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On Series for calculating Euler's Constant and the
Constant in Stirling's Theorem.

By Professor K. J. SANJANA.

(Received September 1909. Bead l^th January 1910.)

1. Let yn denote the value of

(1) l + £ + £... + l /n-logn

where n is a definite integer; and let y denote the limit of

(2) 1+£ + £...+l/M + l / (n+l) . . . + l/(w+*)-log(n + A),
when the integer k is indefinitely increased. It is known* that
the expansion of yn - y in ascending powers of 1/re is

( ) 2n 2na 4n4 6n«+""'

where B,, B3, Be... are the numbers of Bernoulli. The series (3) is,
however, divergent, as B2r+i not only increases indefinitely with r,
but bearsf an infinite ratio to B5r_! in this case. It is proposed to
find by elementary methods the expansion of yn - y up to the term
in nr and to estimate the error (of order l/nr+1) made in omitting
further terms of series (3). I shall take the case of r — 9, but the
process is quite general.

2. From (2) we obtain 1 - yn+t

= log(» + A) - \ - | . . . - 1/n... - l/(n + *)
= (Iog2 - logl - \K(log3 -Iog2 - ^ K • •

+ (logn - logn - 1 - 1/n) + (logn + 1 - logn - 1/w + 1) +

... + log(n + k) - log(n + k - 1) - l/(n + k).

The first re - 1 brackets amount to 1 - y.; hence

/, n 1 \ / n +1 1

y. - r « - - (log^f + ̂ r f J - (log^T2 + ^
n + A - 1 1

* Boole, Finite Diff. Ch. V. (Euler-Maolaurin Formula); Todhunter,
Integral Cole. Ch. XII.

t Chrystal, Algebra, Ch. XXX.
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The logarithms on the right side can all be expanded in con-
vergent series, as l/(n+ 1), l/(n + 2), ...l/(n + k) are each less than
unity; so that

1 1 1
7. >-+»- + +

1 1 I

1 1 1
+ 2(n + kf + 3(n + kf + 4(n + k)* +'"'

This doubly infinite series is convergent either way; the
columns, therefore, can be written as rows. Hence, making k
infinite,
(4) y.-y

where <r = 2<J,(n+p)~r. We proceed to expand <2, /» ...in powers
of l/».

3. Let <j> (m, d, k) denote the reciprocal of

then <£(»»-»•, 1, 2r+ 1) - <j>(rn-r+ 1, 1, 2r-l).<£(m, 0, 2)

= ̂ .^m-r, 1, 2 r + l ) . # « , 0 , 2).

Change m t o n + 1 and transpose; we get

(5) <Kn-r + 2, 1, 2 r - 1 ) . <^(n+l, 0, 2)

= ^ ( n - r + l , l , 2 r + l ) - r s ^ ( n - r + l , l , 2r + l ) .^ . (n+l ,0 , 2).

Putting r = l , 2, 3, ..., we have

4>(n + 1, 0, 3) = <£(«, 1, 3) - P . <Kn, 1, 3) , 0(« +1, 0, 2),

1, 3 ) ^ + 1,0, 2) = «#»(n- l , l , 5 ) -2 2 . ^ (n - 1,1, 5).<^(n+1, 0, 2),

and so on. Hence, by continued substitution,

(6) # « +1, 0, 3) = *(«, 1, 3) - P<fr(n - 1,1, 5) + (1. 2)>(n - 2, 1, 7)

-(1.2.3)*<Kn-3, 1,9)+....
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We can stop at any point; the last term contains <f>(n + 1, 0, 2) as
factor, and is positive or negative according as its number is odd
or even. Thus we obtain closer and closer relations of inequality,
of which for the present we take the following:

<K« + 1, 0, 3) is ><t>(n, 1, 3)-<£(ra-l, 1, 5) + 4<£(n-2, 1, 7)
-36<£(w-3, 1, 9), but < this expression + 576</>(n-4, 1, 11).

Changing n + 1 to n + 2, ra + 3, ..., and adding up, we get the sum
of <£(n + l, 0, 3), 4>(n + 2, 0, 3), <f>(n + 3, 0, 3), ... to infinity,
i.e., <3, to be*

> Jfln, 1 ,3)- # ( n - 1 , 1 , 4 ) + f*(n - 2, 1, 6) - j * (» - 3, 1, 8)

and < this expression increased by ^^-<f>(n - 4, 1, 10).

To get tw we multiply both sides of (6) by <f>(n + 1, 0, 2) and
apply equation (5) to the terms on the right side in succession; we
thus obtain an equation t like (6), whence similar relations of
inequality can be inferred. Thus >̂(n + l, 0, 5) is found to be
><£(n - 1, 1, 5) - 5</>(n - 2,1, 7) + 49<£(n - 3,1,9) - 820<ftn - 4,1,11),
but < the first three terms of this expression. Hence, as before,
changing n +1 to n + 2, n +3, ... ad. inf., and adding up, we get
t6 to be

>itf»- 1, 1 , 4 ) - 1 ^ - 2 , 1 , 6) + ¥ # » - 3 > 1, 8)-82<ftn-4, 1,10)

but < the first three terms of this expression.
We shall similarly obtain < 7 > ^ ( n - 2 , 1, 6)-|<£(ra-3, 1, 8),

but < this expression + -^-<t>(n - 4, 1, 10); t,>^<f>(n-3, 1,8)
- 3<f>(n - 4, 1, 10), but <l<j>(n - 3,1, 8); and ^K^^n - 4, 1, 10).
We will not consider t1S) tu,..., as these when expanded do not
affect the term in l/»* and the previous terms.

To obtain t.^ put r = \ in equation (5); thus
<Kn + f, 1, 0 ) . * (n+ l , 0, 2), i.e., # n + l, 0, 2) = <£(« + £, 1, 2)
- i<f,(n + i, I, 2). cf>(n+1,0, 2). So also <j>(n+ J, 1, 2). *(n+ 1, 0, 2)
= (£(«-£, 1, 4 ) - f < £ ( « - I, 1, 4).<£(rc+l, 0, 2) ; the last function
= <f,(n - a, 1, 6) - - ^ ( n - f, 1, 6) . <t>(n + 1, 0, 2 ) ; and so on. Hence

# Chrystal, Algebra Ch. XXXI.
t The coefficients on the right side may be thus calculated : write down

those of the right side of (6) ; multiply the first by 21 and subtract from the
second; multiply the result by 32 and subtract from the third; and so on.
Thus from 1, - 1, 4, - 3 6 , 570 we obtain successively 1, - 5 , 49, -820, 21076.
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we have <t>(n + l, 0, 2) = ^(n + J, 1, 2 ) - ^ ( n - £ , 1,
4>(n - f, 1, 6) - £ . £. ^<£(n - 1 , 1, 8) + .... Reasoning exactly as
before, we shall therefore have

l, 1, l )-A+(«-i . 1.3) +T^(» -1 ,1 ,5 ) -
ff!<Mn - f. 1. 7) + -W/<K" - 1. 1. 9) - iWrc'K" - f 1, 11).

but < the first five terms of this expression. Multiply both sides
of the equality given above by <j>(n+ 1, 0, 2) and apply equation
(5); we thus obtain* <4>J<£(ra-|, 1, 3) - £<£(«. - f, 1, 5)
+ a « | ^ ( n - | , 1, 1) - SffiLftn - I, 1, 9), but less than this value
increased by m\H(™ - f, 1, 11).

We can similarly obtain in succession <6>^<£(n-f, 1, 5 ) -
|4(n - f, 1,7) + ̂ <f>(n -1 1, 9) - ifS**(» - f, 1,11), but < the first
three terms; <8>-f<£(n-f, 1, 7 ) - | ^ ( n - £ , 1, 9), but < this
expression + ̂ < « n - f, 1,11); tw>^(n - l \ 9) - ^(n - f, 1,11),
but <Y<#>(n -\, 1, 9). We need not consider tla <i4,...

4. Adding up the results up to that for tn inclusive, we see that
•y. - y is certainly greater than

(7) ^ ( n + J, 1, l) + ̂ ( n , 1, 2) + Jj4>(n-£, 1, 3)

(n - 1, 1, 4) - -4\V*>(n - | , 1, 5) + /¥</,(n - 2, 1, 6)

(«-4. 1. 7)-£f<K«-3, I- 8)-Hf|^(n-l, 1, 9)

4, 1, 10)-^|Il^(n-|, 1, 11).

The functions may now be expanded by the Binomial Theorem ;
all the series will be absolutely convergent for n = 5. But as in
the expansions of the last three, only terms up to n10 or n" have to
be retained, the ratio of convergency for the inequality will be
much greater than 5 ; it will, however, be found in any case not to
be greater than 10. With this restriction we see that the expression
(7) is greater than

J_ _ 1 _ I 1 _ J 1387 1012575
2n " 12«3 + 120n« ~ 252n8 + 240n8 ~ 60re10 " 5632n" '

* The coefficients can again be calculated by a simple rule : write down
thoee of the first equality- 1, - J , +,%, - W , +HM 5 , - ; multiply the
first by f and subtract from the second ; multiply the result by Y- and subtract
from the third ; and so on, Thus we get 1, - 1 ,
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If n>10, the last two terms are numerically less than 42/n10; but
for ws-100, they are less than 25/tii0.

This determines an inferior limit of yn - y : a superior limit can
be similarly found. The first ten terms of the right side of (4) are
found to be less than |<£(n + | , 1, l) + ̂ ( « , 1, 2)

+ A # » - h 1.3) - A # « - 1.1.4) - rifc*(« -1,1.5) + A#n - 2,1,6)
+ ̂ h<f>(n-I, 1, 7) -S+(« " 3> 1. 8) - t*MW» -1 . 1. 9)
+ i | T i ^ ( » - 4 , 1, 1 0 ) + i f | | ^ ( n - | , 1, 11). Expanding till we
get positive terms in nia or n", we see that this sum is less than

_L _L_ 1 1 1 11039 325111
( ' 2^ " 12«2 + 120ra4 ~ 252n6 + 240ra8 T 660n10 + 1536n""

We have still to assign a superior limit to the terms omitted.

1 1

. + :
1 1 1

+ , ~~ST™ ++ 2)12 (ra + 2)13 (n + 2)14'"

1 1 1
+ (« + 3)12 + (n + 3)13 + (n + 3)14'"'

1 1 1
•}• or

and, therefore, a fortiori, the terms omitted are

1 11 ( 1
12(»+ I)10 \ n(n +I)10 \ n(n + 1) + (n + l)(n + 2)

i.e., <r-r— rr^r, or, finally, < . The sum of this quantity
12n(n+l) 12n11

and the last two, terms of (8) is found to be less than 38/n10 for
n^.10, and less than 19/n10 for n^. 100. In the latter case, we
conclude that yB - y lies between

+ and( I
2n 12n2'' 240n8 / n10 \2n 12ns ' 240n

I
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the expression within brackets coinciding with the first five terms
of series (3). The difference between the two values is less than
50/n10, i.e., J(10)~18, and the value of y thus obtained will be true
to seventeen * places of decimals.

5. The constant in Stirling's Theorem, or rather its logarithm,
can be dealt with in the same way. If 8n denote \n . e" 4- n"+', and
8 be the limit of \n + k. e"+*-^(n + &)n+*"H when the integer k is

indefinitely increased, it is known that logS, - logo1 can be expanded
in the following series :—

(9)

Denoting the logarithms by KM A, we have

+ log(n + k) - (n + k + J)log(« + k)
-(n + k- J)log(n + k) + (n + k -

|log3 - |log3 + |log2 - |log2

So also A.n = 1 - {(« - i)logn/(n - 1) - 1}

* As a matter of fact the series up to n8 gives in this oase a value oorrect
to 18 places ; we are, however, able as shown above to prove that the remain-
ing terms of the series can at most affect the 18th place. For the use of the
convergent portion only of series (3), see Boole, Finite Diff. Ch. VIII., and
Bromwich, Infinite Series Ch. XI. The latter has proved the approximation
to three terms of the series by definite integration in Mess, of Math.,
Vol. XXXVI., 6.
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so that

(10) A. - K» - (n + i ) l o g ^ - 1 + (n + f )logj£f - 1.

L

Now it can be proved that
(p + i)log(p + l)/p = - (p + £)log{ 1 - l/(p + 1)}

I 1 \ 1 / I 1 \ !•/I 1 \ 1 /I 1\ !•
+ \S 2-2y(p+l)I + U 2-3AP+

where 6r = l/(r + 1) - l/(2r). Hence from (10), making A infinitely
large, we get

" ~ A =

*. . b, , 64

ad inf.,

which may be written thus:—

(11) X,, - X = 62<8 + b3t3 + bjt +...ad inf.

We now expand the t's as in §§ 3 and 4, and give to the i's their
arithmetical values. Keeping only terms which affect 1/n* and
previous powers, we get for the inferior limit the following
expression:—

A#» + i, 1, 1) + A*(«. 1. 2) + Ttfrf(n-J, 1, 3)
- ^4>(n -1,1,4)- ,flft*(n - 1 , 1, 5) + T |^(n - 2, 1, 6)

«-b 1. 7 ) - T H ^ » - S , 1, 8)-ftfa*(n-fc 1, 9)
(n - 4, 1, 10. On expanding as before, this gives

1 1 1 1 168437 77785
12n ~ 360«3 + 1260w6 ~ 1680w7 ~ 138240n* " 6144n10'

The last two terms are numerically less than 25/1 On8 when
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The first eight terms of the series in (11) are similarly found to
be less than

> 1) + -2T (̂n> 1.2)+ TV^(n - J> 1.3) - ?mT*(w -1 .1 .4 )

which gives
1 1 1 1 10319 121897

12ra ~ 360n3 + 1260n5 ~ 1680JI7 + 5760n9 + 15360«10'
A superior limit of the terms omitted will be found to be 6,0/«*,

i.e., 9/22Ow9. This term and the last two terms above are seen to
be less than 27/10w9 for n^. 10. Thus, for instance, when n is 10,
the value of Xn - A derived from the first four terms of series (9)
will differ from the true value by a quantity less than 52/10n9, or
by about J(10)~8.

6. I conclude by obtaining algebraically other series for y and
establishing analogous series for A.

From (2) we have

y.+* = (1 - Iog2) + (i - log3/2) + (I - log4/3) + ...

Now l_io g ( 1 +^=_l___L + _i_...
. I l l
hence yn+t = - - - + - - ...

_ 1 1 _ 1
+ 2 . 22 ~ 3 . 22 + 4 . 24 ~ '" "

1 1 1 1
+ 2(n + A ; - l ) 2 " 3(n + k- 1)3 + A(n + k - I ) 4 ' " + n + k~

Making k infinite we get

K 1 ^ -gi+ ~ad inf) --JO + " ^ + 3? ad inf.)

Y* + Yi'"adin^ ad inf.

, 1 1where «r=l +-^+-5;+ ad inf.
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In (4) make n = 1; then, as y1 = 1,
l - r = i ( S 2 - l ) + ^ , - l ) + i ( g 4 - l ) (B).

I t can be shown that T~o + o~~o + o~I ad inf.
1.2 2 .3 O.4

i.e., unity = ( s 2 - l ) + («,-1) + («<_1) + (a);
hence from (B),

Supposing n to be very large and taking terms up to 8M in (A) and
(B), we find on addition that unity is the limit of

1 1 1 1 1 1 1

hence ss - 1 + %(st - 1) + -J(«, - 1)... +-£•(*&• - 1) is the limit of

-H ^+- - -+s~ + ̂  r, when n becomes infinitely large.
« + l n + 2 2n 2 « + l ' 6

This limit can be shown to be Iog2, so that

Iog2=f(*2-l)+f(*4-l) + f(»6-l) (6).

Hence by help of (B) we obtain

2-2 7 - log2 = f(S 3-l) + l ( g B- l ) + | ( S 7 - l ) (D).

Again Iog2 yn+k

= log(2n + 2k) - (1 +$ +• i... + 1-rn+I)

2n + 2k-l 12n + 2k 1 /
~ g2w + 2A-l ~n + k + \ g

- + (log#-J) +

But log{ 1 + 1/(2^)} - log{ 1 - l/(2p)} - l/p

adin/.(c);

and the limit of the first terms on the right side is really
zero when k is infinite. Therefore, we deduce
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2 2 2
I o g 2 - y = _ + _ + _ + ad

2 2 2
+ 3 . 4 3 + 5 . 4 s + 7 .4 7 +

2 2 2
+

= 37^ + 572*+772»+ W'

Also, from (c), Iog3 - 1 = 1/3 . 22+1/5 . 24+1/7 . 2" + ;
so that Iog2 - y - Iog3 + 1, or, 1 - logf - y

~ 3 . 22 5 . 24 7 . 2" * ^ ''

Euler employed the formulse (B), (E), (F) in calculating * y and
Legendre the formula (D). They can be obtained * from the well-
known series for logF(l +x),

i ,, nr „ 1+x ,
and ilog-: ilog- + crx - Cjar- c^r- ....

Biaxir I — x

7. In (10) make n = 1; then, as A, = 1,

1 - * « « « , - l ) + 6,(<,-l) + »4<«4-l) + (B,).

In §5 expand (p + £){log(p + 1)/JB} in the form

and proceed as before; we thus obtain

1 - A = &A-63«5 + &4S«-&»s»+ (A,).
From (B,) and (a) -

A-( l -* , ) (« . -1) + (1-&»)(•.-1) + (1-**)(•.-1) (C,).
From (d) we get

| l o g 2 - l = 6 2 - 6 s + 64-6s+ ad inf. ;

* See Ency. Brit. ed. IX., s.v. Infinitesimal Calculus (B. Williamson);
also Mess, of Math., Vol. I. (G. W. L. GUisher).
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and from (A,) and (B,)

2b3s3 + 2bsgs + ... = b2 + b3 + bt + 65...

Thus 2bs(s3 - 1) + 266(«5 - 1) + 267(a- - 1 ) . . .

Combining with (B,), we obtain 2 - 2A - |log2 + 1,
i.e., 3 - |log2 - 2A = 2b2(s2- 1) + 264(«4 - 1) + 266(*6 - 1) (D,).

Substituting here the numerical values of the 6's, we find the
right side

Hence and from (6),

3-log2-2A = ! (« , - l ) + f(»4-l) + f (« 6 - l )+ (IV).

From (BO 1 - A.

'+~r+~ -)'
therefore

- l ) + (D3).

By Wallis's Theorem (TT/2)1 is the limit* where m is made
infinitely large of

2.4...2m J (2TO+ 1) . .

a B ( i , + i ) ' ••*• of

Now in this case ex is the limit of jm. e™ -Mn'H Thus (JT/2)HS

the limit of 22m.m»»+1.eK+1-i-(2m+ l ) ^ 1 , or of ( ' - ^ — ^ ^ l
v ' \2»»+W

Now the limit of »»/(2m+l) is J ; that of {2m-r-(2w + I)}2™ is

«-'. Thus v/(7r/2) = ex/2, or A = £log2 + Jloga-.

* Chrystal, Algebra, Ch. XXX.
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Therefore A. - Iog2 = log ^/(TT/2)

= log{lt. of 2.4...2mx/(2m+l)-=-3.5...(2m+l)}
= Jit. of {(21og2 - logl - Iog3) + (21og4 - Iog3 - Iog5)
+ (21og6 - Iog5 - Iog7)... + 21og2w - log(2m - 1) - log(2m +1)}

1 1 _L_ J_ _J_ _J_
I l l

Hence we get X - l o g 2 - ^ + ̂ j + ̂ + (B,).

Also Iog2 - ilog3, or J(21og2 - logl - Iog3)
1 1

~ 2 . 2 « ' r 4 . 2 4 ' r 6 . 2 6

so that

+ "" ;

The equalities (D,), (E,), (F,), (Bj) are closely analogous to
(D), (E), (F), (B), and may be employed in calculating A. or in
fact logjr. They can be obtained from the well-known * results—

x) = Ox + \s

logr<l +*) = i log-^- - J log^f + (1 - C)x -

* Eney. Brit., loc. cit.
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