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1. It is well known that the number of normalized irreducible polynomials 
of degree m in a single indeterminate, with coefficients in GF(g), is given by 

(1.1) Mm) = ± £ MW<ZS, 
"l rs=m 

where /x(r) is the Môbius function. It follows from (1) that 

(12) i £ i O ) ~ ~ t f m (w->co) 
m 

for fixed q. When the number of irreducibles exceeds 1 the situation is different. 
In the first place no explicit formula for the number of irreducible polynomials 
is available. Secondly "almost all" polynomials are irreducible. If fk(m) 
denotes the total number of normalized polynomials in k indeterminates and 
ypnim) the number of normalized irreducibles, then the writer has proved (1) 
that 
(1.3) ^k(m)~f}c(m) ( & > l , r a - * o o ) . 

More precisely we have 

(1.4) Mm) = (q - I ) " 1 exp5 (
m + * ) + o{exp4 (

W + \ ~ X ) } , 

where 
(1.5) expQ a = qa 

( fît \ 
and I , ) is a binomial coefficient. 

I t may be of interest to consider the following more refined classification 
of irreducible polynomials. For simplicity we confine ourselves to the case of 
two indeterminates. We assume that the polynomials in x, y have been normal­
ized by selecting one polynomial from each equivalence class with respect to 
multiplication by non-zero numbers of GF(g). By the degree of a polynomial 
A (x, y) will be understood the pair (m, n), where m is the degree in x and n 
the degree in y. 

Now let /(m, n) denote the number of normalized polynomials in x j 
and let \f/(mf n) denote the number of normalized irreducible polynomials in 
x, y. Then we show that, for fixed m, 
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more precisely, we have 

(1.7) \f/(rn, n) = (1 — g~m)/(w, ») + 0(ragmn), 

where the constant in the 0-term depends on q and m. 

2. We first prove the following formula : 

m n 

(2.1) w/(w, n ) = J ] E r«(f» *)/(m - r,n- s), 

where 

(2.2) g(r,*) = E 7 ^ . ? ) . 
il(r.*)J V J / 

Put 

(2.3) F(m,n) = n ^ ( ^ y ) , 

where the product extends over all normalized polynomials of degree (w, n); 
also put 

(2.4) 0(m,w) = XT i^(x, 3/), 

where now the product is restricted to the normalized irreducible polynomials 
of degree (ra, n). If A is an arbitrary polynomial of degree (m, w) and P an 
irreducible of degree (r, 5) we may put 

A = PeB (P \B). 

Let $(j,k\ P) denote the number of normalized polynomials of degree (J, k) 
that are not divisible by P. Then it follows from (2.3) that 

( 2 . 5 ) F(m,n) = U p « * 0 * - e r . * - « ; P \ 
e,P 

where the product is over all e, r, s and all irreducibles P of degree (r,s) such 
that er < m, es < n. Moreover, it is evident from the definition of $(ra, n\ P) 
that 

$(ra, n\ P) = f(m, n) — f(m — r,n — s) 

provided m > r, n > s\ otherwise 

$(tn,n;P) =f(m,n). 

Thus (2.5) becomes 
m n   

(2.6) F(m, ») = n n n i". r=0 s=0 P 

https://doi.org/10.4153/CJM-1965-025-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-025-1


I R R E D U C I B L E POLYNOMIALS 263 

where 

w = ^ e<t>{m — er,n — es\ P) 
e 

= {f(m, n) — f(m — r, n — s)} + 2{/(w — r,n — s) — f(m — 2r,n — 2s)} 

+ . . . + kf(m — kr,n — ks), 

where k is the largest integer such that kr < m, ks < n. Thus 

(2.7) w = X) /(w ~ >, » - » , 

so that (2.6) becomes 

m n 

(2.8) /?(«, ») = [I II 0(r, *))*, 
7-=0 5 = 0 

with w defined by (2.7) and 0(r, 5) by (2.4). 
Clearly the degree in x of ,F(m, w) is equal to ra/(ra, w) while the degree in 

x of 0(r, 5) is equal to r\[/(r, s). Hence (2.8) yields 

m n k 

mf(m, n) = X) X ^ 0 , *) X) /(w - > > n ~ Js) 
r=0 s=0 j=l 

= Z "£, f(m-u,n-v) S 7 A 7 »;.) 
w=0 ©=0 il(tt,») J \ J J / 

m w 

= ^ ^ w/(w — u,n — v) g(u) v), 
u=0 v=0 

where g(r, s) is defined by (2.2). This completes the proof of (2.1). 

Since 

/ (w, n) = / (» , m), ^(w, ») = ^(w, w), g(m, «) = g(n, m), 

the companion formula 
m n 

nf(m, n) = X X) ^ 0 » *)/(*» - r, » - s) 

contains nothing new. 
The following heuristic proof of (2.1) may be of interest. Put 

(2.9) Z(u,v) = X f(tn,n)uMv\ 
m,n=0 

Then we have 

T+S>0 

so that 
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« u
jrvjs 

log Z(u,v) = J2 fir,*) 12 —J-
r+s>0 j=l J 

i+w>0 j\(m,n) J \J J / 

u v g{m, n). 
m+n>0 

Differentiating with respect to w, we get 

12 mf(m}n)umvn = 12 f(rn,n)umvn 12 rurvsg(r,s). 
m,n m,n r,s 

Equating coefficients we get (2.1). 
Unfortunately the series in (2.9) converges only for x = y = 0. 

3. It is clear from the definition that 

(3.1) (q - l) /(w, n) = gW-w+D - qm&+u - gO»+D» + g™. 

Thus (2.1) can be used to compute g(m, »). 
We have 

(3.2) f(fl,n) = g ( 0 , n ) = g». 

Assume that g(r, w) has been computed for r < m and put 

m— 1 w 

C/(m, w) = mf(m, n) — 12 r 12 &(r> 5 ) / ( w — r, w — s). 

Then (2.1) becomes 
n 

m 12 <Zw_sg(w, 5) = £/(m, ») 

and therefore 

(3.3) mg(m, n) = U(m, n) — qU(tn, n — 1). 

For example, when m = 1, we get 

2(1,») = / ( l , « ) - g / ( l , « - 1). 

Since 

(3.4) / ( l , n ) = ^ ( g + 1 ) _ ^ 

this reduces to 

(3.5) g(l , n) = ^ n - l f e 2 _ 1} ( n > i ) . 

It follows from (2.2) that 

(3.6) * ( « , „ ) = Z ^ / * , * ) 
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and in particular ^ ( 1 , ^) = g(l, s) so that 

(3.7) iKl, n) = q^(q* - 1) (» > 1). 

Comparison of (3.7) with (3.4) gives 

(3.8) l ^ i ^ ^ l - I . 

For m = 2 the results are considerably more complicated. For exam 

(3.9) 2g(2, 2) = 2g8 + 2g7 - 3g6 - 4g5 + g4 + 2<f - q\ 

4. It is evident from (3.4) and (3.5) that 

± g(l,s)f(l,n- S)=± 0(q2s-q2n-2s) = 0(nqu). 
s=0 s=0 

Thus, for m = 2, (2.1) becomes 

/ ( 2 , n ) = É 2"-s-g(2,5) + 0(Wg2")-
6=0 

It follows that 

/ (2 , n) - <z/(2, n - 1) = g(2, ») + C W ) . 

Also it is evident from (3.1) that 

/ (2, ») - g/(2, n - 1) = ( l - V ) / ( 2 , ») + 0(qU). 

Therefore 

(4.1) g(2, n) = ( l - Ç)f(2, n) + 0(nq2n). 

Now let m > 3. It follows at once from (2.1) and (3.1) that 

g(tn, n) < / ( w , w) < g(ro+D(»+i). 

Then for 1 < r < m — 1, 

(4.2) E f (r, *)/(« - r, n - s) = £ 0(g ( r+1)(s+1) .gO-H-ix-H-i^ 
5=0 s=0 

= E OCa*0*1') = 0(wgmK). 

Thus (2.1) reduces to 

(4.3) f(m, ») = Ê 2"_S-g(^- *) + 0(«<T). 
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Actually the constant in the O-term in (4.2) is independent of m and therefore 
(4.3) can be stated in the more precise form 

(4.4) f(m, n) = £ <Ts-g(m, 5) + 0 (w^ w w ) , 

where now the implied constant depends only on g. I t follows from (4.4) that 

g(m, n) = f(m, w) — gf(m, n — 1) + 0(mnqmn). 

Since by (3.1) 

/ (w, w) - g/(m, » - 1) = (1 - qrm)f(rn, n) + 0(qm{n+l)), 

we get 

(4.5) g(m, n) = (1 - q-m)f(tn, w) + 0{mnqmn) + 0(qm{ri+l)). 

If m and n are relatively prime, it follows from (3.6) that 

(4.6) \p{m, n) — g(m, ri) ((m, n) = 1 ) . 

In the general case we evidently have 

(4.7) iKm, n) = g(m, n) + 0(g<w+2^+2>/4) = g(m, n) + 0(qmn). 

We may now state the following 

THEOREM. The number of normalized irreducibles of degree (m, n) in two 
indeterminate s satisfies 

(4.8) 4,(m, n) = (1 - q~m)f(m, n) + 0(mnqmn) + 0{qm^n+l)), 

where f(m,n) is the total number of normalized polynomials of degrees (m, n) 
and the constants implied in the O-terms depend only on q. In particular for fixed 
m we have 

(4.9) \P(m, n) = (1 - q-m)f(m, n) + 0{nqmn) 

and 

(4.10) iKm, n) ~ (1 - q-m)f(m, n) (n -> 00). 
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