THE COLLINEATION GROUP OF THE VEBLEN-WEDDERBURN PLANE OF ORDER NINE

FREDERICK W. STEVENSON

1. Introduction. In this paper we prove that the order of the collineation group of the Veblen-Wedderburn plane of order nine is 311,040. This result was stated by Hall [3] in 1943 and proved by Pierce [9] in 1964. Hall assumed that there were $10 \cdot 8 \cdot 6 \cdot 4 \cdot 2 = 3840$ collineations which permute points on the ideal line L and 81 collineations which leave L pointwise fixed. In 1955 André [1] verified this assumption. When it was realized that a harmonic homology with axis L had been overlooked, the number of central collineations with axis L doubled and hence the order of the collineation group became $3840 \cdot 162 = 622,080$. This latter figure has been assumed to be correct as recently as 1965 ([6]).

Here it is proved that there are 1920 collineations which move points on L and 162 collineations which leave L pointwise fixed, thus giving the figure 311,040. Pierce's proof of this fact is established from a different viewpoint.

2. The Veblen-Wedderburn plane of order nine. We may represent the Veblen-Wedderburn plane of order nine as follows:

The *points* are of three types: [x, y, 1], [1, x, 0], and [0, 1, 0], where x and y are elements of the nearfield $N = (R, +, \cdot)$ of order 9.

Similarly, *lines* are of three types: $\langle m, 1, k \rangle$, $\langle 1, 0, k \rangle$, and $\langle 0, 0, 1 \rangle$, where $m, k \in \mathbb{R}$. The ideal line $L = \langle 0, 0, 1 \rangle$.

Incidence is defined by: $[x, y, z] \in \langle m, n, k \rangle$ if and only if xm + yn + zk = 0. The nearfield N is the system R of Hall [3, p. 273]. We shall use Hall's notation here. It should be noted that N satisfies the usual properties of a finite nearfield and one important additional property:

 $x^2 = -1$ for all $x \in R$ such that $x \neq 0, 1, -1$.

We shall denote the plane above by Π , the intersection of two lines $\langle m, n, k \rangle$ and $\langle m', n', k' \rangle$ by $\langle m, n, k \rangle \cap \langle m', n', k' \rangle$, and the line joining the points [x, y, z] and [x', y', z'] will be denoted by $[x, y, z] \cdot [x', y', z']$.

3. Collineations on II. We may define a collineation on a projective plane as a pair of functions (f, F), where f is a one-to-one correspondence from the set of points onto itself and F is a one-to-one correspondence from the set of lines onto itself such that $p \in L$ if and only if $f(p) \in F(L)$ for any point p and line L.

Received October 15, 1969 and in revised form, February 13, 1970.

We describe five types of collineations on Π below by stating the correspondences for non-invariant elements:

(1) $f_{s,t}: [x, y, 1] \rightarrow [x + s, y + t, 1]: s, t \in R,$ $F_{s,t}: \langle m, 1, k \rangle \rightarrow \langle m, 1, k - sm - t \rangle$ $\langle 1, 0, k \rangle \rightarrow \langle 1, 0, k - s \rangle;$

(2)
$$g: [x, y, 1] \rightarrow [-x, -y, 1],$$

 $G: \langle m, 1, k \rangle \rightarrow \langle m, 1, -k \rangle$
 $\langle 1, 0, k \rangle \rightarrow \langle 1, 0, -k \rangle;$

(3) $h_{s,t}: [x, y, 1] \rightarrow [xs, ty, 1]: s, t \in R, s, t \neq 0.$ $[1, x, 0] \rightarrow [1, s^{-1}xt, 0],$ $H_{s,t}: \langle m, 1, k \rangle \rightarrow \langle s^{-1}mt, 1, kt \rangle$

$$\langle 1, 0, k \rangle \rightarrow \langle 1, 0, ks \rangle;$$

$$(4) \quad j: [x, y, 1] \rightarrow [x + y, -x + y, 1]$$

- $[0, 1, 0] \rightarrow [1, 1, 0]$ $[1, 0] \rightarrow [1, 0]$ $[1, 0, 0] \rightarrow [1, 0, 0]$ $[1, 0, 0] \rightarrow [1, -1, 0]$ $[1, -1, 0] \rightarrow [0, 1, 0],$ $J: \langle m, 1, k \rangle \rightarrow \langle m, 1, km + k \rangle, \quad m \neq 0, \pm 1,$ $\langle 1, 0, k \rangle \rightarrow \langle -1, 1, k \rangle$ $\langle -1, 1, k \rangle \rightarrow \langle 0, 1, k \rangle$ $\langle 0, 1, k \rangle \rightarrow \langle 1, 1, k \rangle$ $\langle 1, 1, k \rangle \rightarrow \langle 1, 0, k \rangle;$
- (5) $r_{s,t}: [x, y, z] \rightarrow [\alpha_{s,t}(x), \alpha_{s,t}(y), \alpha_{s,t}(z)]: s = 0, \pm 1, t = \pm 1.$ $R_{s,t}: \langle m, n, k \rangle \rightarrow \langle \alpha_{s,t}(m), \alpha_{s,t}(n), \alpha_{s,t}(k) \rangle$, where $\alpha_{s,t}: R \rightarrow R$ is defined as follows: $\alpha_{s,t}: x + ya \rightarrow (x + sy) + (ty)a$. These mappings constitute the six automorphisms on N (see Hughes [5] or André [1]).

For simplicity we shall denote these collineations by $f_{s,t}$, g, $h_{s,t}$, j, and $r_{s,t}$, respectively.

It should be noted that the collineations above leave the ideal line fixed. Hall [3; 4] showed that this must be true for every collineation on II. In fact, this is a property that the collineations on any plane defined over a nearfield must share.

It is also true of the five collineations above that each fixes [0, 1, 0] if and only if it fixes [1, 0, 0]. This too is true for general non-Desarguesian planes defined over nearfields. Following the notation, definitions, and theorems of Dembowski [2, pp. 123, 129, 130] we may prove this fact as follows.

THEOREM 3.1. If f is a collineation on Π such that f fixes [0, 1, 0], then f must fix [1, 0, 0].

968

Proof. Using Dembowski's notation we have v = [0, 1, 0], u = [1, 0, 0], and o = [0, 0, 1]. Suppose that there exists a collineation f such that

$$f: u, v \rightarrow p, v$$

where $p \neq u$. Now II is (u, v)-transitive, and so it follows that it must be (p, v)-transitive. Thus, in particular, II is (u, ov)- and (p, ov)-transitive. It follows [2, p. 123, theorem 18] that II is (pu, ov)-transitive and since $p \in uv$ we obtain that II is (v, ov)-transitive. But II is also (v, uv)-transitive and so (by [2, p. 123, theorem 18]) II must be (v, v)-transitive. Thus (by [2, p. 130, theorem 22 (f)]) N must be semifield. But N does not satisfy the law of left distributivity and so we have a contradiction. Therefore such a collineation f does not exist.

Labeling the points on *L* as follows: u = [1, 0, 0], m = [1, 1, 0], n = [1, a, 0], q = [1, b, 0], r = [1, c, 0], where <math>b = 1 + a, and c = -1 + a, we may define a unary operation "-" on *L* by -u = [0, 1, 0], -m = [1, -1, 0], -n = [1, -a, 0], -q = [1, -b, 0], -r = [1, -c, 0], and <math>-(-p) = p for $p \in L$. Then Theorem 3.1 implies the following theorem.

THEOREM 3.2. If f is a collineation on Π , then $f: p \to p'$ if and only if $-p \to -p'$.

Proof. If $f = h_{s,t}$ or j, it is easily checked that $f: p \to p'$ if and only if $f: -p \to -p'$. Thus compositions of $h_{s,t}$ and j satisfy this property. Now suppose that there exists a collineation $g': p \to p'$ and $-p \to x \neq -p'$. Then let $h: p \to v$ and $h':p' \to v$, where h and h' are compositions of the mappings $h_{s,t}$ and j. It is easily seen that such mappings exist. Now $h' \circ g' \circ h^{-1}$ fixes v and maps $u \to h(x) \neq u$. This contradicts Theorem 3.1. Therefore such a collineation g' does not exist.

4. The collineation group of Π . Since all collineations on Π fix line L we may divide our study into two parts: those collineations which fix L pointwise and those which do not. We begin by showing that there are exactly 162 central collineations with axis L.

LEMMA 4.1. If f is a homology with centre [0, 0, 1] and axis L and f: $[1, 0, 1] \rightarrow [t, 0, 1]$, then f: $[x, y, 1] \rightarrow [tx, ty, 1]$.

Proof. Since

$$f: [1, 0, 1] \to [t, 0, 1]$$
$$[0, 1, 0] \to [0, 1, 0]$$

we have $f: [1, 0, 1] \cdot [0, 1, 0] = \langle 1, 0, -1 \rangle \rightarrow [t, 0, 1] \cdot [0, 1, 0] = \langle 1, 0, -t \rangle$. Also f fixes $\langle y, 1, 0 \rangle$ for any y, and so

 $\langle 1, 0, -1 \rangle \cap \langle -y, 1, 0 \rangle = [1, y, 1] \rightarrow \langle 1, 0, -t \rangle \cap \langle -y, 1, 0 \rangle = [t, ty, 1].$

It follows that:

$$[1, y, 1] \cdot [1, 0, 0] = \langle 0, 1, -y \rangle \rightarrow [t, ty, 1] \cdot [1, 0, 0] = \langle 0, 1, -ty \rangle.$$

Hence

$$\langle 0, 1, -y \rangle \cap \langle -(x^{-1})y, 1, 0 \rangle =$$

$$[x, y, 1] \rightarrow \langle 0, 1, -ty \rangle \cap \langle -(x^{-1})y, 1, 0 \rangle = [tx, ty, 1].$$

Notice that this lemma applies to any plane coordinatized by a nearfield. The next lemma, as it is proved here, applies to the specific nearfield, N.

LEMMA 4.2. If f is a homology with centre [0, 0, 1] and axis L and F: $[1, 0, 1] \rightarrow [t, 0, 1]$, then $t = \pm 1$.

Proof. Suppose that $t \neq \pm 1$. First we notice that because of Lemma 4.1,

$$f:[t, t+1, 1] \rightarrow [t^2, t(t+1), 1] = [-1, -t+1, 1].$$

This last equality follows because $t^2 = -1$ since $t \neq \pm 1$ and

$$t(t+1) = -(t+1)t = -(t^2+t) = -(-1+t) = -t+1.$$

Also $f: [0, t - 1, 1] \rightarrow [0, t(t - 1), 1] = [0, t + 1, 1]$. This equality is established in the same way as the one above.

Thus:

$$[t, t+1, 1] \cdot [0, t-1, 1] = \langle -t, 1, -t+1 \rangle \rightarrow [-1, -t+1, 1] \cdot [0, t+1, 1]$$

= $\langle t, 1, -t-1 \rangle.$

The first equality is true since t(-t) + t + 1 - t + 1 = 1 + t + 1 - t + 1 = 0. The second equality follows similarly. Finally we have

$$\langle -t, 1, -t+1 \rangle \cap \langle 0, 0, 1 \rangle = [-t, 1, 0] \rightarrow \langle t, 1, -t-1 \rangle \cap \langle 0, 0, 1 \rangle$$
$$= [t, 1, 0].$$

But [-t, 1, 0] must be held fixed by *f*, and so we have a contradiction. Thus $t = \pm 1$.

THEOREM 4.3. There are 162 central collineations with axis L. The set of central collineations is

$${f_{s,t}: s, t \in R} \cup {f_{s,t} \circ g \circ f_{s,t}^{-1}: s, t \in R}.$$

Proof. The proof is straightforward but we shall include it for completeness. Since an elation with a given axis is uniquely determined by a point off the axis and its image, there are no elations with axis L other than those of the form $f_{s,t}$.

https://doi.org/10.4153/CJM-1970-110-3 Published online by Cambridge University Press

970

Similarly, a homology with a given centre and axis is determined by a point off the axis distinct from the centre and its image. Thus it follows from Lemma 4.2 that the only homologies with centre [0, 0, 1] are the identity and g. Now collineations of the form $f_{s,t} \circ g \circ f_{s,t}^{-1}$ are easily shown to be homologies with centre [s, t, 1]. Any other homology, h, with centre [s, t, 1], would yield a homology $f_{s,t}^{-1} \circ h \circ f_{s,t}$ with centre [0, 0, 1]. Since this collineation must be the identity, so must h be the identity. Thus every homology is of the form $f_{s,t} \circ g \circ f_{s,t}^{-1}$.

Now we show that there are 1920 collineations which move points on L. u, m, n, q, r, \ldots are as previously defined.

THEOREM 4.4. If a collineation f on Π fixes $\pm p$ for p = m, n, q, r, then fixes $\pm u$ (i.e., u and v).

Proof. Suppose that $f: [1, x, 0] \to [1, x, 0], x = \pm 1, \pm a, \pm b, \pm c$, and also $f: u \to v$. Now $f: [0, 0, 1] \to [s, t, 1]$ for some s, t. Thus, letting $h = f_{s,t}^{-1} \circ f$, we have $h: o \to o, p \to p$ for p = m, n, q, r and $u \to v$. Let y be a fixed non-zero element of R. Now

 $h: \langle 1, 0, 0 \rangle = [0, 1, 0] \cdot [0, 0, 1] \rightarrow [1, 0, 0] \cdot [0, 0, 1] = \langle 0, 1, 0 \rangle,$

and so we have $h: [0, y, 1] \rightarrow [x(y), 0, 1]$. We shall denote x(y) by x. Notice that $x \neq 0$. Now $h: \langle 0, 1, -y \rangle = [1, 0, 0] \cdot [0, y, 1] \rightarrow [0, 1, 0] \cdot [x, 0, 1] = \langle 1, 0, -x \rangle$. Also $h: \langle t, 1, 0 \rangle \rightarrow \langle t, 1, 0 \rangle$ because h holds fixed [0, 0, 1] and $[1, t^{-1}, 0]$. Thus

 $[x, y, 1] = \langle 0, 1, -y \rangle \cap \langle -x^{-1}y, 1, 0 \rangle \rightarrow \langle 1, 0, -x \rangle \cap \langle -x^{-1}y, 1, 0 \rangle = [x, y, 1];$ hence [x, y, 1] is held fixed by *h*.

Let $z \in R$ such that $z \neq 0$, yx^{-1} . Now $\langle -z, 1, xz - y \rangle = [x, y, 1] \cdot [1, z, 0]$ is held fixed; hence

$$[0, y - xz, 1] = \langle -z, 1, xz - y \rangle \cap \langle 1, 0, 0 \rangle \rightarrow \langle -z, 1, xz - y \rangle \cap \langle 0, 1, 0 \rangle$$
$$= [(xz - y)z^{-1}, 0, 1].$$

By the argument above, h fixes $[(xz - y)z^{-1}, y - xz, 1]$. We shall denote this point by p_z .

Let
$$L_z = \langle z(xz - y)^{-1}xz, 1, -y \rangle = [0, y, 1] \cdot p_z$$
. Now
 $L_z \cap uv = [1, -z(xz - y)^{-1}xz, 0]$

and this is a fixed point since $-z(xz - y)^{-1}xz \neq 0$. Hence L_z is a fixed line since it contains two fixed points (*o* and the one above). Since

$$h\colon [0, y, 1] \to [x, 0, 1],$$

it follows that $[x, 0, 1] \in L_z$. However, this is not necessarily the case as the following example shows: suppose that $y \neq \pm 1$ and let $z = x^{-1}$; then $L_z = \langle x^{-1}(1-y)^{-1}, 1, -y \rangle$. Now if $[x, 0, 1] \in L_z$, we would have

$$xx^{-1}(1-y)^{-1}-y = (1-y)^{-1}-y = (y-1)-y = -1 = 0,$$

a contradiction. Thus h and, therefore, f do not exist.

THEOREM 4.5. There exists a collineation f on Π which maps $v \rightarrow p$ for any $p \in uv$.

Proof. We may map $v \to m$ by j and $v \to -v$ by j^2 . Also we may map $m \to p = [1, x, 0]$ by $h_{1,x}$ for any $x = \pm 1, \pm a, \pm b, \pm c$. Thus with compositions of the mappings j and $h_{1,x}$, we may map $v \to p$ for any $p \in uv$.

THEOREM 4.6. There exists a collineation f on Π , such that f fixes u and v and $f: m \to p$ for any $p \neq u, v$.

Proof. As mentioned in Theorem 4.5,

$$h_{1,x}$$
: $m \rightarrow [1, x, 0]$ for $x = \pm 1, \pm a, \pm b, \pm c$.

Also $h_{1,x}$: $u, v \to u, v$.

THEOREM 4.7. There exists a collineation f on Π such that f fixes u, v, m, -m, and $f: n \to p$ for $p \neq u, v, \pm m$.

Proof. It may be easily observed that $h_{b,b}$, $r_{1,1}$, and $h_{a,a}$ hold u and m fixed and $h_{b,b}$: $n \to -n$, $r_{1,1}$: $n \to q$, $r_{1,1^2}$: $n \to r$, $h_{a,a} \circ r_{1,1}$: $n \to -q$, $h_{a,a} \circ r_{1,1^2}$: $n \to -r$. The identity maps $n \to n$.

THEOREM 4.8. There exists a collineation f on II such that f fixes $u, v, \pm m, \pm n$ and f: $q \rightarrow p$, where $p = \pm q, \pm r$.

Proof. Notice that $r_{0,-1}$, $h_{a,a}$, and $h_{b,b}$ hold u and m fixed. Now

 $r_{0,-1}: n \to -n, -n \to n, q \to -r;$

hence $h_{b,b} \circ r_{0,-1}$: $n \to n$, $q \to r$. Also $h_{a,a}$: $n \to n$, $q \to -q$, and so $h_{a,a} \circ h_{b,b} \circ r_{0,-1}$: $n \to n$, $q \to -r$. The identity maps $q \to q$.

THEOREM 4.9. There exist 1920 collineations which permute points on uv.

Proof. There exist 10 collineations which map $u \to p$ where $p \in uv$; 8 collineations which fix $\pm u$ and map $m \to p$, $p \neq \pm u$; 6 collineations which fix $\pm u, \pm m$, and map $n \to p$, $p \neq \pm u$, $\pm m$; and 4 collineations which fix $\pm u, \pm m, \pm n$ and map $q \to p$ where $p = \pm q, \pm r$. If f fixes $\pm u, \pm m, \pm n$, and $\pm q$, it follows easily from Theorem 4.4 that f fixes $\pm r$ and hence is the identity. Thus there are $10 \cdot 8 \cdot 6 \cdot 4$ in all.

We conclude by noting that the order of the group G of collineations on II is $162 \cdot 1920 = 311,040$. This follows because the set of central collineations with axis L is a normal subgroup of G.

References

- 3. M. Hall, Jr., Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.
- 4. —— Correction to "Projective planes", Trans. Amer. Math. Soc. 65 (1949), 473-474.

^{1.} J. André, Projektive Ebenen über Fastkorpern, Math. Z. 62 (1955), 137-160.

^{2.} P. Dembowski, Finite geometries (Springer-Verlag, New York, 1968).

- 5. D. R. Hughes, Collineation groups of non-Desarguesian planes. I. The Hall Veblen-Wedderburn systems, Amer. J. Math. 81 (1959), 921-938.
- 6. R. B. Killgrove, Completions of quadrangles in projective planes. II, Can. J. Math. 17 (1965), 155-165.
- 7. G. Panella, Le collineazioni nei piani di Marshall Hall, Riv. Mat. Univ. Parma 1 (1960), 171-184.
- 8. G. Pickert, Projektive Ebenen (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955).
- 9. W. A. Pierce, Collineations on projective Moulton planes, Can. J. Math 16 (1964), 637-656.

Oberlin College, Oberlin, Ohio