A CHARACTERISATION OF ERGODIC MEASURES

RODNEY NILLSEN*
(Received 20 December 1971; revised 1 October 1972)
Communicated by J. B. Miller

Consider a set X together with a σ-algebra \mathscr{B} of subsets of X. Let G be a family of \mathscr{B}-measurable transformations on X, let $p(X)$ be the convex set of all probability measures on \mathscr{B} and let I be the convex set of all G-invariant probability measures in $p(X)$. For $\mu \in p(X)$ we define $\mathscr{B}_{\mu}=\{A \in \mathscr{B}: \mu(g A \Delta A)=0$ for all $g \in G\}$ and we define $\mathscr{B}_{0}=\{A \in \mathscr{B}: g A=A$ for all $g \in G\}$. Then $\mathscr{B}_{0} \subseteq \mathscr{B}_{\mu}$ and both are σ-subalgebras of $\mathscr{B} . G$ is said to act transitively on X if for $x \in X, y \in X$, $g x=y$ for some $g \in G$.

Consider the following conditions on an element $\mu \in I$:
(a) μ is an extreme point of I,
(b) $\mu\left(\mathscr{B}_{\mu}\right)=\{0,1\}$,
(c) $\mu\left(\mathscr{B}_{0}\right)=\{0,1\}$.

Each of these conditions has been considered in the literature as a definition of ergodicity of μ. Feldman has shown that (a) and (b) are equivalent (1966; page 81). Under certain conditions (b) and (c) are known to be equivalent (see Feldman (1966; page 84) for a discussion) and the result of this paper is one of this type. Our result was provided in the case where G is a separable topological group by Varadarajan (1963).

Theorem. Let G be a Hausdorff locally compact σ-compact topological group of \mathscr{B}-measurable transformations on X such that the associated mapping $(g, x) \rightarrow g x$ on $G \times X$ to X is jointly measurable when G is equipped with the σ-algebra of Borel sets. Let $\mu \in I$. Then $\mu \in$ exI if and only if $\mu\left(\mathscr{B}_{0}\right)=\{0,1\}$. If G acts transitively on X, there is at most one G-invariant measure in $p(X)$.

Before proving this theorem we make some definitions. A fixed left invariant Haar measure on G will be denoted by $d \lambda$. For a function ϕ on G and $g \in G$,

[^0]$l_{g} \phi$ is defined on G by: $l_{g} \phi(h)=\phi(g h)$ for $h \in G$. If $\phi \in L^{1}(G)$ and f is a bounded real valued \mathscr{B}-measurable function on $X, \phi * f$ is defined by:
$$
\phi * f(x)=\int_{G} \phi(g) f\left(g^{-1} x\right) d \lambda(g)
$$

Then define $P(\phi, f)=\{x \in X: \phi * f(x)=1\}$ and $Q(\phi, f)=\bigcap_{g \in G} P\left(l_{g} \phi, f\right)$. It follows from the definition of $Q(\phi, f)$ that $Q(\phi, f)=g(Q(\phi, f))$) for all $g \in G$.

Lemma. Let G be σ-compact, let ϕ be a continuous real valued function on G having compact support and let f be a bounded real valued, \mathscr{B}-measurable function on X. Then $Q(\phi, f) \in \mathscr{B}_{0}$.

Proof. ϕ is uniformly continuous on G, and a sequence $\left(g_{n}\right)$ can be chosen in G so that $\left\{l_{g i} \phi: i=1,2, \cdots\right\}$ is uniformly dense in $\left\{l_{g} \phi: g \in G\right\}$. Let K be the support of $\phi, g \in G, \varepsilon>0$ and $x \in \bigcap_{1}^{\infty} P\left(l_{g i} \phi, f\right)$. We may assume $\lambda(K)>0$. Choose i so that

$$
\left\|l_{g} \phi-l_{g_{i}} \phi\right\|<\frac{\varepsilon}{2 \lambda(K)}\|f\|^{-1}
$$

Then

$$
\begin{aligned}
\left|\left(l_{g} \phi * f\right)(x)-1\right| & =\left|\left(l_{g} \phi * f\right)(x)-\left(l_{g_{i}} \phi * f\right)(x)\right| \\
& \leqq\left(\int_{G}\left|\phi(g p)-\phi\left(g_{i} p\right)\right| d \lambda(p)\right) \cdot\|f\| \\
& =\left(\int_{g^{-1} K \cup g_{i}-1}\left|\phi(g p)-\phi\left(g_{i} p\right)\right| d \lambda(p)\right) \cdot\|f\| \\
& \leqq\left(\lambda\left(g^{-1} K\right)+\lambda\left(g_{i}^{-1} K\right)\right) \cdot\left\|l_{g} \phi-l_{g_{i}} \phi\right\| \cdot\|f\| \\
& \leqq \varepsilon, \text { true for all } \varepsilon>0, \text { all } g \in G .
\end{aligned}
$$

Hence $x \in \bigcap_{g \in G} P\left(l_{g} \phi, f\right)$ so that $Q(\phi, f)=\bigcap^{\infty} P\left(l_{g i} \phi, f\right)$. Since each $P\left(l_{g i} \phi, f\right) \in \mathscr{B}$, $Q(\phi, f) \in \mathscr{B}_{0}$.

Proof of theorem: There is a characterization of exI due to Feldman (1966: page 81) which says: $\mu \in e x I$ if and only if $\mu\left(\mathscr{B}_{\mu}\right)=\{0,1\}$.

Hence if $\mu \in e x I, \mu\left(\mathscr{B}_{0}\right)=\{0,1\}$ since $\mathscr{B}_{0} \subseteq \mathscr{B}_{\mu}$ and both X and the void set are in \mathscr{B}_{0}. Conversely, if $\mu\left(\mathscr{B}_{0}\right)=\{0,1\}$ let $A \in \mathscr{B}_{\mu}$. Let χ_{A} be the characteristic function of A. Let ϕ be a continuous real valued function on G, having compact support and such that $\int_{G} \phi(g) d \lambda(g)=1$. Let $A_{0}=Q\left(\phi, \chi_{A}\right) \in \mathscr{B}_{0}$ by the Lemma. It now follows, by an adaptation of the argument of Varadarajan [5] p. 1 1 , that $\mu(A)=\mu\left(A_{0}\right) \in\{0,1\}$. Hence $\mu\left(\mathscr{B}_{\mu}\right)=\{0,1\}$.

If G acts transitively on X, then \mathscr{B}_{0} is the trivial σ-algebra and $\mu\left(\mathscr{B}_{0}\right)=\{0,1\}$ for all $\mu \in p(X)$. In this case $I \subseteq e x I \subseteq I$ so that I has at most one element.

References

R. R. Phelps (1966), Lectures on Choquet's theorem (Van Nostrand, 1966).
V. S. Varadarajan (1963), 'Groups of automorphisms of Borel spaces', Trans. Amer. Math. Soc. 109, 191-220.

The Flinders University of South Australia

Present address

University College Swansea
U. K. Wales

[^0]: * Research supported by a Commonwealth Postgraduate Award.

