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Theorems connected with three mutually tangent circles.*

By THOMAS MUIK, LL.D.

1. The communication on this subject, as originally made to the
society, consisted of a series of theorems, giving (1) expressions for
the radii of a great many sets of circles, (2) identities connecting
several sets of these radii, and (3) miscellaneous identities closely
related thereto. As, however, the paper culminated in a general
theorem which may be looked upon as fundamental, and the proof of
which makes evident the mode of arriving at the said expressions for
radii, and as the relations connecting sets of radii are easily found
when attention has been directed to their existence, I have thought
it best to print little more than the fundamental theorem and a few
auxiliary notes.

2. The theorem is—
If the radii of the two smaller semi-circles of an arbelos f be a and b,

and a circle be inscribed in the arbelos, then circles in the three curvi-
lineal triangles cut off by the preceding circle, then circles in the nine
cv/rvilineal triangles cut off by the tlvree immediately preceding circles,
and so on ad libitum, the expression for the radius of any one of these
circles is of the form

ab(a + b)
frP + Tob + P

where £, »;, £ are integers.

We know that if ru rs, r, be the radii of three circles in mutual
contact, rt the radius of one of the circles touching all the said three,
and rs the radius of the other, then

J_ + ! - ! + - L + ± . (A)
r4 r, r, r, r»

it being understood that when one of the circles encloses the four
others its radius is made negative. Now, should it happen that
ri> rji rs> an(l rt a r e each of the form specified in the theorem, their
reciprocals must have the common denominator ab (a + b), and hence
from (A) r8 must be of that form likewise. But the radii of the three
original circles of the arbelos are of the form specified, for

* This paper was read at the February meeting,
t See Mr Mackay's paper, pp. 2-11 and fig. 33.
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_ ab(a + b)
Q.a'+l.ab+l.b-

, _ ab(a + b)
l.a'+l.ab + O.b*'

, , ab(a + b)
and a + b = - ' ;

O.a'+l.ab + O.b''
and it is known that the radius of the first inscribed circle is so also,
being

_ ab(a + b) .
hence each of the three next radii has the specified form. The
same then follows regarding each of the nine radii succeeding these,
and so on. The theorem is thus established.

3. In the proof we have assumed that the radius of the first in-
scribed circle is known. It is not necessary, however, to do so; for
the formula (A) suffices to find it.

The three circles in mutual contact are in this case the three
original circles of the arbelos, with the radii a, b, a + b; rt is un-
known, but we see from symmetry that it is tv •* R».rae as r6; hence
from (A) we have

1 . 1 2 . 2 2

and

r, a b a + b'
1 a' + ab + b*
', ab{a + b) '

as was to be shown.

4. If we denote the reciprocal of the radius
ab(a + b)

by (£, q, £), such calculations of radii can be made with great rapidity.
Turning for a moment to the diagram (fig. 33), where, be it observed, the
reciprocal of the radius of any circle is given in this notation at the
centre, let us calculate the radius of the circle PQR. PQR touches
the three mutually tangent circles (1, 1, 0), (1, 1, 1), (0, 1, 0), and
the other circle which does so is the circle (0, 1, 1); hence

(£. V, 0 + (0, 1, 1) = 2{(1, 1, 0) + (l, 1, l ) - (0 , 1, 0)},
= 2{(2, 2, l ) - (0 , 1, 0)},
= (4,2,2) ;

••• (Z,ri, 0 = (4, 1, 1),
as appears on the diagram.
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5. The radius of the nth circle of any particular set of circles
which have properties in common, is readily obtainable. The follow-
ing sets are noteworthy; even the few members of them which appear
in the diagram enable one to tell the radius of the M* member.

(0, 1, 1), (1, 1, 1), (4, 1, 1), (9, 1, 1), (*», 1, 1)
(0, 1, 1), (1, 1, 4), (4, 1, 9), (9, 1, 16), (»•, 1, n + 7)
(0, 1, 1), (1, 1, 9), (4, 1, 25), (9, 1, 49), (»*, 1, 2n+1*)
(0, 1, 1), (1, 1, 16), (4, 1, 49), « 1, 3n+ I2)

The circles of the first row extend up the horn whose tip is at A,
those of the second row up a horn whose tip is at G, and so on.

Similarly we have the series

(1, 1, 0), (1, 1, 1), (1, 1, 4), (1, 1, 9), (1, 1, 16),...(M, n2)
(1, 1, 0), (4, 1, 1), (9, 1, 4), (16, 1, 9), (n + f, 1, «s)
(1, 1, 0), (9, 1, 1), (2*+l2, 1, «2)

where every triad of coefficients is got by reversing the order of the
corresponding triad in the previous sets, i.e., aa we should expect, by
interchanging a and b.

Next we have the series which extends up the horn whose tip is
0, viz.:—

(1, 1, 1), (4, 7, 4), (9, 17, 9), («•, 2na- 1, «s).
Then there are the lateral series

(4, 1, 1), (4, 1, 9), (4, 1, 25), (4, 1, 2 ^ 1 * )
(4, 7, 4), (4, 7, 12), (4, 7, 28) (4, 7, 4»2-4n + 4).

dec, &C.

6. Although in enunciating the theorem of § 2 I have spoken of
the arbelos, it should be carefully noted that what we have got to do
with is properly not semicircles but circles. We start with one circle
(0, 1, 1) touching another (0, 1, 0) internally, then in the space be-
tween the two circumferences, and touching them both, we describe
a Beries of circles, each one of which touches the one preceding it and
the one following it. Now, there are two such series which can be
symmetrically situated with respect to the common diameter AB;
first, the series, (1,1, 4), (1,1,1), (1,1, 0), (1,1,1), (1,1, 4), the
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largest of which has AC for diameter; second, the series of which
the two largest have AC for a tangent. (See fig. 9.)

If this latter series be described, and circles inscribed in the
curvilineal triangles thereby formed, and so on, as before, the radius
of every one of these circles likewise can be expressed in the form
ab(a + &)/(£<*8 + rjab + $>a), f being now, however, sometimes fractional.

The main series, corresponding to the series (1, 1, 0), (1, 1, 1),...
in the former diagram, is

(l, l, i), (1, l, I), (1, l, ¥ ) ,

Each of the latter, it will be seen, falls between two of the former,
the two series dovetailing into one with a common law of progression,
viz.:—

(1, 1, 0), (1, 1, (if), (1, 1, V), (1, 1, (1)'), (1, 1, 2«),

Further, the two new lateral series are

(4, 1, 0), (4, 1, 4), (4, 1, 16),
(4, 7, 7), (4, 7, 19), (4, 7, 39),

Each of these also dovetails with the analogous series in the former
diagram, the pair of combined series being

(4, 1, 0), (4, 1, 1), (4, 1, 4), (4, 1, 9), (4, 1, n«);
(4, 7, 4), (4, 7, 7), C4, 7, 12), (4, 7, 19),...(4, 7, n' + 2n + 4).

If the one diagram be superposed on the other so that the two can be
viewed as one, these and other ties of relationship are well illustrated.
For example, it will also be seen that any corresponding pair of circles
taken from the two lateral series of the one diagram, touch the two
original circles (0, 1, 1), (0, 1, 0) in the points where a circle of the
main series of the other diagram touches them.

But the field of such curiosities is unlimited.
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