THE COLLINEATION GROUP OF THE VEBLEN-WEDDERBURN PLANE OF ORDER NINE

FREDERICK W. STEVENSON

1. Introduction. In this paper we prove that the order of the collineation group of the Veblen-Wedderburn plane of order nine is 311,040 . This result was stated by Hall [3] in 1943 and proved by Pierce [9] in 1964. Hall assumed that there were $10 \cdot 8 \cdot 6 \cdot 4 \cdot 2=3840$ collineations which permute points on the ideal line L and 81 collineations which leave L pointwise fixed. In 1955 André [1] verified this assumption. When it was realized that a harmonic homology with axis L had been overlooked, the number of central collineations with axis L doubled and hence the order of the collineation group became $3840 \cdot 162=622,080$. This latter figure has been assumed to be correct as recently as 1965 ([6]).

Here it is proved that there are 1920 collineations which move points on L and 162 collineations which leave L pointwise fixed, thus giving the figure 311,040 . Pierce's proof of this fact is established from a different viewpoint.
2. The Veblen-Wedderburn plane of order nine. We may represent the Veblen-Wedderburn plane of order nine as follows:

The points are of three types: $[x, y, 1],[1, x, 0]$, and $[0,1,0]$, where x and y are elements of the nearfield $N=(R,+, \cdot)$ of order 9 .

Similarly, lines are of three types: $\langle m, 1, k\rangle,\langle 1,0, k\rangle$, and $\langle 0,0,1\rangle$, where $m, k \in R$. The ideal line $L=\langle 0,0,1\rangle$.

Incidence is defined by: $[x, y, z] \in\langle m, n, k\rangle$ if and only if $x m+y n+z k=0$.
The nearfield N is the system R of Hall [3, p. 273]. We shall use Hall's notation here. It should be noted that N satisfies the usual properties of a finite nearfield and one important additional property:

$$
x^{2}=-1 \text { for all } x \in R \text { such that } x \neq 0,1,-1
$$

We shall denote the plane above by Π, the intersection of two lines $\langle m, n, k\rangle$ and $\left\langle m^{\prime}, n^{\prime}, k^{\prime}\right\rangle$ by $\langle m, n, k\rangle \cap\left\langle m^{\prime}, n^{\prime}, k^{\prime}\right\rangle$, and the line joining the points $[x, y, z]$ and $\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$ will be denoted by $[x, y, z] \cdot\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$.
3. Collineations on Π. We may define a collineation on a projective plane as a pair of functions (f, F), where f is a one-to-one correspondence from the set of points onto itself and F is a one-to-one correspondence from the set of lines onto itself such that $p \in L$ if and only if $f(p) \in F(L)$ for any point p and line L.

Received October 15, 1969 and in revised form, February 13, 1970.

We describe five types of collineations on Π below by stating the correspondences for non-invariant elements:
(1)

$$
\begin{aligned}
f_{s, t}:[x, y, 1] & \rightarrow[x+s, y+t, 1]: s, t \in R, \\
F_{s, t}:\langle m, 1, k\rangle & \rightarrow\langle m, 1, k-s m-t\rangle \\
\langle 1,0, k\rangle & \rightarrow\langle 1,0, k-s\rangle
\end{aligned}
$$

(2) $g:[x, y, 1] \rightarrow[-x,-y, 1]$, $G:\langle m, 1, k\rangle \rightarrow\langle m, 1,-k\rangle$ $\langle 1,0, k\rangle \rightarrow\langle 1,0,-k\rangle ;$

$$
\begin{align*}
h_{s, t}:[x, y, 1] & \rightarrow[x s, t y, 1]: s, t \in R, s, t \neq 0 . \tag{3}\\
{[1, x, 0] } & \rightarrow\left[1, s^{-1} x t, 0\right], \\
\mathrm{H}_{s, t}:\langle m, 1, k\rangle & \rightarrow\left\langle s^{-1} m t, 1, k t\right\rangle \\
\langle 1,0, k\rangle & \rightarrow\langle 1,0, k s\rangle ;
\end{align*}
$$

(4) $j:[x, y, 1] \rightarrow[x+y,-x+y, 1]$
$[0,1,0] \rightarrow[1,1,0]$
$[1,1,0] \rightarrow[1,0,0]$
$[1,0,0] \rightarrow[1,-1,0]$
$[1,-1,0] \rightarrow[0,1,0]$,
$J:\langle m, 1, k\rangle \rightarrow\langle m, 1, k m+k\rangle, \quad m \neq 0, \pm 1$, $\langle 1,0, k\rangle \rightarrow\langle-1,1, k\rangle$
$\langle-1,1, k\rangle \rightarrow\langle 0,1, k\rangle$
$\langle 0,1, k\rangle \rightarrow\langle 1,1, k\rangle$
$\langle 1,1, k\rangle \rightarrow\langle 1,0, k\rangle ;$
(5) $\quad r_{s, t}:[x, y, z] \rightarrow\left[\alpha_{s, t}(x), \alpha_{s, t}(y), \alpha_{s, t}(z)\right]: s=0, \pm 1, t= \pm 1$.
$R_{s, t}:\langle m, n, k\rangle \rightarrow\left\langle\alpha_{s, t}(m), \alpha_{s, t}(n), \alpha_{s, t}(k)\right\rangle$, where $\alpha_{s, t}: R \rightarrow R$ is defined as follows: $\alpha_{s, t}: x+y a \rightarrow(x+s y)+(t y) a$. These mappings constitute the six automorphisms on N (see Hughes [5] or André [1]).
For simplicity we shall denote these collineations by $f_{s, t}, g, h_{s, t}, j$, and $r_{s, t}$, respectively.

It should be noted that the collineations above leave the ideal line fixed. Hall $[\mathbf{3} ; \mathbf{4}]$ showed that this must be true for every collineation on II. In fact, this is a property that the collineations on any plane defined over a nearfield must share.

It is also true of the five collineations above that each fixes $[0,1,0]$ if and only if it fixes $[1,0,0]$. This too is true for general non-Desarguesian planes defined over nearfields. Following the notation, definitions, and theorems of Dembowski [2, pp. 123, 129, 130] we may prove this fact as follows.

Theorem 3.1. If f is a collineation on Π such that fixes $[0,1,0]$, then f must fix $[1,0,0]$.

Proof. Using Dembowski's notation we have $v=[0,1,0], u=[1,0,0]$, and $o=[0,0,1]$. Suppose that there exists a collineation f such that

$$
f: u, v \rightarrow p, v,
$$

where $p \neq u$. Now Π is (u, v)-transitive, and so it follows that it must be (p, v)-transitive. Thus, in particular, Π is $(u, o v)$ - and ($p, o v$)-transitive. It follows [2, p. 123, theorem 18] that Π is $(p u, o v)$-transitive and since $p \in u v$ we obtain that Π is $(v, o v)$-transitive. But Π is also ($v, u v$)-transitive and so (by [2, p. 123, theorem 18]) Π must be (v, v)-transitive. Thus (by [2, p. 130, theorem 22 (f)]) N must be semifield. But N does not satisfy the law of left distributivity and so we have a contradiction. Therefore such a collineation f does not exist.

Labeling the points on L as follows: $u=[1,0,0], m=[1,1,0], n=[1, a, 0]$, $q=[1, b, 0], r=[1, c, 0]$, where $b=1+a$, and $c=-1+a$, we may define a unary operation " - " on L by $-u=[0,1,0],-m=[1,-1,0],-n=$ $[1,-a, 0],-q=[1,-b, 0],-r=[1,-c, 0]$, and $-(-p)=p$ for $p \in L$. Then Theorem 3.1 implies the following theorem.

Theorem 3.2. If f is a collineation on Π, then $f: p \rightarrow p^{\prime}$ if and only if $-p \rightarrow-p^{\prime}$.

Proof. If $f=h_{s, t}$ or j, it is easily checked that $f: p \rightarrow p^{\prime}$ if and only if $f:-p \rightarrow-p^{\prime}$. Thus compositions of $h_{s, t}$ and j satisfy this property. Now suppose that there exists a collineation $g^{\prime}: p \rightarrow p^{\prime}$ and $-p \rightarrow x \neq-p^{\prime}$. Then let $h: p \rightarrow v$ and $h^{\prime}: p^{\prime} \rightarrow v$, where h and h^{\prime} are compositions of the mappings $h_{s, t}$ and j. It is easily seen that such mappings exist. Now $h^{\prime} \circ g^{\prime} \circ h^{-1}$ fixes v and maps $u \rightarrow h(x) \neq u$. This contradicts Theorem 3.1. Therefore such a collineation g^{\prime} does not exist.
4. The collineation group of Π. Since all collineations on Π fix line L we may divide our study into two parts: those collineations which fix L pointwise and those which do not. We begin by showing that there are exactly 162 central collineations with axis L.

Lemma 4.1. If f is a homology with centre $[0,0,1]$ and axis L and $f:[1,0,1] \rightarrow[t, 0,1]$, then $f:[x, y, 1] \rightarrow[t x, t y, 1]$.

Proof. Since

$$
\begin{aligned}
& f: {[1,0,1] } \\
& {[0,1,0] } \rightarrow[t, 0,1] \\
& {[0,1,0] }
\end{aligned}
$$

we have $f:[1,0,1] \cdot[0,1,0]=\langle 1,0,-1\rangle \rightarrow[t, 0,1] \cdot[0,1,0]=\langle 1,0,-t\rangle$. Also f fixes $\langle y, 1,0\rangle$ for any y, and so

$$
\langle 1,0,-1\rangle \cap\langle-y, 1,0\rangle=[1, y, 1] \rightarrow\langle 1,0,-t\rangle \cap\langle-y, 1,0\rangle=[t, t y, 1]
$$

It follows that:

$$
[1, y, 1] \cdot[1,0,0]=\langle 0,1,-y\rangle \rightarrow[t, t y, 1] \cdot[1,0,0]=\langle 0,1,-t y\rangle .
$$

Hence

$$
\begin{aligned}
\langle 0,1,-y\rangle \cap\left\langle-\left(x^{-1}\right) y, 1,0\right\rangle= & \\
& {[x, y, 1] \rightarrow\langle 0,1,-t y\rangle \cap\left\langle-\left(x^{-1}\right) y, 1,0\right\rangle=[t x, t y, 1] }
\end{aligned}
$$

Notice that this lemma applies to any plane coordinatized by a nearfield. The next lemma, as it is proved here, applies to the specific nearfield, N.

Lemma 4.2. Iff is a homology with centre $[0,0,1]$ and axis L and $F:[1,0,1] \rightarrow$ $[t, 0,1]$, then $t= \pm 1$.

Proof. Suppose that $t \neq \pm 1$. First we notice that because of Lemma 4.1,

$$
f:[t, t+1,1] \rightarrow\left[t^{2}, t(t+1), 1\right]=[-1,-t+1,1] .
$$

This last equality follows because $t^{2}=-1$ since $t \neq \pm 1$ and

$$
t(t+1)=-(t+1) t=-\left(t^{2}+t\right)=-(-1+t)=-t+1
$$

Also $f:[0, t-1,1] \rightarrow[0, t(t-1), 1]=[0, t+1,1]$. This equality is established in the same way as the one above.

Thus:

$$
\begin{aligned}
{[t, t+1,1] \cdot[0, t-1,1] } & =\langle-t, 1,-t+1\rangle \rightarrow[-1,-t+1,1] \cdot[0, t+1,1] \\
& =\langle t, 1,-t-1\rangle
\end{aligned}
$$

The first equality is true since $t(-t)+t+1-t+1=1+t+1-t+1=0$. The second equality follows similarly. Finally we have

$$
\begin{aligned}
\langle-t, 1,-t+1\rangle \cap\langle 0,0,1\rangle & =[-t, 1,0] \rightarrow\langle t, 1,-t-1\rangle \cap\langle 0,0,1\rangle \\
& =[t, 1,0] .
\end{aligned}
$$

But $[-t, 1,0]$ must be held fixed by f, and so we have a contradiction. Thus $t= \pm 1$.

Theorem 4.3. There are 162 central collineations with axis L. The set of central collineations is

$$
\left\{f_{s, t}: s, t \in R\right\} \cup\left\{f_{s, t} \circ g \circ f_{s, t}{ }^{-1}: s, t \in R\right\}
$$

Proof. The proof is straightforward but we shall include it for completeness.
Since an elation with a given axis is uniquely determined by a point off the axis and its image, there are no elations with axis L other than those of the form $f_{s, t}$.

Similarly, a homology with a given centre and axis is determined by a point off the axis distinct from the centre and its image. Thus it follows from Lemma 4.2 that the only homologies with centre $[0,0,1]$ are the identity and g. Now collineations of the form $f_{s, t} \circ g \circ f_{s, t}{ }^{-1}$ are easily shown to be homologies with centre $[s, t, 1]$. Any other homology, h, with centre $[s, t, 1$], would yield a homology $f_{s, t^{-1}} \circ h \circ f_{s, t}$ with centre $[0,0,1]$. Since this collineation must be the identity, so must h be the identity. Thus every homology is of the form $f_{s, t} \circ g \circ f_{s, t}{ }^{-1}$.

Now we show that there are 1920 collineations which move points on L. u, m, n, q, r, \ldots are as previously defined.

Theorem 4.4. If a collineation f on Π fixes $\pm p$ for $p=m, n, q, r$, then ffixes $\pm u$ (i.e., u and v).

Proof. Suppose that $f:[1, x, 0] \rightarrow[1, x, 0], x= \pm 1, \pm a, \pm b, \pm c$, and also $f: u \rightarrow v$. Now $f:[0,0,1] \rightarrow[s, t, 1]$ for some s, t. Thus, letting $h=f_{s, t}{ }^{-1} \circ f$, we have $h: o \rightarrow o, p \rightarrow p$ for $p=m, n, q, r$ and $u \rightarrow v$. Let y be a fixed non-zero element of R. Now

$$
h:\langle 1,0,0\rangle=[0,1,0] \cdot[0,0,1] \rightarrow[1,0,0] \cdot[0,0,1]=\langle 0,1,0\rangle
$$

and so we have $h:[0, y, 1] \rightarrow[x(y), 0,1]$. We shall denote $x(y)$ by x. Notice that $x \neq 0$. Now $h:\langle 0,1,-y\rangle=[1,0,0] \cdot[0, y, 1] \rightarrow[0,1,0] \cdot[x, 0,1]=$ $\langle 1,0,-x\rangle$. Also $h:\langle t, 1,0\rangle \rightarrow\langle t, 1,0\rangle$ because h holds fixed $[0,0,1]$ and [$\left.1, t^{-1}, 0\right]$. Thus
$[x, y, 1]=\langle 0,1,-y\rangle \cap\left\langle-x^{-1} y, 1,0\right\rangle \rightarrow\langle 1,0,-x\rangle \cap\left\langle-x^{-1} y, 1,0\right\rangle=[x, y, 1] ;$ hence $[x, y, 1]$ is held fixed by h.

Let $z \in R$ such that $z \neq 0, y x^{-1}$. Now $\langle-z, 1, x z-y\rangle=[x, y, 1] \cdot[1, z, 0]$ is held fixed; hence

$$
\begin{aligned}
{[0, y-x z, 1] } & =\langle-z, 1, x z-y\rangle \cap\langle 1,0,0\rangle \rightarrow\langle-z, 1, x z-y\rangle \cap\langle 0,1,0\rangle \\
& =\left[(x z-y) z^{-1}, 0,1\right]
\end{aligned}
$$

By the argument above, h fixes $\left[(x z-y) z^{-1}, y-x z, 1\right]$. We shall denote this point by p_{2}.

Let $L_{z}=\left\langle z(x z-y)^{-1} x z, 1,-y\right\rangle=[0, y, 1] \cdot p_{z}$. Now

$$
L_{z} \cap u v=\left[1,-z(x z-y)^{-1} x z, 0\right]
$$

and this is a fixed point since $-z(x z-y)^{-1} x z \neq 0$. Hence L_{z} is'a fixed line since it contains two fixed points (o and the one above). Since

$$
h:[0, y, 1] \rightarrow[x, 0,1]
$$

it follows that $[x, 0,1] \in L_{2}$. However, this is not necessarily the case as the following example shows: suppose that $y \neq \pm 1$ and let $z=x^{-1}$; then $L_{z}=\left\langle x^{-1}(1-y)^{-1}, 1,-y\right\rangle$. Now if $[x, 0,1] \in L_{z}$, we would have

$$
x x^{-1}(1-y)^{-1}-y=(1-y)^{-1}-y=(y-1)-y=-1=0
$$

a contradiction. Thus h and, therefore, f do not exist.

Theorem 4.5. There exists a collineation f on Π which maps $v \rightarrow p$ for any $p \in u v$.

Proof. We may map $v \rightarrow m$ by j and $v \rightarrow-v$ by j^{2}. Also we may map $m \rightarrow p=[1, x, 0]$ by $h_{1, x}$ for any $x= \pm 1, \pm a, \pm b, \pm c$. Thus with compositions of the mappings j and $h_{1, x}$, we may map $v \rightarrow p$ for any $p \in u v$.

Theorem 4.6. There exists a collineation f on Π, such that fixes u and v and $f: m \rightarrow p$ for any $p \neq u$, v.

Proof. As mentioned in Theorem 4.5,

$$
h_{1, x}: m \rightarrow[1, x, 0] \text { for } x= \pm 1, \pm a, \pm b, \pm c
$$

Also $h_{1, x}: u, v \rightarrow u, v$.
Theorem 4.7. There exists a collineation f on Π such that fixes $u, v, m,-m$, and $f: n \rightarrow p$ for $p \neq u, v, \pm m$.

Proof. It may be easily observed that $h_{b, b}, r_{1,1}$, and $h_{a, a}$ hold u and m fixed and $h_{b, b}: n \rightarrow-n, r_{1,1}: n \rightarrow q, r_{1,1}{ }^{2}: n \rightarrow r, h_{a, a} \circ r_{1,1}: n \rightarrow-q, h_{a, a} \circ r_{1,1^{2}}: n \rightarrow-r$. The identity maps $n \rightarrow n$.

Theorem 4.8. There exists a collineation f on Π such that f fixes $u, v, \pm m, \pm n$ and $f: q \rightarrow p$, where $p= \pm q, \pm r$.

Proof. Notice that $r_{0,-1}, h_{a, a}$, and $h_{b, b}$ hold u and m fixed. Now

$$
r_{0,-1}: n \rightarrow-n,-n \rightarrow n, q \rightarrow-r
$$

hence $h_{b, b} \circ r_{0,-1}: n \rightarrow n, q \rightarrow r$. Also $h_{a, a}: n \rightarrow n, q \rightarrow-q$, and so $h_{a, a} \circ h_{b, b} \circ r_{0,-1}: n \rightarrow n, q \rightarrow-r$. The identity maps $q \rightarrow q$.

Theorem 4.9. There exist 1920 collineations which permute points on uv.
Proof. There exist 10 collineations which map $u \rightarrow p$ where $p \in u v ; 8$ collineations which fix $\pm u$ and map $m \rightarrow p, p \neq \pm u ; 6$ collineations which fix $\pm u, \pm m$, and map $n \rightarrow p, p \neq \pm u, \pm m$; and 4 collineations which fix $\pm u, \pm m, \pm n$ and map $q \rightarrow p$ where $p= \pm q, \pm r$. If f fixes $\pm u, \pm m, \pm n$, and $\pm q$, it follows easily from Theorem 4.4 that f fixes $\pm r$ and hence is the identity. Thus there are $10 \cdot 8 \cdot 6 \cdot 4$ in all.

We conclude by noting that the order of the group G of collineations on Π is $162 \cdot 1920=311,040$. This follows because the set of central collineations with axis L is a normal subgroup of G.

References

1. J. André, Projektive Ebenen über Fastkorpern, Math. Z. 62 (1955), 137-160.
2. P. Dembowski, Finite geometries (Springer-Verlag, New York, 1968).
3. M. Hall, Jr., Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277.
4. - Correction to "Projective planes", Trans. Amer. Math. Soc. 65 (1949), 473-474.
5. D. R. Hughes, Collineation groups of non-Desarguesian planes. I. The Hall Veblen-Wedderburn systems, Amer. J. Math. 81 (1959), 921-938.
6. R. B. Killgrove, Completions of quadrangles in projective planes. II, Can. J. Math. 17 (1965), 155-165.
7. G. Panella, Le collineazioni nei piani di Marshall Hall, Riv. Mat. Univ. Parma 1 (1960), 171-184.
8. G. Pickert, Projektive Ebenen (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955).
9. W. A. Pierce, Collineations on projective Moulton planes, Can. J. Math 16 (1964), 637-656.

Oberlin College,
Oberlin, Ohio

