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Abstract. It is well known that a thin layer of angular velocity shear
exists just below the solar surface. We propose that this layer is pri-
marily generated by the radial-meridional component of the Reynolds
stress. This Reynolds stress component is created by a characteristic
upward-equatorward (or equivalently, downward-poleward) correlation of
the turbulence velocity over a region in which the shear layer is embed-
ded. Using 2D and 3D numerical experiments, we illustrate that this
correlation is caused by vortices that get sucked down from the surface
and turn aligned with the rotation vector (a la Taylor columns).

1. Introduction

Helioseismology results persistently show the existence of a thin shear layer
at the top of the solar convection zone, just beneath the solar surface. The
feature is most prominent in lower latitudes. An earlier proposal to explain
this phenomenon is based on direct angular momentum conservation (Foukal &
Jokipii 1975, Gilman & FoukaI1979). However, it is obvious that in a rotating
convection zone, simple application of angular momentum conservation do not
yield the full answer (otherwise, the angular velocity distribution inside the sun
would be totally different form what is being observed). Furthermore, there
has been no criteria provided to justify the restrained application of simple
conservation in a thin subsurface layer. Such an explanation is therefore rather
incomplete. It is necessary to investigate the dynamical process in greater detail.

2. The New Proposal

Based on observing a large number of numerical experiments on f-plane convec-
tion (see Figure 1), we have made the proposal that the subsurface shear layer is
generated by the divergence of the radial-meridional component of the Reynolds
stress (Chan 2001). This divergence is in balance with the meridional Coriolis
force created by the zonal mean flow; the result is the following relationship

1 8
vlj> ~ 2 no· -8 (PVrVO)p cos r

where n is the angular velocity, 0, <P, and r are the colatitude (north to south),
azimuthal angle (west to east), and the radius, respectively. The sharp negative
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Figure 1. Vertical profiles of the mean zonal velocity. Left panel:
Cases at the same colatitude but with different rotation rates. The

. dotted, dashed, dot-dashed, and triple-dot-dashed curves are for Cori-
olis numbers 0.8, 1.5, 2.9, and 5.8, respectively. The Coriolis number
Co is defined as flL/V where L and V are characteristic length and
velocity scales, respectively. Right panel: Cases with same rotation
rate but different colatitudes O. The dotted, dashed, dot-dashed, and
triple-dot-dashed curves are for 0 == 22.5, 45, 67.5, 78.75 degrees, re-
spectively. The key common feature is the development of a dip near
the top of the convection zone (when Co is larger than 1).

dip of mean zonal velocity towards the top of the convection zone is interpreted as
representing the observed outward drop of angular velocity. The above equation
shows that the dip is induced by the drop of the Reynolds stress component
from a peak value (positive in northern hemisphere) near the base of the shear
layer (see Figure 2). In this paper, we explore the cause of this peale

3. The Dynamical Process

In an earlier paper, Brummell et al. (1996), from observing their numerical
simulations, reported the generation of a radial-meridional velocity correlation
through the alignment of downflow columns with the rotation vector fie Such
alignment is compatible with the Taylor-Proudman constrain. However, it would
only produce a downward-equtorward correlation, in opposite to the kind of
correlation we need for generating the surface shear layer. According to our own
simulations, the velocity vectors near the surface generally do not align with the
rotation axis (see Figure 3). Instead, they tend to be in perpendicular directions.
This would create the kind of correlation we get.

There are two ways (or views) to conceptualize this phenomenon. First,
one can think of the perpendicular motion as vortices being sucked in by the
down flows (initially low-pressure centers with little motion along the rotation
axis). Second, one can think of the perpendicular motion as convective rolls in
alignment with the rotation axis (this is an alternative way to satisfy the Taylor-
Proudman constrain). In the deeper region, the width scale of the vortices
shrinks to very small sizes (due to the stratification and the contraction of the
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Figure 2. Vertical profiles of the radial-meridional component of the
turbulence Reynolds stress for cases corresponding to those described
in Figure 1. The key common feature is the positive peak near the top
of the convection zone.

Figure 3. An example of the flow field of a 3D calculation. The
horizontal direction is pole-equator oriented. Left panel: Only upward
streamlines are plotted. Right panel: Only downward streamlines are
plotted. The region is at () = 67.5° and the Coriolis number is close to
3. nis tilted upward towards left (in the 2nd quadrant).

Rossby radius f"V r.m,s, vIn); this quickens the dissipation of the vortical motions
and the tilted downflow columns become the dominant feature.

To illustrate the importance of the vortical motion, we performed a 2D
numerical experiment which is essentially identical to one of the 3D experiments
except the missing dimension. Vorticity in alignment with ncannot exist in the
2D situation, but downflow columns can (see Figure 4). The tilted down flows
only generate a downward-equatorward velocity correlation and a positive hump
in the mean zonal velocity distribution (see Figure 5).
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Figure 4. Two examples of streamline distributions in the 2D sim-
ulation. The downflows generate a downward-equatorward velocity
correlation.

Figure 5. Comparison of 2D (dashed curves) and 3D (solid curves)
results. Left panel: Vertical profiles of the mean zonal velocity. Right
panel: Vertical profiles of the radial-meridional component of the tur-
bulence Reynolds stress.
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