental class of M is well defined in Hlf

n (M) � R. The simplicial volume of M is
defined as the `1-seminorm of the locally finite fundamental class of M. In particular,
if M is the interior of a compact manifold V , then we have the inequality

‖V, ∂V‖ ≤ ‖M‖.

This can be shown by the cohomological definition of the simplicial volume. For more
details, the reader is referred to [8].

T 4.3. Let M be a complete uniform visibility manifold of finite volume with
sectional curvature −1 ≤ KM ≤ 0. Then the simplicial volume of M is strictly positive.
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P. Let V be a compact manifold with boundary whose interior is homeomorphic
to M. Then, the relative simplicial volume of V can be computed in terms of the
bounded cohomology of (V, ∂V) as follows:

‖V, ∂V‖ = sup
{

1
‖ω‖∞

∣∣∣∣∣ ω ∈ Hn
b(V, ∂V) and 〈ω, [V, ∂V]〉 = 1

}
,

where [V, ∂V] is the relative fundamental class of V . Here, sup ∅ = 0.
The existence of a bounded cohomology class ω satisfying 〈ω, [V, ∂V]〉 = 1 implies

the positivity of the simplicial volume ‖V, ∂V‖. It is a standard fact that there
exists a dual cohomology class [V, ∂V]∗ in Hn(V, ∂V) satisfying 〈[V, ∂V]∗, [V, ∂V]〉 = 1.
According to Lemma 4.2, there exists a bounded cohomology class [V, ∂V]∗b in
Hn

b(V, ∂V) representing [V, ∂V]∗. One can easily check that 〈[V, ∂V]∗b, [V, ∂V]〉 = 1.
Therefore, the simplicial volume ‖V, ∂V‖ is positive. From the inequality

0 < ‖V, ∂V‖ ≤ ‖M‖,

it follows that ‖M‖ is strictly positive. �

For an n-dimensional smooth manifold M with RicciM ≥ −(n − 1), Gromov proves
that

‖M‖ ≤ (n − 1)nn! ·Minvol(M).

Observe that a bound from below for sectional curvature, KM ≥ −1, implies
RicciM ≥ −(n − 1). Hence, the following corollary is obtained immediately.

C 4.4. The minimal volume of complete uniform visibility manifolds of finite
volume with sectional curvature −1 ≤ KM ≤ 0 is positive.
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