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THE COLLINEATION GROUP OF THE 
VEBLEN-WEDDERBURN PLANE OF ORDER NINE 

FREDERICK W. STEVENSON 

1. Introduction. In this paper we prove that the order of the collineation 
group of the Veblen-Wedderburn plane of order nine is 311,040. This result 
was stated by Hall [3] in 1943 and proved by Pierce [9] in 1964. Hall assumed 
that there were 10 • 8 • 6 • 4 • 2 = 3840 collineations which permute points 
on the ideal line L and 81 collineations which leave L pointwise fixed. In 1955 
André [1] verified this assumption. When it was realized that a harmonic 
homology with axis L had been overlooked, the number of central collineations 
with axis L doubled and hence the order of the collineation group became 
3840 • 162 = 622,080. This latter figure has been assumed to be correct as 
recently as 1965 ([6]). 

Here it is proved that there are 1920 collineations which move points on L 
and 162 collineations which leave L pointwise fixed, thus giving the figure 
311,040. Pierce's proof of this fact is established from a different viewpoint. 

2. The Veblen-Wedderburn plane of order nine. We may represent 
the Veblen-Wedderburn plane of order nine as follows: 

The points are of three types: [x, y, 1], [1, x, 0], and [0, 1, 0] ,where x and y 
are elements of the nearfield N = (R, + , •) of order 9. 

Similarly, lines are of three types: (m, 1, k), (1, 0, k), and (0, 0, 1), where 
?n,keR. The ideal line L = (0, 0, 1). 

Incidence is defined by: [x, y, z] Ç (m, n} k ) if and only if xm + yn + zk = 0. 
The nearfield N is the system R of Hall [3, p. 273]. We shall use Hall's 

notation here. It should be noted that N satisfies the usual properties of a 
finite nearfield and one important additional property: 

x2 = — 1 for all x 6 R such that x 9* 0,1, — 1. 

We shall denote the plane above by II, the intersection of two lines (w, n, k) 
and (mf, n'', kf) by (m, n, k) C\ {m'', n', k'), and the line joining the points 
[x, y, z] and [x', y', z'\ will be denoted by [x, y, z] • [xr, y', z']. 

3. Collineations on II. We may define a collineation on a projective plane 
as a pair of functions (/, F), where/is a one-to-one correspondence from the set 
of points onto itself and F is a one-to-one correspondence from the set of lines 
onto itself such that p G L if and only if f(p) Ç F(L) for any point p and line L. 
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We describe five types of collineations on II below by stating the corre
spondences for non-invariant elements: 

(1) fs.t'- [x, y,l]-*[x + s,y + t, 1]: s, t £ R, 
FSft: (m, 1, k) —-> (m, 1, k — sm — t) 

< 1 , 0 , * > - > < 1 , 0 , * - S > ; 

(2) g: [x,y, 1] -> [ -x , -y, 1], 

G: (m, 1, k) —» (m, 1, —k) 

<1,0,*> -><1,0, - * > ; 

(3) A,f£: [x, y, 1] -» [xs, /y, 1]: s, t £ R, s, t ^ 0. 

[ l ,x, 0] -» [1, 5 - ^ , 0 ] , 

H ^ : (ra, 1, fe) —> (s~lmt, 1, &/) 

(1,0, *> -* (1,0, yb); 

(4) j : [x, y, 1] -» [x + y, - x + 3;, 1] 

[0, 1,0] -> [1,1,0] 

[1, 1, 0] -> [1,0,0] 

[ 1 , 0 , 0 ] - > [ 1 , - 1 , 0 ] 

[1, - 1 , 0 ] -> [0,1,0], 

J: (m, 1, k) —> (m, 1, km + k), m 9^ 0, ± 1 , 

<l ,0 ,*>-> ( - 1 , 1 , £> 

< - l , l , ê > - > < 0 , l , É > 

(0, l ,&>-> (1, 1,*> 

<lf 1, *>-> <1, 0,*>; 

(5) /%,*: [x, y, z] -» [«,,«(*), a,,«(y), aSf£(2)]: 5 = 0, dbl, / = =bl. 
i^s>£: (m, n, k) —> (aStt(m), aSit(n), aS)t(k)), whereas,*: R —» R is defined 
as follows: aSjt: x + ya —> (x + 53/) + (/^)a. These mappings constitute 
the six automorphisms on N (see Hughes [5] or André [1]). 

For simplicity we shall denote these collineations by/S j £ , g, hSjtJj, and rs%u 

respectively. 
It should be noted that the collineations above leave the ideal line fixed. 

Hall [3; 4] showed that this must be true for every collineation on II. In fact, 
this is a property that the collineations on any plane defined over a nearfield 
must share. 

It is also true of the five collineations above that each fixes [0, 1,0] if and 
only if it fixes [1, 0, 0]. This too is true for general non-Desarguesian planes 
defined over nearfields. Following the notation, definitions, and theorems of 
Dembowski [2, pp. 123, 129, 130] we may prove this fact as follows. 

THEOREM 3.1. Iffis a collineation on II such that f fixes [0, 1, 0], then f must 
fix [1, 0, 0]. 
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Proof. Using Dembowski's notation we have v = [0, 1,0], u = [1,0, 0], 
and o = [0, 0, 1]. Suppose that there exists a collineation / such that 

/ : u,v-*p,v, 

where p ^ u. Now II is (u, v)-transitive, and so it follows that it must be 
(p, v)-transitive. Thus, in particular, II is (w, ov)- and (p, ov)-transitive. It 
follows [2, p. 123, theorem 18] that II is (pu, ov)-transitive and since p G uv 
we obtain that II is (v, ov)-transitive. But II is also (v, uv) -transitive and so 
(by [2, p. 123, theorem 18]) II must be (v, v)-transitive. Thus (by [2, p. 130, 
theorem 22 (f)]) N must be semifield. But N does not satisfy the law of left 
distributivity and so we have a contradiction. Therefore such a collineation / 
does not exist. 

Labeling the points on Las follows: u = [1,0, 0], m = [1, 1,0], w = [1, a, 0], 
q = [1, b, 0], r = [1, c, 0], where b = 1 + a, and c = — 1 + a, we may define 
a unary operation " — " on L by — u = [0, 1,0], — m = [1, —1,0], — n = 
[1, - a , 0], -q = [1, - 6 , 0 ] , -r = [1, -c, 0], and - ( - £ ) = p for p £ L. 
Then Theorem 3.1 implies the following theorem. 

THEOREM 3.2. / / / is a collineation on II, then f:p-+pf if and only if 
-P-+-P'. 

Proof. If / = hSjt or j , it is easily checked that f:p—*p' if and only if 
/ : — p —» —pf- Thus compositions of hStt and j satisfy this property. Now 
suppose that there exists a collineation g'\ p —» p' and —p—*x ^ —p'. Then 
let h: p —>v and h':pf —> v, where h and h' are compositions of the mappings 
hSjt and j . It is easily seen that such mappings exist. Now hf o gf o h~l fixes v 
and maps u—+h(x) 7e u. This contradicts Theorem 3.1. Therefore such a 
collineation gf does not exist. 

4. The collineation group of II. Since all collineations on II fix line L 
we may divide our study into two parts: those collineations which fix L 
pointwise and those which do not. We begin by showing that there are exactly 
162 central collineations with axis L. 

LEMMA 4.1. If f is a homology with centre [0,0, 1] and axis L and, 
f: [1, 0, 1] -> [/, 0, 1], thenf: [x, y, 1] -» [tx, ty, 1]. 

Proof. Since 

/ : [ l , 0 f l ] - > [ * f ( U ] 

[0,1,0] -> [0,1,0] 

we have / : [1, 0, 1] • [0, 1, 0] = (1, 0, - 1 ) -> [t, 0, 1] • [0, 1, 0] = (1, 0, -t). 
Also / fixes (y, 1, 0) for any y, and so 

(1, 0, - 1 > H <-y , 1, 0) = [1, y, 1] -» <1, 0, -t) C\ (~y, 1, 0) = [/, ty, 1]. 

https://doi.org/10.4153/CJM-1970-110-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-110-3


970 FREDERICK W. STEVENSON 

It follows that: 

[1, y, 1] • [1, 0, 0] = (0, 1, -y) -> [t, ty, 1] • [1, 0, 0] = (0, 1, -ty). 

Hence 

(0 ,1 , -y)C\ (-(x-i)y, 1,0) = 

[x, y, 1] -> (0, 1, -ty) r\ < - (arl)y, 1, 0) = [tx, ty, 1]. 

Notice that this lemma applies to any plane coordinatized by a nearfield. 
The next lemma, as it is proved here, applies to the specific nearfield, N. 

LEMMA 4.2. If fis a homology with centre [0, 0, 1] and axis L and F: [1, 0, 1] —> 
[/, 0, 1], then t = =bl. 

Proof. Suppose that t ^ ± 1 . First we notice that because of Lemma 4.1, 

/ : [ / , / + 1 , l ] - > [ / 2 , / ( / + l ) , l ] = [ - 1 , - / + 1 , 1]. 

This last equality follows because t2 = — 1 since t ^ ± 1 and 

t(t+ 1) = - ( / + 1)/ = ~(t2 + t) = - ( - 1 + /) = - / + 1. 

Also / : [0, t - 1, 1] -> [0, t(t - 1), 1] = [0, / + 1, 1]. This equality is 
established in the same way as the one above. 

Thus: 

[/, / + 1, 1] • [0, / - 1, 1] = <- / , 1, -t + 1) -> [ - 1 , -t + 1, 1] • [0, t + 1, 1] 

= (t, 1, - ^ - 1). 

The first equality is true since / ( - / ) + / + 1 - / + 1 = 1 + / + 1 - / + 1 = 0 . 
The second equality follows similarly. Finally we have 

{-/, i, - / + i) n (o, o, i) = [-/, l, o] -> (t, l, -t - i) r\ <o, o, i> 
= [t, l, o]. 

But [ — t, 1,0] must be held fixed b y / , and so we have a contradiction. Thus 
/ = ± 1 . 

THEOREM 4.3. There are 162 central collineations with axis L. The set of 
central collineations is 

{fs,t:s,t G R} U ( / M o g o / M - i : j , K R}. 

Proof. The proof is straightforward but we shall include it for completeness. 
Since an elation with a given axis is uniquely determined by a point off the 

axis and its image, there are no elations with axis L other than those of the 
form/,,, . 
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Similarly, a homology with a given centre and axis is determined by a point 
off the axis distinct from the centre and its image. Thus it follows from Lemma 
4.2 that the only homologies with centre [0, 0, 1] are the identity and g. 
Now collineations of thelormfs,t o g o / s ^ _ 1 a re easily shown to be homologies 
with centre [s, t, 1]. Any other homology, h, with centre [s, t, 1], would yield 
a homology fs,r

loh°fs,t with centre [0, 0,1]. Since this collineation must 
be the identity, so must h be the identity. Thus every homology is of the form 

/ « . l ogo / , , ," 1 . 
Now we show that there are 1920 collineations which move points on L. 

u, m,n, q, r, . . . are as previously defined. 

THEOREM 4.4. If a collineation f on U fixes dtp for p = m,n, q, r, then 
jfixes zLu {i.e., u and v). 

Proof. Suppose t h a t / : [1, x, 0] —» [1, x, 0], x = dbl, ± a , ±&, ±.c, and also 
f: u—>v. Now / : [0, 0, 1] —> [s, t, 1] for some s, t. Thus, letting h = fSft~

1 of, 
we have h: o —» o,p —» p for p = m, n, q, r and u —» v. Let y be a fixed non-zero 
element of R. Now 

h: (1, 0, 0) = [0, 1, 0] • [0, 0, 1] -> [1, 0, 0] - [0, 0, 1] = (0, 1, 0), 

and so we have h: [0, y, 1] —-> [x(y), 0, 1]. We shall denote x(y) by x. Notice 
that x ^ 0. Now A: (0, 1, -y) = [1, 0, 0] • [0, y, 1] -> [0, 1, 0] • [x, 0, 1] -
(1, 0, -x). Also h: {t, 1, 0) ~> (t, 1, 0) because h holds fixed [0, 0, 1] and 
[1, r 1 , 0]. Thus 

[x, y, I] = (0, 1, -y)r\ {-x-'y, 1,0>-> (1, 0, -x)C\ (-cr^y, 1, 0) = [x, y, 1] ; 

hence [x, y, 1] is held fixed by h. 
Let z £ R such that s ^ 0, ^x_1. Now ( — z, 1, x^ — y) = [x, y, 1] • [1, 2, 0] is 

held fixed; hence 

[0, y - xz, 1] = < - s , 1, xz~ y)C\ (1, 0, 0) -> (-z, 1, xz - y) C\ (0, 1, 0) 

= [(xz-y)z-\ 0,1]. 

By the argument above, h fixes [(xz — y)z~l, y — xz, 1]. We shall denote this 
point by pz. 

Let Lz = (z(xz — y)~lxz, 1, —y) = [0, y, 1] • pz. Now 

LzC\uv = [1, —z(xz — y)~lxz, 0] 

and this is a fixed point since —z(xz — ^)_1xs; 7̂  0. Hence L2 is a fixed line 
since it contains two fixed points (0 and the one above). Since 

h: [0,y, l ] - * [ x , 0 , 1], 

it follows that [x, 0, 1] G Lz. However, this is not necessarily the case as the 
following example shows: suppose that y 5̂  ± 1 and let z = x~l\ then 
Lz = (x - 1( l — y)~l, 1, — y). Now if [x, 0, 1] 6 Lz, we would have 

xx~x(l — y)"1 — y = (1 — 30 - 1 — 3>=(:y — 1)— y = —1 = 0, 

a contradiction. Thus h and, therefore, / do not exist. 
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THEOREM 4.5. There exists a collineation f on II which maps v —» p for any 
p € uv. 

Proof. We may map v —> m by j and v —* —v by j 2 . Also we may map 
m -+ p = [1, x, 0] byAi^foranyx = ± 1 , ±<2, ± 5 , ± c . Thus with compositions 
of the mappings j and Ai,x, we may map v —> p for any £ G OT. 

THEOREM 4.6. TTze/'e aw/5 a collineation f on II, sz^/z that f fixes u and v and 
f: m —> p for any p ^ u,v. 

Proof. As mentioned in Theorem 4.5, 

hifX: m —> [1, x, 0] for x = ± 1 , ± a , dz&, ± c . 

Also ftifZ: u, v —* u, v. 

THEOREM 4.7. There exists a collineation f on II such that f fixes u, v, m, —my 

and f:n—>p for p ^ u, v, ± m . 

Proof. It may be easily observed that hb>b, ri ti, and AŒfŒ hold u and m fixed and 
hbtb: n —» — w, rltl: n —> g, /-M

2: » —» r, Aa>a o r M : « —> — q, ha>a o ri,i2:w -» — r. 
The identity maps n —> n. 

THEOREM 4.8. There exists a collineation f on U such that f fixes u, v, ±m, ±n 
and f: q—*p, where p = dbg, ± r . 

Proof. Notice that r0,-i, ha>a, and A6f& hold w and m fixed. Now 

ro,_i: n ~^ ~n, —n —>n,q—> —r; 

hence hbyb o r0,_i: n —* n, q —> r. Also ^a?a: n -^ n, q —* —q, and so 
^a,a o hbfb o ro,_i: n —> n, q—> —r. The identity maps q —> q. 

THEOREM 4.9. There exist 1920 collineations which permute points on uv. 

Proof. There exist 10 collineations which map u —> p where p £ uv; 8 
collineations which fix dtu and map m —"> p, p ^ ±u; 6 collineations which 
fix zLu, ±rn, and map n-^p, p ^ dbw, zbw; and 4 collineations which 
fix dzu, dbm, ±w and map q —> p where p = ±g , ± r . If / fixes ±w, ± m , =fcw, 
and ±g , it follows easily from Theorem 4.4 t h a t / fixes =br and hence is the 
identity. Thus there are 10 • 8 • 6 • 4 in all. 

We conclude by noting that the order of the group G of collineations on II 
is 162 • 1920 = 311,040. This follows because the set of central collineations 
with axis L is a normal subgroup of G. 
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