On Subfields of the Hermitian Function Field

ARNALDO GARCIA ${ }^{1}{ }^{\star}{ }^{\star}$ HENNING STICHTENOTH ${ }^{2 \star}$ and CHAO-PING XING ${ }^{3 \star}$
${ }^{1}$ Instituto de Matématica Pura e Aplicada IMPA, 22460-320 Rio de Janeiro RJ, Brazil. e-mail: garcia@impa.br
${ }^{2}$ Universität GH Essen, FB 6, Mathematik u. Informatik, 45117 Essen, Germany. e-mail: stichtenoth@uni-essen.de
${ }^{3}$ Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China; and Department of Information Systems and Computer Science, The National University of Singapore, 10 Lower Kent Ridge Crescent, Singapore 119260.
e-mail: xingcp@iscs.nus.edu.sg

(Received: 8 May 1998; accepted in final form: 14 September 1998)

Abstract

The Hermitian function field $H=K(x, y)$ is defined by the equation $y^{q}+y=x^{q+1}$ (q being a power of the characteristic of K). Over $K=\mathbb{F}_{q^{2}}$ it is a maximal function field; i.e. the number $N(H)$ of $\mathbb{F}_{q^{2}}$-rational places attains the Hasse-Weil upper bound $N(H)=q^{2}+1+2 g(H) \cdot q$. All subfields $K \varsubsetneqq E \subseteq H$ are also maximal. In this paper we construct a large number of nonrational subfields $E \subseteq H$, by considering the fixed fields $H^{\mathscr{G}}$ under certain groups \mathcal{G} of automorphisms of H / K. Thus we obtain many integers $g \geqslant 0$ that occur as the genus of some maximal function field over $\mathbb{F}_{q^{2}}$.

Mathematics Subject Classifications (1991): 11Gxx, 14Gxx
Key words: function fields, rational places, finite fields.

1. Introduction

Let K be a finite field, F / K an algebraic function field over K of genus $g(F)$. By the Hasse-Weil theorem, the number $N(F)$ of rational places of F / K is bounded by $N(F) \leqslant \# K+1+2 g(F) \cdot \sqrt{\# K}$. The function field is said to be maximal if $N(F)$ attains this upper bound. We are interested in the following question: Which integers $g \geqslant 0$ happen to be the genus of some maximal function field over K ?

Suppose that the cardinality of K is not a square and that F / K is maximal. From the equality $N(F)=\# K+1+2 g(F) \cdot \sqrt{\# K}$ follows that $g(F)=0$, hence F is the rational function field over K. Therefore we will always assume that $\# K$ is a square. We fix some notation.

[^0]```
 p is a prime number.
 q= p
 K= \mathbb{F}}\mp@subsup{q}{}{2}\mathrm{ is the finite field with q}\mp@subsup{q}{}{2}\mathrm{ elements.
 K}=K\{0} is the multiplicative group of K
 F is a function field over K, and K is algebraically closed in F.
 g(F) is the genus of F/K.
 N(F) is the number of rational places (places of degree one) of F/K.
 P}(F)\mathrm{ is the set of all places of }F/K
```

By definition, $F / K$ is maximal if and only if

$$
\begin{equation*}
N(F)=q^{2}+1+2 g(F) \cdot q \tag{1.1}
\end{equation*}
$$

Our main problem can be stated as follows: Describe the set

$$
\begin{align*}
\Gamma\left(q^{2}\right)= & \{g \geqslant 0 \mid \text { there exists a maximal function field } F / K \\
& \text { of genus } g(F)=g\} \tag{1.2}
\end{align*}
$$

A well-known example of a maximal function field over $K=\mathbb{F}_{q^{2}}$ is the Hermitian function field $H$; it is defined by

$$
\begin{equation*}
H=K(x, y) \quad \text { with } y^{q}+y=x^{q+1} \tag{1.3}
\end{equation*}
$$

The genus of $H$ is $g(H)=q(q-1) / 2$, the number of rational places is $N(H)=$ $q^{3}+1=q^{2}+1+2 g(H) \cdot q$, cf. [St 1, VI.4.4]. One can show that any function field over $K$ of genus $g>q(q-1) / 2$ is not maximal, and that the Hermitian function field is the only maximal function field of genus $g=q(q-1) / 2$. In particular, $\Gamma\left(q^{2}\right)$ is a finite set. More precisely, one knows that

$$
\begin{equation*}
\Gamma\left(q^{2}\right) \subseteq\left[0,(q-1)^{2} / 4\right] \cup\{q(q-1) / 2\} \tag{1.4}
\end{equation*}
$$

see [R-St], [X-St], [F-T].
Any subfield $E \subseteq F$ of a maximal function field $F / K$ (with $K \varsubsetneqq E$ ) is maximal [La], so all subfields of the Hermitian function field $H$ provide examples of maximal function fields over $K$. In this paper we will construct systematically a large variety of subfields $E \subseteq H$ which can be obtained as fixed fields of some subgroups of the automorpism group $\mathcal{A} u t(H)$. We will determine the genera of these subfields $E$ (thus finding many numbers $g \in \Gamma\left(q^{2}\right)$ ), and in some cases we will describe $E$ explicitly by generators and equations.

## 2. Places and Automorphisms of $\boldsymbol{H}$

We recall some known facts about the Hermitian function field $H$ (as defined in (1.3)) that we will use in subsequent sections, cf. [St 1, VI.4.4].

The extension $H / K(x)$ is Galois of degree $[H: K(x)]=q$. The pole of $x$ in $K(x)$ is totally ramified in $H$, and we denote by $P_{\infty} \in \mathbb{P}(H)$ the unique pole of $x$ in $H$; i.e. $x$ has pole divisor $(x)_{\infty}=q P_{\infty}$. All other rational places of $K(x)$ split completely in $H / K(x)$, thus we have $N(H)=1+q^{3}$ rational places in $H / K$.

We will also need the number of places of $H / K$ of degree 2 and 3.
LEMMA 2.1. For all $r \geqslant 1$ let $B_{r}=\#\{P \in \mathbb{P}(H) \mid \operatorname{deg} P=r\}$. Then

$$
B_{1}=N(H)=q^{3}+1 ; \quad B_{2}=0 ; \quad B_{3}=\frac{1}{3} q^{3}(q+1)\left(q^{2}-1\right)
$$

Proof. It is clear that $B_{1}=N(H)=q^{3}+1$. From the maximality of $H / K$ follows that the numerator $L_{H}(t)$ of the Zeta function of $H$ is

$$
L_{H}(t)=\prod_{i=1}^{2 g(H)}\left(1-\omega_{i} t\right)
$$

with $\omega_{i}=-q$ for $i=1, \ldots, 2 g(H)$. Setting

$$
S_{r}:=\sum_{i=1}^{2 g(H)} \omega_{i}^{r}=(-1)^{r}(q-1) q^{r+1}
$$

we obtain [St 1, V.2.9] for $r \geqslant 2$ :

$$
B_{r}=\frac{1}{r} \sum_{d \mid r} \mu\left(\frac{r}{d}\right)\left(q^{2 d}-S_{d}\right)
$$

( $\mu$ denotes the Möbius function.) In particular,

$$
\begin{aligned}
B_{2} & =\frac{1}{2}\left(-\left(q^{2}-S_{1}\right)+\left(q^{4}-S_{2}\right)\right) \\
& =\frac{1}{2}\left(-q^{2}-(q-1) q^{2}+q^{4}-(q-1) q^{3}\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
B_{3} & =\frac{1}{3}\left(-\left(q^{2}-S_{1}\right)+\left(q^{6}-S_{3}\right)\right) \\
& =\frac{1}{3}\left(-q^{2}-(q-1) q^{2}+q^{6}+(q-1) q^{4}\right)=\frac{1}{3} q^{3}(q+1)\left(q^{2}-1\right)
\end{aligned}
$$

The automorphism group of the Hermitian function field,

$$
\mathcal{A}:=\mathcal{A} u t(H)=\{\sigma: H \rightarrow H \mid \sigma \text { is an automorphism of } H / K\}
$$

is extremely large [St 3], [Le]. It is isomorphic to the projective unitary group $\operatorname{PGU}\left(3, q^{2}\right)$ and has order

$$
\begin{equation*}
\text { ord } \mathcal{A}=q^{3}\left(q^{2}-1\right)\left(q^{3}+1\right) \tag{2.1}
\end{equation*}
$$

We describe $\mathcal{A}$ in some detail: The subgroup

$$
\mathcal{A}\left(P_{\infty}\right)=\left\{\sigma \in \mathcal{A} \mid \sigma P_{\infty}=P_{\infty}\right\} \subseteq \mathcal{A}
$$

consists of all automorphisms $\sigma$ with

$$
\begin{array}{ll}
\sigma(x)=a x+b, & \sigma(y)=a^{q+1} y+a b^{q} x+c \\
a \in K^{\times}, \quad b \in K, & c^{q}+c=b^{q+1} \tag{2.2}
\end{array}
$$

It has order

$$
\begin{equation*}
\operatorname{ord} \mathcal{A}\left(P_{\infty}\right)=q^{3}\left(q^{2}-1\right) \tag{2.3}
\end{equation*}
$$

Let

$$
\mathcal{A}_{1}\left(P_{\infty}\right)=\left\{\sigma \in \mathcal{A}\left(P_{\infty}\right) \mid \sigma x=x+b \text { for some } b \in K\right\} .
$$

Then $\mathcal{A}_{1}\left(P_{\infty}\right)$ is the unique $p$-Sylow subgroup of $\mathcal{A}\left(P_{\infty}\right)$, it contains all automorphisms with

$$
\begin{align*}
& \sigma x=x+b, \quad \sigma y=y+b^{q} x+c  \tag{2.4}\\
& b \in K, \quad c^{q}+c=b^{q+1}
\end{align*}
$$

and its order is

$$
\begin{equation*}
\operatorname{ord} \mathcal{A}_{1}\left(P_{\infty}\right)=q^{3} \tag{2.5}
\end{equation*}
$$

The factor group $\mathcal{A}\left(P_{\infty}\right) / \mathcal{A}_{1}\left(P_{\infty}\right)$ is cyclic of order $q^{2}-1$; it is generated by the automorphism $\epsilon \in \mathcal{A}\left(P_{\infty}\right)$ with

$$
\begin{equation*}
\epsilon(x)=a x, \quad \epsilon(y)=a^{q+1} y \tag{2.6}
\end{equation*}
$$

where $a \in K$ is a primitive $\left(q^{2}-1\right)$ th root of unity.
Another automorphism $\omega \in \mathscr{A}$ is given by

$$
\begin{equation*}
\omega(x)=\frac{x}{y}, \quad \omega(y)=\frac{1}{y} \tag{2.7}
\end{equation*}
$$

This element $\omega$ is an involution (i.e. $\operatorname{ord}(\omega)=2$ ), and $\mathscr{A}$ is generated by $\mathcal{A}\left(P_{\infty}\right)$ and $\omega$; i.e.

$$
\begin{equation*}
\mathcal{A}=\left\langle\mathcal{A}\left(P_{\infty}\right), \omega\right\rangle . \tag{2.8}
\end{equation*}
$$

Let $\mathcal{G} \subseteq \mathcal{A}$ be a subgroup of $\mathcal{A}$; we denote by $H^{\mathcal{G}}$ its fixed field,

$$
H^{g}=\{z \in H \mid \sigma z=z \text { for all } \sigma \in \mathcal{G}\}
$$

Then $H / H^{\mathcal{G}}$ is a Galois extension of degree $\left[H: H^{\mathcal{q}}\right]=\operatorname{ord}(\mathcal{q})$, and $\mathcal{g}$ is the Galois group of $H / H^{g}$. Since $2 g(H)=q(q-1)$, the Hurwitz genus formula gives

$$
\begin{equation*}
q^{2}-q-2=\operatorname{ord}(\mathcal{q}) \cdot\left(2 g\left(H^{\mathcal{g}}\right)-2\right)+\operatorname{deg} \operatorname{Diff}\left(H / H^{\mathcal{g}}\right) \tag{2.9}
\end{equation*}
$$

where $\operatorname{Diff}\left(H / H^{g}\right)$ is the different of $H / H^{g}$. For a place $P \in \mathbb{P}(H)$ let $Q=$ $P \cap H^{G}$ be the restriction of $P$ to $H^{g}$, and we denote by

$$
e(Q):=e(P \mid Q) \quad(\operatorname{resp} . d(Q):=d(P \mid Q))
$$

the ramification index (resp. the different exponent) of $P \mid Q$. Thus

$$
\operatorname{deg} \operatorname{Diff}\left(H / H^{\mathcal{g}}\right)=\operatorname{ord}(\mathcal{g}) \cdot \sum_{Q \in \mathbb{P}\left(H^{\mathcal{G}}\right)} \frac{d(Q)}{e(Q)} \cdot \operatorname{deg} Q
$$

and we obtain from (2.9) that

$$
\begin{equation*}
q^{2}-q-2=\operatorname{ord}(\mathcal{q}) \cdot\left(2 g\left(H^{g}\right)-2+\sum_{Q \in \mathbb{P}\left(H^{g}\right)} \frac{d(Q)}{e(Q)} \cdot \operatorname{deg} Q\right) \tag{2.10}
\end{equation*}
$$

PROPOSITION 2.2. The fixed field $H^{\mathcal{A}}$ is rational, and exactly two places of $H^{\mathcal{A}}$ are ramified in $H$. One of the ramified places is the place $Q_{\infty}:=P_{\infty} \cap H^{\mathcal{A}}$; this place is wildly ramified in $H / H^{\text {th }}$ with ramification index

$$
e\left(Q_{\infty}\right)=e\left(P_{\infty} \mid Q_{\infty}\right)=q^{3}\left(q^{2}-1\right)
$$

and different exponent

$$
d\left(Q_{\infty}\right)=d\left(P_{\infty} \mid Q_{\infty}\right)=q^{5}+q^{2}-q-2
$$

The conjugates of $P_{\infty}$ under $\mathcal{A}$ are exactly all rational places of $\underset{\tilde{P}}{H}$.
The other ramified place is the place $\tilde{Q}:=\tilde{P} \cap H^{\mathscr{A}}$, where $\tilde{P} \in \mathbb{P}(H)$ is any place of degree three. This place $\tilde{\sim} \tilde{\tilde{P}}$ is a rational place of $H^{\mathcal{A}}$, and it is tamely ramified in $H / H^{\mathcal{A}}$ with $e(\tilde{Q})=e(\tilde{P} \mid \tilde{Q})=q^{2}-q+1$. The conjugates of $\tilde{P}$ under A are exactly all places of $H$ of degree three.

Proof. As the extension $H / K(x)$ is Galois, $H^{\mathscr{A}}$ is contained in $K(x)$, and hence $H^{\mathcal{A}}$ is also rational. In order to determine the ramification index and the different exponent of $P_{\infty} \mid Q_{\infty}$ we use Hilbert's ramification theory, cf. [St 1, Ch.III.8]. By definition, the group $\mathcal{A}\left(P_{\infty}\right)=\left\{\sigma \in \mathcal{A} \mid \sigma P_{\infty}=P_{\infty}\right\}$ is the decomposition group of $P_{\infty} \mid Q_{\infty}$, so

$$
e\left(P_{\infty} \mid Q_{\infty}\right)=\operatorname{ord} \mathcal{A}\left(P_{\infty}\right)=q^{3}\left(q^{2}-1\right)
$$

by (2.3) (note that $\mathcal{A}\left(P_{\infty}\right)$ is also the inertia group since $\operatorname{deg} P_{\infty}=1$ ).
The different exponent $d\left(P_{\infty} \mid Q_{\infty}\right)$ can be calculated as follows: Let $v_{P_{\infty}}$ be the discrete valuation of $H$ associated to $P_{\infty}$, and choose a $P_{\infty}$-prime element $t$, i.e. $v_{P_{\infty}}(t)=1$. For $1 \neq \sigma \in \mathcal{A}\left(P_{\infty}\right)$ set

$$
\begin{equation*}
i(\sigma)=v_{P_{\infty}}(\sigma(t)-t) \tag{2.11}
\end{equation*}
$$

then

$$
d\left(P_{\infty} \mid Q_{\infty}\right)=\sum_{1 \neq \sigma \in \mathcal{A}\left(P_{\infty}\right)} i(\sigma)
$$

by [St 1, Prop. III.5.12 and Thm. III.8.8]. In our situation we have (2.2)

$$
\sigma(x)=a x+b, \quad \sigma(y)=a^{q+1} y+a b^{q} x+c
$$

with $a \in K \backslash\{0\}$ and $b \in K$, and we can choose the prime element $t=x / y$. So

$$
\begin{align*}
i(\sigma) & =v_{P_{\infty}}\left(\frac{a x+b}{a^{q+1} y+a b^{q} x+c}-\frac{x}{y}\right) \\
& =v_{P_{\infty}}\left((a x+b) y-x\left(a^{q+1} y+a b^{q} x+c\right)\right)-2 v_{P_{\infty}}(y) \\
& =v_{P_{\infty}}\left(\left(a-a^{q+1}\right) x y-a b^{q} x^{2}+b y-c x\right)+2(q+1) \\
& = \begin{cases}1, & \text { if } a \neq 1, \\
2, & \text { if } a=1 \text { and } b \neq 0, \\
q+2, & \text { if } a=1 \text { and } b=0(\text { and } c \neq 0) .\end{cases} \tag{2.12}
\end{align*}
$$

Hence

$$
\begin{aligned}
d\left(P_{\infty} \mid Q_{\infty}\right) & =\left(q^{2}-2\right) \cdot q^{3}+\left(q^{2}-1\right) \cdot q \cdot 2+(q-1)(q+2) \\
& =q^{5}+q^{2}-q-2
\end{aligned}
$$

As the number of conjugates of $P_{\infty}$ under $\mathscr{A}$ is equal to the index $\left(\mathcal{A}: \mathcal{A}\left(P_{\infty}\right)\right)=$ $q^{3}+1=N(H)$, all rational places of $H$ are $\mathcal{A}$-conjugate. Now all assertions of Proposition 2.2 concerning $P_{\infty}$ are settled.

We substitute $e\left(Q_{\infty}\right)$ and $d\left(Q_{\infty}\right)$ into formula (2.10) and find after some computation that

$$
\begin{equation*}
\sum_{Q \neq Q_{\infty}} \frac{d(Q)}{e(Q)} \cdot \operatorname{deg} Q=\frac{q^{2}-q}{q^{2}-q+1} \tag{2.13}
\end{equation*}
$$

This implies that exactly one place $\tilde{Q} \in \mathbb{P}\left(H^{\mathcal{A}}\right)$ with $\tilde{Q} \neq Q_{\infty}$ ramifies in $H / H^{\mathcal{A}}$, that $\operatorname{deg} \tilde{Q}=1$ and that $\tilde{Q}$ is tamely ramified (otherwise the left-hand side of (2.13) would be $\geqslant 1$ ). Moreover it follows that $e(\tilde{Q})=q^{2}-q+1($ since $d(\tilde{Q})=$ $e(\tilde{Q})-1$.

In order to show that any place $\tilde{P} \in \mathbb{P}(H)$ lying above $\tilde{Q}$ has degree three, we consider the group $\mathscr{B}:=$ inertia group of $\tilde{P}$ in $H / H^{\mathscr{A}}$. The group $\mathscr{B}$ is cyclic of $\operatorname{order} \operatorname{ord}(\mathscr{B})=q^{2}-q+1$. Let $\tilde{R}=\tilde{P} \cap H^{\mathcal{B}}$ be the restriction of $\tilde{P}$ to the fixed field $H^{\mathcal{B}}$ of $\mathscr{B}$. As all places of $H / K$ of degree one lie above $Q_{\infty}$, and as there are no places of degree two (by Lemma 2.1), we conclude that

$$
\begin{equation*}
\operatorname{deg} \tilde{R}=\operatorname{deg} \tilde{P} \geqslant 3 . \tag{2.14}
\end{equation*}
$$

The Hurwitz genus formula (2.10), applied to the extension $H / H^{\mathcal{B}}$, yields

$$
q^{2}-q-2=\left(q^{2}-q+1\right)\left(2 g\left(H^{\mathcal{B}}\right)-2+\sum_{R \in \mathbb{P}\left(H^{\mathcal{B}}\right)} \frac{e(R)-1}{e(R)} \operatorname{deg} R\right) .
$$

From this equation and (2.14) we conclude easily that $g\left(H^{\mathscr{B}}\right)=0$, that $\tilde{R}$ is the only ramified place in $H / H^{\mathcal{B}}$, and that $\operatorname{deg} \tilde{R}=\operatorname{deg} \tilde{\tilde{Q}}=3$.

The number of places of $H$ lying above the place $\tilde{Q}=\dot{\tilde{P}} \cap H^{d}$ is equal to

$$
\frac{\operatorname{ord}(\mathcal{A}) \cdot \operatorname{deg} \tilde{Q}}{e(\tilde{P} \mid \tilde{Q}) \cdot \operatorname{deg} \tilde{P}}=\frac{q^{3}\left(q^{2}-1\right)\left(q^{3}+1\right)}{\left(q^{2}-q+1\right) \cdot 3}=\frac{1}{3} q^{3}(q+1)\left(q^{2}-1\right)
$$

and this is exactly the number of places of $H$ of degree three, by Lemma 2.1. Hence all places of $H$ of degree three are conjugate under $\mathcal{A}$, and Proposition 2.2 is completely proved.

In the proof of Proposition 2.2 we have also established:
COROLLARY 2.3. Let $\tilde{P} \in \mathbb{P}(H)$ be a place of degree three and $\mathcal{B} \subseteq \mathcal{A}$ be the inertia group of $\tilde{P}$ with respect to the extension $H / H^{\mathscr{A}}$. Then the fixed field $H^{\mathcal{B}}$ is rational, the extension $H / H^{\mathscr{B}}$ is cyclic of degree $\left[H: H^{\mathscr{B}}\right]=q^{2}-q+1$, and $\tilde{P}$ is totally ramified in $H / H^{\mathbb{B}}$. All other places of $H^{\mathcal{B}}$ are unramified in $H / H^{\mathbb{B}}$.

There is another useful description of the Hermitian function field $H=K(x, y)$ as follows: Choose elements $a, b \in K$ such that $a^{q}+a=b^{q+1}=-1$, and set

$$
u=\frac{y+a}{x}, \quad v=\frac{b(y+a+1)}{x} .
$$

Then $H=K(u, v)$, and one checks easily that

$$
\begin{equation*}
u^{q+1}+v^{q+1}+1=0 . \tag{2.15}
\end{equation*}
$$

## 3. The Fixed Fields of $\boldsymbol{p}$-Subgroups $\boldsymbol{U} \subseteq \mathcal{A}$

We maintain all notations from Section 2 . Let $\mathcal{U} \subseteq \mathcal{A}$ be a $p$-subgroup of $\mathcal{A}$. We consider the fixed field $H^{U}$ of $H$ under $U$ and want to determine its genus $g\left(H^{u}\right)$.

Since $\mathcal{A}_{1}\left(P_{\infty}\right)$ is a $p$-Sylow subgroup of $\mathcal{A}$ and any two $p$-Sylow subgroups are conjugate, we will assume w.l.o.g. that $\mathcal{U} \subseteq \mathcal{A}_{1}\left(P_{\infty}\right)$. We identify an automorph$\operatorname{ism} \sigma \in \mathcal{A}_{1}\left(P_{\infty}\right)$ with the pair $\sigma=[b, c] \in K \times K$ where

$$
\begin{equation*}
\sigma x=x+b, \quad \sigma y=y+b^{q} x+c \quad \text { and } \quad c^{q}+c=b^{q+1} \tag{3.1}
\end{equation*}
$$

see (2.4). The group operation on such pairs is then given by

$$
\begin{equation*}
\left[b_{1}, c_{1}\right] \cdot\left[b_{2}, c_{2}\right]=\left[b_{1}+b_{2}, b_{1} b_{2}^{q}+c_{1}+c_{2}\right] \tag{3.2}
\end{equation*}
$$

The identity is the pair $[0,0]$, the inverse of $[b, c]$ is $[b, c]^{-1}=\left[-b, b^{q+1}-c\right]$. The map $\varphi: U \rightarrow K$ given by

$$
\begin{equation*}
\varphi([b, c])=b \tag{3.3}
\end{equation*}
$$

is a homomorphism into the additive group of $K$ and we set

$$
\begin{equation*}
\mathcal{V}_{u}=\operatorname{Im}(\varphi), \quad \mathcal{W}_{u}=\{c \in K \mid[0, c] \in \mathcal{U}\} \tag{3.4}
\end{equation*}
$$

These are additive subgroups of $K$, and $\mathcal{W}_{u} \simeq \operatorname{Ker}(\varphi)$. Hence

$$
\begin{equation*}
\operatorname{ord} \mathcal{U}=p^{v+w}, \quad \text { where } p^{v}=\operatorname{ord} \mathcal{V}_{u} \quad \text { and } \quad p^{w}=\operatorname{ord} \mathcal{W}_{u} \tag{3.5}
\end{equation*}
$$

Now we determine the genus $g\left(H^{u}\right)$. It is easily seen that $P_{\infty}$ is the only place of $H$ which is ramified in the extension $H / H^{u}$, the Hurwitz genus formula (2.10) then yields

$$
\begin{equation*}
q^{2}-q-2=\operatorname{ord} u \cdot\left(2 g\left(H^{u}\right)-2\right)+d\left(P_{\infty}\right) \tag{3.6}
\end{equation*}
$$

where $d\left(P_{\infty}\right)$ denotes the different exponent of $P_{\infty}$ in the extension $H / H^{u}$. We have (with $i(\sigma)$ as in (2.11))

$$
\begin{align*}
d\left(P_{\infty}\right) & =\sum_{1 \neq \sigma \in u} i(\sigma) \\
& =2\left(\text { ord } U-\text { ord } \mathcal{W}_{u}\right)+(q+2)\left(\text { ord } \mathcal{W}_{u}-1\right) \\
& =2\left(p^{v+w}-p^{w}\right)+(q+2)\left(p^{w}-1\right) \tag{3.7}
\end{align*}
$$

by (2.12). Substituting this into (3.6), we obtain

$$
\begin{equation*}
g\left(H^{u}\right)=\frac{1}{2} p^{n-v}\left(p^{n-w}-1\right) \tag{3.8}
\end{equation*}
$$

In particular, $H^{u}$ is a rational function field if and only if one of the following (pairwise equivalent) conditions holds
(i) $\operatorname{ord}\left(W_{u}\right)=q$.
(ii) $\mathcal{U} \supseteq\left\{[0, c] \mid c^{q}+c=0\right\}$.
(iii) $H^{u} \subseteq K(x)$.

PROPOSITION 3.1. Let $q=p^{n}$ and $\mathcal{U}$ be a $p$-subgroup of $\mathcal{A}$ such that the fixed field $H^{u}$ is not rational. Then $g\left(H^{u}\right)=\frac{1}{2} p^{n-v}\left(p^{n-w}-1\right)$, with $0 \leqslant w \leqslant n-1$ and $0 \leqslant v \leqslant n$.

Proof. Since $g\left(H^{u}\right)$ is an integer, all assertions follow immediately from (3.8).

We show now that the above numerical conditions on $v$ and $w$ are also sufficient for the existence of such a subfield of $H$, if the characteristic of $K$ is odd.

THEOREM 3.2. Let $q=p^{n}$ with $p \neq 2$, and let $g \geqslant 1$ be an integer. Then the following assertions are equivalent.
(i) There exists a p-subgroup $U \subseteq \mathcal{A}$ such that $g=g\left(H^{u}\right)$.
(ii) There are integers $v, w$ such that $0 \leqslant w \leqslant n-1,0 \leqslant v \leqslant n$ and $g=\frac{1}{2} p^{n-v}\left(p^{n-w}-1\right)$.
Proof. It remains to show that (ii) implies (i). One checks immediately that the set $\mathcal{C}=\left\{[b, c] \in \mathcal{A}_{1}\left(P_{\infty}\right) \mid b \in \mathbb{F}_{q}\right\}$ is an Abelian subgroup of $\mathcal{A}_{1}\left(P_{\infty}\right)$ of order ord $\mathcal{C}=q^{2}$. For $j \geqslant 1$ and $[b, c] \in \mathcal{A}_{1}\left(P_{\infty}\right)$ holds

$$
\begin{equation*}
[b, c]^{j}=\left[j b, j c+\frac{j(j-1)}{2} b^{q+1}\right] . \tag{3.9}
\end{equation*}
$$

Since the characteristic $p$ of $K$ is odd, we conclude that all nontrivial automorphisms $\sigma \in \mathcal{A}_{1}\left(P_{\infty}\right)$ have order $p$. It follows that $\mathcal{C}$ is a $\mathbb{F}_{p}$-vector space of dimension $2 n$. The space

$$
\mathcal{Z}=\left\{[0, c] \in \mathcal{A}_{1}\left(P_{\infty}\right) \mid c^{q}+c=0\right\}
$$

is an $n$-dimensional subspace of $\mathcal{C}$ (in fact, $\mathbb{Z}$ is the center of $\mathcal{A}_{1}\left(P_{\infty}\right)$ ). We choose $\mathbb{F}_{p}$-subspaces $\mathcal{V}, \mathcal{W} \subseteq \mathcal{C}$ with

$$
\mathcal{W} \subseteq \mathcal{Z}, \quad \operatorname{dim}_{\mathbb{F}_{p}} \mathcal{W}=w, \quad \mathcal{V} \cap \mathcal{Z}=0 \quad \text { and } \quad \operatorname{dim}_{\mathbb{F}_{p}} \mathcal{V}=v
$$

Then $\mathcal{U}=\mathcal{V} \cdot \mathcal{W}$ is a subgroup of $\mathcal{A}_{1}\left(P_{\infty}\right)$ such that $\mathcal{W}_{u} \simeq \mathcal{W}$ and $\mathcal{V}_{u} \simeq \mathcal{V}$ (notation as in (3.4)). Hence, the genus of $H^{u}$ is $g\left(H^{u}\right)=\frac{1}{2} p^{n-v}\left(p^{n-w}-1\right)$ by Proposition 3.1.

In the case char $(K)=2$, the situation is slightly different.
THEOREM 3.3. Let $q=2^{n}$, and let $g \geqslant 1$ be an integer. Then the following assertions are equivalent.
(i) There exists a 2-subgroup $U \subseteq \mathcal{A}$ such that $g=g\left(H^{u}\right)$.
(ii) $g=2^{n-v-1} \cdot\left(2^{n-w}-1\right)$ with $0 \leqslant v \leqslant n-1$ and $0 \leqslant w \leqslant n-1$, and there exist additive subgroups $\mathcal{V} \subseteq K$ and $\mathcal{W} \subseteq \mathbb{F}_{q}$ of orders ord $\mathcal{V}=2^{v}$ and ord $\mathcal{W}=2^{w}$, such that $\mathcal{V}^{q+1}=\left\{b^{q+1} \mid b \in \mathcal{V}\right\}$ is contained in $\mathcal{W}$.

Proof. (i) $\Rightarrow$ (ii): Let $\mathcal{U} \subseteq \mathcal{A}$ be a 2-group whose fixed field $H^{u}$ is not rational. We can assume that $\mathcal{U} \subseteq \mathcal{A}_{1}\left(P_{\infty}\right)$. Define $\mathcal{V}=\mathcal{V}_{u}$ and $\mathcal{W}=\mathcal{W}_{u}$ as in formulas (3.4), and let ord $\mathcal{V}=2^{v}$, ord $\mathcal{W}=2^{w}$. By (3.8) the genus of $H^{u}$ is $g\left(H^{u}\right)=$ $2^{n-v-1}\left(2^{n-w}-1\right)$. Since $g\left(H^{u}\right)$ is a positive integer, we conclude that $0 \leqslant v \leqslant$ $n-1$ and $0 \leqslant w \leqslant n-1$. It remains to prove that $\mathcal{W} \subseteq \mathbb{F}_{q}$ and $\mathcal{V}^{q+1} \subseteq \mathcal{W}$. Let $c \in \mathcal{W}$. Then $[0, c] \in \mathcal{A}_{1}\left(P_{\infty}\right)$ and, therefore, $c^{q}+c=0$ by (3.1). Since $q$ is even, it follows that $c \in \mathbb{F}_{q}$. Finally, let $b \in \mathcal{V}$. Choose an element $d \in K$ such that $[b, d] \in \mathcal{U}$. Then $[b, d]^{2}=\left[0, b^{q+1}\right] \in \mathcal{U}$, hence $b^{q+1} \in \mathcal{W}$.
(ii) $\Rightarrow$ (i): We note that the set $\mathcal{Z}=\left\{[0, c] \mid c \in \mathbb{F}_{q}\right\}=\left\{\sigma^{2} \mid \sigma \in \mathcal{A}_{1}\left(P_{\infty}\right)\right\}$ is the center of $\mathscr{A}_{1}\left(P_{\infty}\right)$ (this is easily checked). Assume now that $\mathcal{V} \subseteq K$ and $\mathcal{W} \subseteq \mathbb{F}_{q}$ are additive subgroups of orders $2^{v}$ and $2^{w}$ such that $0 \leq w<n$ and $\mathcal{V}^{q+1} \subseteq \mathcal{W}$. We show by induction on $v$ (for fixed $\mathcal{W}$ ) that there is a subgroup $\mathcal{U} \subseteq \mathcal{A}_{1}\left(P_{\infty}\right)$ with $\mathcal{V}_{u}=\mathcal{V}$ and $\mathcal{W}_{u}=\mathcal{W}$.

The case $v=0$ is trivial: in this case we set $\mathcal{U}:=\{[0, c] \mid c \in \mathcal{W}\}$. Suppose now that $v>0$. Let $\mathcal{V}_{0} \subseteq \mathcal{V}$ be a subgroup of order $2^{v-1}$. By induction hypothesis there is a subgroup $\mathcal{U}_{0} \subseteq \mathcal{A}_{1}\left(P_{\infty}\right)$ with $\mathcal{V}_{u_{0}}=\mathcal{V}_{0}$ and $\mathcal{W}_{u_{0}}=\mathcal{W}$. Choose an element $b \in \mathcal{V} \backslash \mathcal{V}_{0}$ and an element $c \in K$ with $c^{q}+c=b^{q+1}$, and let $\beta=[b, c]$. For all elements $\gamma=\left[b_{0}, c_{0}\right] \in \mathcal{U}_{0}$ we have that

$$
(\beta \gamma)^{2}=\left[b+b_{0}, *\right]^{2}=\left[0,\left(b+b_{0}\right)^{q+1}\right]
$$

lies in $\mathcal{U}_{0}$ (because $\mathcal{V}^{q+1} \subseteq \mathcal{W}$ ). Now we claim that

$$
\begin{equation*}
\beta \cdot \mathcal{U}_{0}=\mathcal{U}_{0} \cdot \beta \tag{3.10}
\end{equation*}
$$

In order to prove this, consider the product $\beta \cdot \gamma$ with some $\gamma \in \mathcal{U}_{0}$. Since $\beta^{4}=$ $\gamma^{4}=[0,0]$ and all squares are in the center of $\mathcal{A}_{1}\left(P_{\infty}\right)$, we find that

$$
\begin{aligned}
\beta \gamma & =\beta \gamma\left(\beta \gamma^{4} \beta^{3}\right)=(\beta \gamma)^{2} \gamma^{3} \beta^{3} \\
& =\gamma^{3} \cdot(\beta \gamma)^{2} \cdot \beta^{2} \cdot \beta \in U_{0} \cdot U_{0} \cdot U_{0} \cdot \beta=U_{0} \beta
\end{aligned}
$$

This implies (3.10) and shows that $\mathcal{U}:=U_{0} \cup \beta \cdot U_{0}$ is a subgroup of $\mathcal{A}_{1}\left(P_{\infty}\right)$. It is easily checked that $\mathcal{V}_{U}=\mathcal{V}$ and $\mathcal{W}_{U}=\mathcal{W}$, as desired.

COROLLARY 3.4. Let $q=2^{n}$. Then we have
(i) If there exists a 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ such that the fixed field $H^{U}$ has genus $g\left(H^{u}\right)=2^{n-v-1} \cdot\left(2^{n-w}-1\right) \neq 0$ then there is a 2 -subgroup $\mathcal{U}^{\prime} \subseteq \mathcal{A}$ with

$$
g\left(H^{u^{\prime}}\right)=2^{n-v^{\prime}-1}\left(2^{n-w}-1\right), \quad \text { for all } v^{\prime} \text { with } 0 \leqslant v^{\prime} \leqslant v
$$

(ii) For all integers $v, w$ with $0 \leqslant v \leqslant w<n$ there is a 2-subgroup $\mathcal{U} \subseteq \mathcal{A}$ such that $g\left(H^{u}\right)=2^{n-v-1}\left(2^{n-w}-1\right)$.
(iii) Suppose that $v$ and $w$ satisfy the following conditions:

$$
w|n, w| v, v \mid 2 n, 1 \leqslant v<n \text { and } \left.\frac{2^{v}-1}{2^{w}-1} \right\rvert\,\left(2^{n}+1\right)
$$

Then there exists a 2 -subgroup $\mathcal{U} \subseteq \mathscr{A}$ such that

$$
g\left(H^{u}\right)=2^{n-v-1}\left(2^{n-w}-1\right) .
$$

Proof. (i) If $g\left(H^{u}\right)=2^{n-v-1}\left(2^{n-w}-1\right)$ then ord $\mathcal{V}_{u}=2^{v}$, ord $\mathcal{W}_{u}=2^{w}$ and $\mathcal{V}_{u}^{q+1} \subseteq \mathcal{W}_{u}$. For all $v^{\prime} \leqslant v$ there is a subgroup $\mathcal{V}^{\prime} \subseteq \mathcal{V}_{u}$ of order $2^{v^{\prime}}$, and clearly $\left(\mathcal{V}^{\prime}\right)^{q+1} \subseteq \mathcal{W}_{u}$. By Theorem 3.3 there exists a 2-subgroup $\mathcal{U}^{\prime} \subseteq \mathcal{A}$ with $g\left(H^{u^{\prime}}\right)=2^{n-v^{\prime}-1}\left(2^{n-w}-1\right)$.
(ii) First choose an additive subgroup $\mathcal{W} \subseteq \mathbb{F}_{q}$ of order $2^{w}$. As $b^{q+1}=b^{2}$ for all $b \in \mathbb{F}_{q}$, the mapping $b \mapsto b^{q+1}$ is an isomorphism of the additive group $\mathbb{F}_{q}$ onto itself. Hence there is, for all $v \leqslant w$, a subgroup $\mathcal{V} \subseteq \mathbb{F}_{q}$ of order $2^{v}$ with $\mathcal{V}^{q+1} \subseteq \mathcal{W}$. Now apply Theorem 3.3.
(iii) The conditions on $v$ and $w$ imply that $\mathbb{F}_{2^{w}} \subseteq \mathbb{F}_{2^{v}} \subseteq \mathbb{F}_{2^{2 n}}=K$. The norm mapping $\nu: \mathbb{F}_{2^{v}} \rightarrow \mathbb{F}_{2^{w}}$ is given by $\nu(b)=b^{\left(2^{v}-1\right) /\left(2^{w}-1\right)}$, and the assumption $\left(2^{v}-1\right) /\left(2^{w}-1\right) \mid\left(2^{n}+1\right)$ implies that $\left(\mathbb{F}_{2^{v}}\right)^{2^{n}+1} \subseteq \mathbb{F}_{2^{w}}$. Now we can apply Theorem 3.3 with $\mathcal{V}=\mathbb{F}_{2^{v}}$ and $\mathcal{W}=\mathbb{F}_{2^{w}}$.

Remark 3.5. Here we want to indicate how hard it is to find a 2-subgroup $\mathcal{U} \subseteq \mathscr{A}$ with $v>w$. If $w=0$, that means $\mathcal{W}_{u}=\{0\}$, the condition $\mathcal{V}_{u}^{q+1} \subseteq \mathcal{W}_{u}$ implies $v=0$.

Now suppose that $w=1$, that means $\mathcal{W}_{u}=\{0, \alpha\}$ for some $\alpha \in \mathbb{F}_{q}^{*}$. If $v>0$ we then fix an element $b \in \mathcal{V}_{u} \backslash\{0\}$. For another element $b_{1} \in \mathcal{V}_{u} \backslash\{0, b\}$, we have

$$
\left(b+b_{1}\right)^{q+1}=b^{q+1}+b_{1}^{q+1}+b b_{1}^{q}+b^{q} b_{1}
$$

Using the condition $\mathcal{V}_{u}^{q+1} \subseteq \mathcal{W}_{u}=\{0, \alpha\}$, we must have

$$
\begin{equation*}
\alpha=b b_{1}^{q}+b^{q} b_{1} . \tag{3.11}
\end{equation*}
$$

We multiply Equation (3.11) by $b$ and by $b_{1}$, obtaining

$$
b^{2} b_{1}^{q}+\alpha b_{1}=\alpha b \quad \text { and } \quad \alpha b+b^{q} b_{1}^{2}=\alpha b_{1}
$$

Hence $b^{q} b_{1}^{2}=b^{2} b_{1}^{q}$ and $\left(b_{1} / b\right)^{q / 2}=b_{1} / b$. We then conclude that $b_{1} / b \in \mathbb{F}_{q / 2} \cap$ $\mathbb{F}_{q^{2}}=\mathbb{F}_{2^{d}}$, with

$$
d=\operatorname{gcd}(n-1,2 n)= \begin{cases}1, & \text { if } n \text { even } \\ 2, & \text { if } n \text { odd. }\end{cases}
$$

This shows that $v \leqslant 2$ and $v=2$ occurs only if $n$ is odd.
We have then shown that there is no 2-subgroup $\mathcal{U} \subseteq \mathscr{A}$ with genus as below.

$$
g\left(H^{u}\right)= \begin{cases}2^{s}\left(2^{n}-1\right) & \text { with } 0 \leqslant s \leqslant n-2 \\ 2^{s}\left(2^{n-1}-1\right) & \text { with } n \text { even and } 0 \leqslant s \leqslant n-3 \\ 2^{s}\left(2^{n-1}-1\right) \text { with } n \text { odd and } 0 \leqslant s \leqslant n-4\end{cases}
$$

## 4. The Fixed Fields of Subgroups of $\mathcal{A}\left(P_{\infty}\right)$

As in Section 2, we denote by

$$
\mathcal{A}\left(P_{\infty}\right)=\left\{\sigma \in \mathcal{A}=\mathcal{A} u t(H / K) \mid \sigma P_{\infty}=P_{\infty}\right\}
$$

the decomposition group of $P_{\infty}$ in the Galois extension $H / H^{\mathcal{A}}$. Any $\sigma \in \mathcal{A}\left(P_{\infty}\right)$ acts as follows

$$
\begin{aligned}
& \sigma(x)=a x+b, \quad \sigma(y)=a^{q+1} y+a b^{q} x+c \\
& a \in K^{\times}, \quad b \in K, \quad c^{q}+c=b^{q+1}
\end{aligned}
$$

For convenience we will indentify $\sigma$ with this triple $[a, b, c]$, so

$$
\mathcal{A}\left(P_{\infty}\right)=\left\{[a, b, c] \mid a \in K^{\times}, b \in K, c^{q}+c=b^{q+1}\right\} .
$$

The group structure of $\mathcal{A}\left(P_{\infty}\right)$ is given by

$$
\begin{equation*}
\left[a_{1}, b_{1}, c_{1}\right] \cdot\left[a_{2}, b_{2}, c_{2}\right]=\left[a_{1} a_{2}, a_{2} b_{1}+b_{2}, a_{2}^{q+1} c_{1}+a_{2} b_{2}^{q} b_{1}+c_{2}\right] \tag{4.1}
\end{equation*}
$$

The identity is the triple $[1,0,0]$, the inverse of $[a, b, c]$ is

$$
\begin{equation*}
[a, b, c]^{-1}=\left[a^{-1},-a^{-1} b, a^{-(q+1)} c^{q}\right] \tag{4.2}
\end{equation*}
$$

The unique $p$-Sylow subgroup of $\mathcal{A}\left(P_{\infty}\right)$ is the group

$$
\mathcal{A}_{1}\left(P_{\infty}\right)=\left\{[1, b, c] \mid b \in K, c^{q}+c=b^{q+1}\right\}
$$

Our aim is to determine the genus of the fixed fields of $H$ with respect to subgroups of $\mathcal{A}\left(P_{\infty}\right)$. Let us fix some notation for the rest of this section.

$$
\begin{align*}
& \mathcal{G} \subseteq \mathcal{A}\left(P_{\infty}\right) \text { is a subgroup of } \mathcal{A}\left(P_{\infty}\right) \text {. } \\
& \mathcal{U}_{\mathscr{G}}=\mathscr{G} \cap \mathcal{A}_{1}\left(P_{\infty}\right) \text { is the unique } p \text {-Sylow subgroup of } \mathcal{G} . \\
& \mathcal{V}_{g}=\{b \in K \mid \text { there is some } c \in K \text { such that }[1, b, c] \in \mathscr{G}\} .  \tag{4.3}\\
& \mathcal{W}_{\mathscr{G}}=\{c \in K \mid[1,0, c] \in \mathscr{G}\} . \\
& \text { ord } \mathscr{G}=m \cdot p^{u} \text { with }(m, p)=1 . \\
& \text { ord } \mathcal{V}_{\mathscr{G}}=p^{v}, \quad \text { ord } \mathcal{W}_{\mathcal{G}}=p^{w} .
\end{align*}
$$

As we have considered $p$-groups already in Section 3, we will always assume in this Section that $\mathcal{g}$ is not a $p$-group, so

$$
\text { ord } \mathcal{G}=m \cdot p^{u} \quad \text { with }(m, p)=1, \quad m>1 \quad \text { and } \quad u=v+w \geqslant 0
$$

The Hurwitz genus formula (2.9) for the Galois extension $H / H^{g}$ yields

$$
\begin{equation*}
q^{2}-q-2=\text { ord } g \cdot\left(2 g\left(H^{\mathcal{g}}\right)-2\right)+\sum_{P \in \mathbb{P}(H)} d_{g}(P) \cdot \operatorname{deg} P \tag{4.4}
\end{equation*}
$$

where $d_{g}(P)$ is the different exponent of $P$ with respect to $H / H^{g}$.
The place $P_{\infty}$ is totally ramified in $H / H^{g}$. Using the transitivity of the different exponent in the extension $H^{\mathscr{G}} \subseteq H^{u_{g}} \subseteq H$, we obtain from Equation (3.7) that

$$
\begin{align*}
d_{g}\left(P_{\infty}\right) & =2\left(p^{u}-1\right)+q\left(p^{w}-1\right)+p^{u}(m-1) \\
& =p^{u}(m+1)+q\left(p^{w}-1\right)-2  \tag{4.5}\\
& =\operatorname{ord} g+p^{u}+q p^{w}-q-2
\end{align*}
$$

Let $S=\left\{P \in \mathbb{P}(H) \mid \operatorname{deg} P=1\right.$ and $\left.P \neq P_{\infty}\right\}$. It is easily seen that the only places $P \in \mathbb{P}(H) \backslash\left\{P_{\infty}\right\}$ which ramify in $H / H^{g}$ are in $S$, and they are tamely ramified. Denoting by $e_{g}(P)$ the ramification index of $P$ in $H / H^{g}$, we obtain from (4.4) and (4.5)

$$
\begin{equation*}
q\left(q-p^{w}\right)-p^{u}=\operatorname{ord} g \cdot\left(2 g\left(H^{\mathcal{g}}\right)-1\right)+\sum_{P \in S}\left(e_{g}(P)-1\right) \tag{4.6}
\end{equation*}
$$

For tamely ramified places of degree one, ramification theory [St 1, III] yields

$$
e_{g}(P)-1=\#\{\sigma \in \mathcal{G} \backslash\{1\} \mid \sigma P=P\} .
$$

Hence we obtain that

$$
\begin{equation*}
\sum_{P \in S}\left(e_{g}(P)-1\right)=\sum_{1 \neq \sigma \in \mathcal{G}} N_{S}(\sigma) \tag{4.7}
\end{equation*}
$$

with $N_{S}(\sigma):=\#\{P \in S \mid \sigma P=P\}$, for $\sigma \in \mathcal{G} \backslash\{1\}$. Before we can determine $N_{S}(\sigma)$, we need some preparation. For $a \in K^{\times}$denote by ord $(a)$ the multiplicative order of $a$.

LEMMA 4.1. Let $\sigma=[a, b, c] \in \mathcal{A}\left(P_{\infty}\right)$ with $a \neq 1$. Then we have
(i) If $\operatorname{ord}(a)$ is not a divisor of $q+1$, then $\operatorname{ord}(\sigma)=\operatorname{ord}(a)$.
(ii) If $\operatorname{ord}(a)$ divides $q+1$, then

$$
\operatorname{ord}(\sigma)= \begin{cases}\operatorname{ord}(a), & \text { if } c=a b^{q+1} /(a-1) \\ p \cdot \operatorname{ord}(a), & \text { otherwise }\end{cases}
$$

Proof. Let $\tau:=[1, e, f]$ with

$$
e:=b /(a-1) \quad \text { and } \quad f^{q}+f=e^{q+1}
$$

Then $\tau^{-1}=\left[1,-e, f^{q}\right]$, and one checks that

$$
\tau^{-1} \sigma \tau=\left[a, 0, c^{*}\right] \quad \text { with } c^{* q}+c^{*}=0
$$

(i) If ord $(a)$ does not divide $q+1$, let $f^{*}:=c^{*} /\left(a^{q+1}-1\right)$. Then

$$
f^{* q}+f^{*}=\frac{c^{* q}}{\left(a^{q+1}-1\right)^{q}}+\frac{c^{*}}{a^{q+1}-1}=\frac{1}{a^{q+1}-1}\left(c^{* q}+c^{*}\right)=0
$$

So $\tau^{*}:=\left[1,0, f^{*}\right]$ is in $\mathscr{A}_{1}\left(P_{\infty}\right)$, and

$$
\begin{aligned}
\tau^{*-1} \cdot\left[a, 0, c^{*}\right] \cdot \tau^{*} & =\left[a, 0, a^{q+1} f^{* q}+c^{*}+f^{*}\right] \\
& =\left[a, 0,-a^{q+1} f^{*}+f^{*}+c^{*}\right]=[a, 0,0]
\end{aligned}
$$

We have thus shown that $\sigma$ is conjugate to the automorphism $[a, 0,0]$, hence

$$
\operatorname{ord}(\sigma)=\operatorname{ord}([a, 0,0])=\operatorname{ord}(a)
$$

(ii) Now we assume that $a^{q+1}=1$. With the same choice of $\tau=[1, e, f]$ as above we find that $\sigma^{*}:=\tau^{-1} \sigma \tau=\left[a, 0, c^{*}\right]$ with

$$
\begin{aligned}
c^{*} & =f^{q}+f+c-a b^{q} e-a e^{q+1}+e^{q} b \\
& =e^{q+1}-a e^{q+1}-a b^{q} e+e^{q} b+c \\
& =\frac{b^{q+1}}{(a-1)^{q+1}}(1-a)-a b^{q} \cdot \frac{b}{a-1}+b \cdot \frac{b^{q}}{(a-1)^{q}}+c \\
& =\frac{-b^{q+1}}{a^{q}-1}-\frac{a b^{q+1}}{a-1}+\frac{b^{q+1}}{a^{q}-1}+c \\
& =c-\frac{a}{a-1} b^{q+1} .
\end{aligned}
$$

Hence $c^{*}=0$ iff $c=a b^{q+1} /(a-1)$. One checks easily that the order of $\sigma^{*}=$ $\left[a, 0, c^{*}\right]$ is

$$
\operatorname{ord}\left(\sigma^{*}\right)=\left\{\begin{array}{cc}
\operatorname{ord}(a), & \text { if } c^{*}=0 \\
p \cdot \operatorname{ord}(a), & \text { if } c^{*} \neq 0
\end{array}\right.
$$

Since $\operatorname{ord}(\sigma)=\operatorname{ord}\left(\sigma^{*}\right)$, Lemma 4.1 is completely proved.
LEMMA 4.2. Let $\sigma=[a, b, c] \in \mathcal{A}\left(P_{\infty}\right)$ with $\sigma \neq 1$. Then

$$
N_{S}(\sigma)= \begin{cases}0, & \text { if } p \text { divides } \operatorname{ord}(\sigma) \\ q, & \text { if } \operatorname{ord}(\sigma) \text { divides } q+1 \\ 1, & \text { otherwise }\end{cases}
$$

Proof. (i) Suppose that $\operatorname{ord}(\sigma)$ is divisible by $p$. As all $P \in S$ are tame in the extension $H / H^{\mathcal{A}\left(P_{\infty}\right)}$, we conclude that $\sigma P \neq P$ for all $P \in S$, i.e. $N_{S}(\sigma)=0$.
(ii) Suppose that $\sigma \neq 1$ and $\operatorname{ord}(\sigma)$ divides $q+1$. The proof of Lemma 4.1 (ii) shows that $\sigma$ is conjugate in $\mathcal{A}\left(P_{\infty}\right)$ to $\sigma^{*}=[a, 0,0]$ with $\operatorname{ord}(a)=$ $\operatorname{ord}(\sigma)$ dividing $q+1$. Then $N_{S}(\sigma)=N_{S}\left(\sigma^{*}\right)$, and $1 \neq \sigma^{*} \in \operatorname{Gal}(H / K(y))$. In the extension $H / K(y)$ exactly $q$ places $P \in S$ are ramified (namely the zeros of $y^{q}+y$ ), and they are totally ramified. Thus $N_{S}\left(\sigma^{*}\right)=q$.
(iii) Now we assume that $\operatorname{ord}(\sigma)=s$ with $s \mid\left(q^{2}-1\right)$ but $s$ does not divide $q+1$. By Lemma 4.1(i), $\sigma$ is conjugate in $\mathcal{A}\left(P_{\infty}\right)$ to $\sigma^{*}=[a, 0,0]$ with $\operatorname{ord}(a)=s$ (in particular $a^{q+1} \neq 1$ ). For $(\alpha, \beta) \in K \times K$ with $\beta^{q}+\beta=\alpha^{q+1}$ there is a unique place $P_{\alpha, \beta} \in S$ which is a common zero of $x-\alpha$ and $y-\beta$, and all places $P \in S$ can be described in this manner. We have

$$
\sigma^{*}\left(P_{\alpha, \beta}\right)=P_{\alpha, \beta} \Leftrightarrow P_{\alpha, \beta} \text { is a common zero of } \sigma^{*}(x-\alpha) \text { and } \sigma^{*}(y-\beta)
$$

Since $\sigma^{*}(x-\alpha)=a x-\alpha=a(x-\alpha)+\alpha(a-1)$ and $\sigma^{*}(y-\beta)=a^{q+1} y-\beta=$ $a^{q+1}(y-\beta)+\beta\left(a^{q+1}-1\right)$, it follows that

$$
\begin{aligned}
\sigma^{*}\left(P_{\alpha, \beta}\right)=P_{\alpha, \beta} & \Leftrightarrow \alpha(a-1)=\beta\left(a^{q+1}-1\right)=0 \\
& \Leftrightarrow \alpha=\beta=0 .
\end{aligned}
$$

Hence $N_{S}(\sigma)=N_{S}\left(\sigma^{*}\right)=1$.
LEMMA 4.3. Notations as in (4.3). Let $a_{0} \in K^{\times}$, ord $\left(a_{0}\right)=s>1$ and $s \mid m$.
(i) If $s \nmid(q+1)$, then there are exactly $p^{u}$ elements $\sigma \in \mathcal{G}$ of the form $\sigma=$ [ $\left.a_{0}, *, *\right]$ having order $s$.
(ii) If $\mid(q+1)$ then there are exactly $p^{v}$ elements $\sigma \in \mathcal{G}$ of the form $\sigma=\left[a_{0}, *, *\right]$ having order $s$.

Proof. The mapping

$$
\rho: \begin{cases}\mathcal{g} & \rightarrow K^{\times} \\ \sigma=[a, b, c] & \mapsto a\end{cases}
$$

is a homomorphism, its kernel is the $p$-Sylow subgroup $U_{g}$ of $\mathcal{g}$ of order $p^{u}$, its image is the unique subgroup of $K^{\times}$of order $m$. Since $\operatorname{ord}\left(a_{0}\right)=s$ is a divisor of $m$, there exists an automorphism $\sigma_{0}=\left[a_{0}, b_{0}, c_{0}\right] \in \mathcal{G}$. The coset $\sigma_{0} \cdot \mathcal{U}_{\mathfrak{g}}$ is then

$$
\sigma_{0} \cdot \mathcal{U}_{\mathfrak{g}}=\left\{[a, b, c] \in \mathcal{g} \mid a=a_{0}\right\} .
$$

(i) Suppose that $s$ is not a divisor of $q+1$. It follows that all elements $\sigma \in \sigma_{0} \cdot \mathcal{U}_{\mathcal{G}}$ have order $s$, by Lemma 4.1(i).
(ii) Now we assume that $s$ divides $q+1$. For each $b^{\prime} \in \mathcal{V}_{g}$ we fix an element $c^{\prime} \in K$ such that $\left[1, b^{\prime}, c^{\prime}\right] \in \mathcal{G}$; then every $\sigma \in \sigma_{0} \cdot U_{\mathcal{g}}$ can be uniquely represented as

$$
\sigma=\left[a_{0}, b_{0}, c_{0}\right] \cdot\left[1, b^{\prime}, c^{\prime}\right] \cdot[1,0, c]=\left[a_{0}, b_{0}+b^{\prime}, *\right]
$$

with $b^{\prime} \in \mathcal{V}_{\mathcal{G}}$ and $c \in \mathcal{W}_{g}$. By Lemma 4.1, there is at most one element $\sigma \in \mathcal{G}$ of order $s$ with $\sigma=\left[a_{0}, b_{0}+b^{\prime}, *\right]$ if $a_{0}$ and $b:=b_{0}+b^{\prime}$ are given. The proof of Lemma 4.3(ii) will be finished when we show the following assertion:

CLAIM. Let $\sigma=\left[a_{0}, b, c^{\prime}\right] \in \mathcal{G}$ and $\operatorname{ord}\left(a_{0}\right)=s$ be a divisor of $q+1$. Then there exists an element $\tilde{\sigma} \in \mathscr{G}$ of order $s$ such that $\tilde{\sigma}=\left[a_{0}, b, \tilde{c}\right]$.

Proof. If $\operatorname{ord}(\sigma)=s$ we take $\tilde{\sigma}=\sigma$. Otherwise, $\operatorname{ord}(\sigma)=p \cdot s$ by Lemma 4.1. For all $j \geqslant 1$ holds

$$
\left[a_{0}, b, *\right]^{j}=\left[a_{0}^{j}, \frac{a_{0}^{j}-1}{a_{0}-1} \cdot b, *\right]
$$

Choose $t \geqslant 1$ with $p \cdot t \equiv 1 \bmod s$. Then

$$
\tilde{\sigma}:=\left[a_{0}, b, *\right]^{p t}=\left[a_{0}, \frac{a_{0}-1}{a_{0}-1} b, *\right]=\left[a_{0}, b, *\right]
$$

is an element of $\mathcal{G}$ of order $s$ whose first components are $a_{0}$ and $b$, as desired.
THEOREM 4.4. Let $\mathcal{G} \subseteq \mathcal{A}\left(P_{\infty}\right)$ be a subgroup of order $m \cdot p^{u}$ with $m>1$, and define $v, w$ as in (4.3). Let $d:=\operatorname{gcd}(m, q+1)$. Then the fixed field $H^{g}$ has genus

$$
g\left(H^{\mathcal{g}}\right)=\frac{p^{n}-p^{w}}{2 m p^{u}}\left(p^{n}-(d-1) p^{v}\right)
$$

Proof. There are exactly $d-1$ elements $1 \neq a_{0} \in K^{\times}$with

$$
\operatorname{ord}\left(a_{0}\right) \mid m \quad \text { and } \quad \operatorname{ord}\left(a_{0}\right) \mid(q+1)
$$

and there are exactly $m-d$ elements $a_{0} \in K^{\times}$with

$$
\operatorname{ord}\left(a_{0}\right) \mid m \quad \text { and } \quad a_{0}^{q+1} \neq 1
$$

Now we obtain from Lemma 4.2 and Lemma 4.3

$$
\begin{aligned}
\sum_{1 \neq \sigma \in \mathcal{G}} N_{S}(\sigma) & =(d-1) p^{v} q+(m-d) p^{u} \\
& =\operatorname{ord} g+d\left(q p^{v}-p^{u}\right)-q p^{v}
\end{aligned}
$$

Formulas (4.6) and (4.7) imply that

$$
q\left(q-p^{w}\right)-p^{u}=2 g\left(H^{g}\right) \cdot m p^{u}+d\left(q p^{v}-p^{u}\right)-q p^{v}
$$

Substituting $q=p^{n}$ and $u=v+w$, the result follows.
Not for all choices of $v, w$ and $m$ with $0 \leqslant w \leqslant n, 0 \leqslant v \leqslant 2 n$ and $m \mid\left(q^{2}-1\right)$ there exists a subgroup $\mathcal{G} \subseteq \mathcal{A}\left(P_{\infty}\right)$ of order $m \cdot p^{v+w}$, with ord $\mathcal{V}_{\mathcal{G}}=p^{v}$ and ord $\mathcal{W}_{g}=p^{w}$. For example if $d=\operatorname{gcd}(m, q+1)>1$, then there is no such a subgroup having $v>n$ and $w<n$. We will not give necessary and sufficient conditions on $v, w$ and $m$ in the general case but we restrict ourselves to special cases. Let

$$
\begin{equation*}
\mathcal{G}_{0}:=\left\{[a, 0, c] \mid a \in K^{\times} \quad \text { and } \quad c^{q}+c=0\right\} . \tag{4.8}
\end{equation*}
$$

This is a subgroup of $\mathcal{A}\left(P_{\infty}\right)$ of order $q\left(q^{2}-1\right)$, its fixed field is the rational function field $H^{g_{0}}=K(z) \quad$ with $z=x^{q^{2}-1}$.

COROLLARY 4.5. Let $\mathcal{G} \subseteq \mathcal{G}_{0}$ be a subgroup of order ord $\mathcal{G}=m \cdot p^{u}$, with $(m, p)=1$. Then the fixed field $H^{G}$ has genus

$$
g\left(H^{\mathcal{g}}\right)=\frac{1}{2 m}\left(p^{n}+1-d\right)\left(p^{n-u}-1\right)
$$

where $d=\operatorname{gcd}(m, q+1)$.
Proof. Note that $\mathcal{V}_{\mathcal{G}}=0$ for $\mathcal{G} \subseteq \mathcal{G}_{0}$, hence $u=w$ and $v=0$. The result follows immediately from Theorem 4.4.

PROPOSITION 4.6. Let $m \geqslant 1, d \geqslant 1$ and $0 \leqslant u \leqslant n$ be integers with the following properties.
(i) $m \mid\left(q^{2}-1\right)$ and $d=\operatorname{gcd}(m, q+1)$.
(ii) $s:=\min \left\{r \geqslant 1 \mid p^{r} \equiv 1 \bmod (m / d)\right\}$ is a divisor of $u$.

Then there exists a subgroup $\mathcal{G} \subseteq \mathcal{G}_{0}$ of order $m \cdot p^{u}$, and hence there exists $a$ subfield $E \subseteq H$ with

$$
g(E)=\frac{1}{2 m}\left(p^{n}+1-d\right)\left(p^{n-u}-1\right)
$$

Proof. Let $a \in K^{\times}$be an element with $a^{m}=1$, and let $\alpha:=a^{q+1}$. Then

$$
\alpha^{m / d}=1, \quad \text { with } d=\operatorname{gcd}(m, q+1)
$$

It follows that $\alpha \in \mathbb{F}_{p^{s}}$ where $s$ is defined by (ii). Moreover we know that $q \equiv 1 \bmod (m / d)\left(\right.$ since $\left.m \mid\left(q^{2}-1\right)\right)$, hence $\mathbb{F}_{p^{s}} \subseteq \mathbb{F}_{q}$. The set $\mathcal{T}=\{c \in$
$\left.K \mid c^{q}+c=0\right\}$ is a one-dimensional $\mathbb{F}_{q}$-vector space, hence it is a vector space over $\mathbb{F}_{p^{s}}$ of dimension $n / s$. Since $0 \leqslant u / s \leqslant n / s$, we can find an $\mathbb{F}_{p^{s}}$-subspace $\mathcal{W} \subseteq \mathcal{T}$ of dimension $u / s$; then $\mathcal{W}$ is an additive subgroup of $\mathcal{T}$ of order $p^{u}$. Let

$$
\mathcal{G}:=\left\{[a, 0, c] \mid a^{m}=1 \quad \text { and } \quad c \in \mathcal{W}\right\} .
$$

Then $\mathcal{g}$ is a subgroup of $g_{0}$ : in fact, if $\left[a_{1}, 0, c_{1}\right]$ and $\left[a_{2}, 0, c_{2}\right]$ are elements of $\mathcal{G}$, then

$$
\left[a_{1}, 0, c_{1}\right] \cdot\left[a_{2}, 0, c_{2}\right]=\left[a_{1} a_{2}, 0, a_{2}^{q+1} c_{1}+c_{2}\right]
$$

is in $\mathcal{q}$ because $a_{2}^{q+1} \in \mathbb{F}_{p^{s}}$ and $\mathcal{W}$ is an $\mathbb{F}_{p^{s}}$-module. The order of $\mathcal{q}$ is obviously $m \cdot p^{u}$, as desired.

Remark 4.7. One can show that all subgroups $q \subseteq g_{0}$ satisfy the numerical conditions of Proposition 4.6.

COROLLARY 4.8. Suppose that $m \mid(q+1)(p-1)$. Then for all $u$ with $0 \leqslant u \leqslant n$ there exists a subgroup $\mathcal{G} \subseteq \mathcal{g}_{0}$ such that

$$
g\left(H^{g}\right)=\frac{1}{2 m}\left(p^{n}+1-d\right)\left(p^{n-u}-1\right),
$$

where $d=\operatorname{gcd}(m, q+1)$. In particular, if $m \mid(q+1)$, then

$$
g\left(H^{\mathcal{q}}\right)=\frac{1}{2}\left(\frac{p^{n}+1}{m}-1\right)\left(p^{n-u}-1\right)
$$

Proof. The condition $m \mid(q+1)(p-1)$ implies that $m / d$ is a divisor of $p-1$, hence $s=1$ (with $s$ as in Proposition 4.6(ii)). Now all assertions of Corollary 4.8 follow immediately.

The following special case of Proposition 4.6 is often useful.
COROLLARY 4.9. For any divisor $m$ of $q^{2}-1$ there exists a subgroup $\mathcal{q} \subseteq g_{0}$ such that

$$
g\left(H^{\mathcal{q}}\right)=\frac{1}{2 m}\left(p^{n}+1-d\right)\left(p^{n}-1\right)
$$

where $d=\operatorname{gcd}(m, q+1)$.
Proof. Set $u=0$ in Proposition 4.6.

## 5. The Fixed Fields of Some Tame Subgroups of $\mathcal{A}$

We call a subgroup $\mathcal{G} \subseteq \mathcal{A}$ tame if the extension $H / H^{\mathscr{E}}$ is tame; i.e. the ramification index of any place $P \in \mathbb{P}(H)$ in the extension $H / H^{\mathscr{}}$ is relatively prime to
the characteristic $p$ of $K$. In particular, if $p$ does not divide the order of $\mathcal{g}$ then $\mathcal{g}$ is tame.

In this section we will determine the genus $g\left(H^{g}\right)$ for a large number of tame subgroups $\mathcal{G} \subseteq \mathcal{A}$. We start with

THEOREM 5.1. Let $\tilde{P} \in \mathbb{P}(H)$ be a place of degree 3 , and let $\mathcal{B} \subseteq \mathcal{A}$ be the inertia group of $\tilde{P}$ with respect to the field extension $H / H^{\mathcal{A}}$. The group $\mathfrak{B}$ is cyclic of order $q^{2}-q+1$, and for any integer $r \geqslant 1$ dividing $q^{2}-q+1$ there exists $a$ unique subgroup $\mathcal{G} \subseteq \mathcal{B}$ of order ord $\mathcal{G}=r$. The genus of the fixed field $H^{g}$ is then

$$
g\left(H^{\mathcal{g}}\right)=\frac{s-1}{2}, \quad \text { with } s=\frac{q^{2}-q+1}{r}
$$

Proof. The group $\mathcal{B}$ is cyclic of order $q^{2}-q+1$, and $\tilde{P}$ is the only place of $H$ that ramifies in the extension $H / H^{\mathscr{B}}$, see Corollary 2.3. Let $r \geqslant 1$ be a divisor of $q^{2}-q+1$ and $\mathscr{q} \subseteq \mathcal{B}$ denote the unique subgroup of $\mathscr{B}$ of order $r$. Since $\tilde{P}$ is totally ramified in $H / H^{\mathcal{G}}$, the different of $H / H^{\mathcal{G}}$ is

$$
\operatorname{Diff}\left(H / H^{g}\right)=(r-1) \cdot \tilde{P}
$$

The Hurwitz genus formula for $H / H^{g}$ yields

$$
q^{2}-q-2=r\left(2 g\left(H^{g}\right)-2\right)+(r-1) \cdot \operatorname{deg} \tilde{P}
$$

As $\operatorname{deg} \tilde{P}=3$, Theorem 5.1 follows immediately.
Next we prove a general formula for the genus $g\left(H^{g}\right)$, where $\mathcal{G} \subseteq \mathcal{A}$ is any tame subgroup of $\mathcal{A}$.

PROPOSITION 5.2. Let $\mathcal{G} \subseteq \mathcal{A}$ be a tame subgroup of $\mathcal{A}$ satisfying the following hypothesis.

All $P \in \mathbb{P}(H)$ with deg $P>1$ are unramified in $H / H^{g}$.
Then the genus of $H^{\text {G }}$ is

$$
g\left(H^{g}\right)=1+\frac{1}{2 \cdot \operatorname{ord} g} \cdot\left(q^{2}-q-2-\sum_{1 \neq \sigma \in \mathcal{G}} N(\sigma)\right)
$$

where $N(\sigma)$ is defined as

$$
\begin{equation*}
N(\sigma):=\#\{P \in \mathbb{P}(H) \mid \operatorname{deg} P=1 \text { and } \sigma P=P\} \tag{5.1}
\end{equation*}
$$

Proof. Denote by $e(P)$ the ramification index of a place $P \in \mathbb{P}(H)$ in the extension $H / H^{g}$. By hypothesis $(*)$, the degree of the different $\operatorname{Diff}\left(H / H^{g}\right)$ is

$$
\begin{aligned}
\operatorname{deg} \operatorname{Diff}\left(H / H^{\mathcal{G}}\right) & =\sum_{P \in \mathbb{P}(H) ; \operatorname{deg} P=1}(e(P)-1) \\
& =\sum_{P \in \mathbb{P}(H) ; \operatorname{deg} P=1} \sum_{1 \neq \sigma \in \mathcal{G} ; \sigma=P} 1=\sum_{1 \neq \sigma \in \mathcal{G}} N(\sigma) .
\end{aligned}
$$

Hence the Hurwitz genus formula (2.9) implies Proposition 5.2.
We will apply Proposition 5.2 to various tame subgroups $\mathcal{G} \subseteq \mathcal{A}$. First we will consider subgroups of the group $\mathcal{C}:=\langle\epsilon, \omega\rangle \subseteq \mathcal{A}$ which is generated by the automorphims $\epsilon$ and $\omega$ given by (2.6) and (2.7):

$$
\epsilon(x)=a x, \quad \epsilon(y)=a^{q+1} y \quad \text { and } \quad \omega(x)=x / y, \quad \omega(y)=1 / y
$$

Here $a \in K$ is a primitive $\left(q^{2}-1\right)$ th root of unity. Any $\sigma \in \mathcal{C}$ is of the form

$$
\sigma(x)=c x, \quad \sigma(y)=c^{q+1} y \quad \text { with } c \in K^{\times}
$$

or

$$
\sigma(x)=c \cdot x / y, \quad \sigma(y)=c^{q+1} \cdot 1 / y \quad \text { with } c \in K^{\times}
$$

Hence $\operatorname{ord}(\mathcal{C})=2\left(q^{2}-1\right)$, and $\mathcal{C}$ is tame if $\operatorname{char}(K) \neq 2$.
Moreover, hypothesis $(*)$ from Proposition 5.2 holds for $\mathcal{C}$ (in order to prove this, consider ramification in the subextensions $H^{\mathcal{C}}=K\left(y^{q-1}+y^{-(q-1)}\right) \subseteq$ $\left.K\left(y^{q-1}\right) \subseteq K(y) \subseteq H\right)$.

LEMMA 5.3. Assume that $\operatorname{char}(K) \neq 2$.
(i) Let $\sigma \in \mathcal{C}$ with $\sigma(x)=c x, \sigma(y)=c^{q+1} y$ and $1 \neq c \in K^{\times}$. Then

$$
N(\sigma)=\left\{\begin{array}{cl}
2, & \text { if } c^{q+1} \neq 1 \\
q+1, & \text { if } c^{q+1}=1
\end{array}\right.
$$

(ii) Let $\sigma \in \mathcal{C}$ with $\sigma(x)=c \cdot x / y, \sigma(y)=c^{q+1} \cdot 1 / y$ and $c \in K^{\times}$. Then

$$
N(\sigma)=\left\{\begin{aligned}
q+1, & \text { if } c \in \mathbb{F}_{q} \\
0, & \text { if } c \notin \mathbb{F}_{q} \text { and } c^{\left(q^{2}-1\right) / 2}=1 \\
2, & \text { if } c \notin \mathbb{F}_{q} \text { and } c^{\left(q^{2}-1\right) / 2}=-1
\end{aligned}\right.
$$

Proof. (i) This is a consequence of Lemma 4.2 (note that $N(\sigma)=1+N_{S}(\sigma)$, because $N_{S}(\sigma)$ does not count the place $P_{\infty}$ ).
(ii) Now we determine $N(\sigma)$ for an automorphism $\sigma \in \mathcal{C}$ given by $\sigma(x)=$ $c \cdot x / y$ and $\sigma(y)=c^{q+1} \cdot 1 / y$, with $c \in K^{\times}$. The places $P \in \mathbb{P}(H)$ of degree one are $P=P_{\infty}$ and, for any pair $(\alpha, \beta) \in K \times K$ with $\beta^{q}+\beta=\alpha^{q+1}$, the unique common zero $P=P_{\alpha, \beta}$ of $x-\alpha$ and $y-\beta$. Obviously $\sigma\left(P_{\infty}\right) \neq P_{\infty}$ and $\sigma\left(P_{0,0}\right) \neq P_{0,0}$. For the remaining places $P_{\alpha, \beta}$ holds $\beta \neq 0$, and we have for such a place

$$
\begin{aligned}
\sigma\left(P_{\alpha, \beta}\right)=P_{\alpha, \beta} & \Leftrightarrow \sigma(x)\left(P_{\alpha, \beta}\right)=\alpha \quad \text { and } \quad \sigma(y)\left(P_{\alpha, \beta}\right)=\beta \\
& \Leftrightarrow c \cdot \alpha / \beta=\alpha \quad \text { and } \quad c^{q+1} / \beta=\beta \\
& \Leftrightarrow \alpha\left(c \beta^{-1}-1\right)=0 \quad \text { and } \quad \beta^{2}=c^{q+1}
\end{aligned}
$$

So we have to count all pairs $(\alpha, \beta) \in K \times K^{\times}$satisfying

$$
\begin{equation*}
\beta^{q}+\beta=\alpha^{q+1}, \beta^{2}=c^{q+1} \quad \text { and } \quad \alpha\left(c \beta^{-1}-1\right)=0 \tag{5.2}
\end{equation*}
$$

One checks that (5.2) has precisely the following solutions $(\alpha, \beta) \in K \times K^{\times}$:
Case 1. $c \in \mathbb{F}_{q}$. Then $\beta=c$ and $\alpha^{q+1}=2 c$.
Case 2. $c \notin \mathbb{F}_{q}$ and $c^{\left(q^{2}-1\right) / 2}=1$. There are no solutions of (5.2).
Case 3. $c \notin \mathbb{F}_{q}$ and $c^{\left(q^{2}-1\right) / 2}=-1$. Then $\alpha=0$ and $\beta= \pm c^{(q+1) / 2}$.
THEOREM 5.4. Assume that $\operatorname{char}(K) \neq 2$. Let $m$ be a divisor of $q^{2}-1$ and let $b \in K$ be an element of order $m$. Consider the group $g:=\langle\lambda, \omega\rangle \subseteq \mathcal{C}$ that is generated by the automorphisms $\lambda$ and $\omega$, where

$$
\lambda(x)=b x, \quad \lambda(y)=b^{q+1} y \quad \text { and } \quad \omega(x)=x / y, \quad \omega(y)=1 / y
$$

Let $d:=\operatorname{gcd}(m, q+1), \tilde{d}:=\operatorname{gcd}(m, q-1)$ and

$$
\delta:= \begin{cases}0, & \text { if } m \text { divides }\left(q^{2}-1\right) / 2 \\ m, & \text { otherwise }\end{cases}
$$

Then the fixed field $H^{g}$ has genus

$$
g\left(H^{g}\right)=\frac{1}{4 m}((q+1)(q-1-d-\tilde{d})+2(m+d)-\delta)
$$

Proof. The group $g$ has order $2 m$; it consists of the following automorphisms $\sigma_{c}$ and $\tau_{c}$ where

$$
\sigma_{c}(x)=c x, \quad \sigma_{c}(y)=c^{q+1} y, \quad c^{m}=1
$$

and

$$
\tau_{c}(x)=c \cdot x / y, \quad \tau_{c}(y)=c^{q+1} \cdot 1 / y, \quad c^{m}=1 .
$$

From Lemma 5.3(i) follows

$$
\sum_{c^{m}=1, c \neq 1} N\left(\sigma_{c}\right)=(q+1)(d-1)+2(m-d) .
$$

The number of elements $c \in \mathbb{F}_{q}$ with $c^{m}=1$ is $\tilde{d}=\operatorname{gcd}(m, q-1)$. Now we distinguish two cases.

Case 1. $m$ divides $\left(q^{2}-1\right) / 2$. We see from Lemma 5.3 that in this case

$$
\sum_{c^{m}=1} N\left(\tau_{c}\right)=\tilde{d}(q+1) .
$$

Case 2. $m$ does not divide $\left(q^{2}-1\right) / 2$. Now there are exactly $m / 2$ elements $c \in K$ with $c^{m}=1$ and $c^{\left(q^{2}-1\right) / 2}=-1$, and all of them are in $K \backslash \mathbb{F}_{q}$. Hence Lemma 5.3 yields in this case

$$
\sum_{c^{m}=1} N\left(\tau_{c}\right)=2 \cdot m / 2+\tilde{d}(q+1)=\tilde{d}(q+1)+m .
$$

In both cases we find that

$$
\sum_{1 \neq \sigma \in \mathcal{G}} N(\sigma)=(q+1)(d+\tilde{d}-1)+2(m-d)+\delta,
$$

with

$$
\delta= \begin{cases}0, & \text { if } m \text { divides }\left(q^{2}-1\right) / 2 \\ m, & \text { otherwise }\end{cases}
$$

Proposition 5.2 yields now the desired formula for the genus $g\left(H^{q}\right)$.
EXAMPLE 5.5. $(\operatorname{char}(K) \neq 2)$.
(i) For any even divisor $m$ of $q-1$, there is a subfield $E \subseteq H$ of genus

$$
g(E)=\frac{1}{4 m}(q-1)(q-1-m)
$$

(ii) For any odd divisor $m$ of $q-1$, there is a subfield $E \subseteq H$ of genus

$$
g(E)=\frac{1}{4 m}(q-1)(q-m)
$$

(iii) For any even divisor $m$ of $q+1$, there is a subfield $E \subseteq H$ of genus

$$
g(E)=\frac{1}{4 m}(q-3)(q+1-m)
$$

(iv) For any odd divisor $m$ of $q+1$, there is a subfield $E \subseteq H$ of genus

$$
g(E)=\frac{1}{4 m}((q-3)(q+1-m)+q+1)
$$

Proof. We use notations as in Theorem 5.4.
(i) Let $m$ be an even divisor of $q-1$. Then $d=\operatorname{gcd}(m, q+1)=2, \delta=0$ and $\tilde{d}=\operatorname{gcd}(m, q-1)=m$. By Theorem 5.4 the genus of $E:=H^{g}$ is

$$
g(E)=\frac{1}{4 m}((q+1)(q-1-2-m)+2(m+2))=\frac{1}{4 m}(q-1)(q-1-m)
$$

(ii) If $m$ is an odd divisor of $q-1$, then $d=\operatorname{gcd}(m, q+1)=1, \tilde{d}=\operatorname{gcd}(m, q-$ 1) $=m$ and $\delta=0$. The genus of $E:=H^{g}$ is in this case

$$
g(E)=\frac{1}{4 m}((q+1)(q-1-1-m)+2(m+1))=\frac{1}{4 m}(q-1)(q-m)
$$

The proofs of (iii) and (iv) are similar.
We consider another class of subgroups $\mathcal{G} \subseteq \mathcal{C}$ in the following example:
EXAMPLE 5.6. $(\operatorname{char}(K) \neq 2)$. Let $m$ be an even divisor (resp. odd divisor) of $q-1$. Then there exists a subfield $E \subseteq H$ of genus

$$
g(E)=\left\{\begin{array}{cl}
\frac{(q-1)^{2}}{4 m}\left(\operatorname{resp} . \frac{q(q-1)}{4 m}\right), & \text { if } q \equiv 1 \bmod 4 \\
\frac{(q-1)^{2}+2 m}{4 m}\left(\operatorname{resp} . \frac{q(q-1)+2 m}{4 m}\right), & \text { if } q \equiv 3 \bmod 4
\end{array}\right.
$$

Proof. Consider the following subgroup $\mathcal{G}_{0} \subseteq \mathcal{A}$ :

$$
\mathcal{g}_{0}:=\left\{\sigma \in \mathcal{A} \mid \sigma(x)=a x, \sigma(y)=a^{q+1} y \text { with } a^{m}=1\right\} .
$$

Choose an element $b \in K$ such that $b^{q-1}=-1$ and define an automorphism $\rho \in \mathcal{A}$ by

$$
\rho(x)=b \cdot x / y, \quad \rho(y)=b^{q+1} \cdot 1 / y
$$

It is easily verified that $\mathcal{G}:=\mathcal{G}_{0} \cup \rho \mathcal{g}_{0}$ is a subgroup of $\mathcal{C}$ of order ord $\mathcal{G}=2 m$. We get from Lemma 5.3(i):

$$
\begin{aligned}
& \sum_{1 \neq \sigma \in \mathcal{G}_{0}} N(\sigma)=(q+1)+(m-2) \cdot 2=q-3+2 m, \text { if } m \text { is even, (resp. } \\
& \sum_{1 \neq \sigma \in \mathcal{G}_{0}} N(\sigma)=(m-1) \cdot 2, \text { if } m \text { is odd) }
\end{aligned}
$$

The automorphisms $\tau \in \mathcal{G} \backslash \mathcal{g}_{0}$ are given by $\tau=\rho \circ \sigma$ with $\sigma \in \mathcal{G}_{0}$, hence

$$
\tau(x)=a b \cdot x / y, \quad \tau(y)=(a b)^{q+1} \cdot 1 / y \text { with } a^{m}=1
$$

Since $a b \notin \mathbb{F}_{q}$ and

$$
(a b)^{\left(q^{2}-1\right) / 2}=\left(a^{q-1}\right)^{(q+1) / 2} \cdot\left(b^{q-1}\right)^{(q+1) / 2}=1 \cdot(-1)^{(q+1) / 2}
$$

it follows from Lemma 5.3(ii) that

$$
N(\tau)= \begin{cases}0, & \text { for } q \equiv 3 \bmod 4 \\ 2, & \text { for } q \equiv 1 \bmod 4\end{cases}
$$

Therefore

$$
\sum_{1 \neq \sigma \in G} N(\sigma)= \begin{cases}q-3+2 m, & (\text { resp. } 2 m-2) \text { for } q \equiv 3 \bmod 4 \\ q-3+4 m, & (\text { resp. } 4 m-2) \text { for } q \equiv 1 \bmod 4\end{cases}
$$

Now we apply Proposition 5.2 and obtain the desired formula for the genus $g\left(H^{g}\right)$.

Many other tame subgroups $\mathcal{G}$ of $\mathcal{A}$ can be constructed if we represent the Hermitian function field as in (2.15): $H=K(u, v)$ with $u^{q+1}+v^{q+1}+1=0$. All rational places $P \in \mathbb{P}(H)$ can then be described in the following manner.
(i) $P=Q_{\alpha, \beta}$ with $\alpha, \beta \in K$,

$$
u(P)=\alpha, \quad v(P)=\beta \quad \text { and } \quad \alpha^{q+1}+\beta^{q+1}+1=0
$$

(ii) $P=Q_{\alpha}$ with $\alpha \in K$,

$$
u(P)=v(P)=\infty, \quad\left(\frac{u}{v}\right)(P)=\alpha \quad \text { and } \quad \alpha^{q+1}+1=0
$$

Let $\zeta \in K$ be a primitive $(q+1)$ th root of unity and consider the automorphisms $\sigma_{1}$ and $\sigma_{2} \in \mathcal{A}$ with

$$
\sigma_{1}(u)=\zeta u, \quad \sigma_{1}(v)=v, \quad \text { and } \quad \sigma_{2}(u)=u, \quad \sigma_{2}(v)=\zeta v
$$

These maps generate a tame Abelian subgroup $\mathscr{D}=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subseteq \mathcal{A}$,

$$
\begin{equation*}
\mathscr{D}=\left\{\sigma_{1}^{i} \sigma_{2}^{j} \mid i, j \in \mathbb{Z} /(q+1) \mathbb{Z}\right\} \tag{5.3}
\end{equation*}
$$

which is isomorphic to $\mathbb{Z} /(q+1) \mathbb{Z} \times \mathbb{Z} /(q+1) \mathbb{Z}$. The fixed field $H^{\mathcal{D}}$ of $\mathscr{D}$ is rational, namely $H^{D}=K\left(u^{q+1}\right)=K\left(v^{q+1}\right)$, and it is easily seen that only rational places of $H$ are ramified in $H / H^{\mathscr{D}}$ (hence hypothesis $(*)$ from Proposition 5.2 holds for all subgroups $\mathcal{G} \subseteq \mathcal{D}$ ).

LEMMA 5.7. Let $1 \neq \sigma=\sigma_{1}^{i} \sigma_{2}^{j} \in \mathscr{D}$ with $i, j \in \mathbb{Z} /(q+1) \mathbb{Z}$. Then

$$
N(\sigma)= \begin{cases}q+1 & \text { if } i=0 \text { or } j=0 \text { or } i=j \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. For $i=0$ we have $\sigma=\sigma_{2}^{j} \in \operatorname{Gal}(H / K(u))$. In the extension $H / K(u)$ exactly the $q+1$ zeros of $v$ are ramified, hence $N\left(\sigma_{2}^{j}\right)=q+1$. In a similar manner one shows that $N\left(\sigma_{1}^{j}\right)=N\left(\left(\sigma_{1} \sigma_{2}\right)^{j}\right)=q+1$ for $j \neq 0$ (observe that $\left.\left(\sigma_{1} \sigma_{2}\right)^{j} \in \operatorname{Gal}(H / K(u / v))\right)$. Now let $\sigma=\sigma_{1}^{i} \sigma_{2}^{j}$ with $i, j \neq 0$ and $i \neq j$. We have to show that none of the places $P=Q_{\alpha, \beta}$ resp. $P=Q_{\alpha}$ is invariant under $\sigma$.

Case (i). $P=Q_{\alpha, \beta}$. Assume that $\sigma P=P$. Then $\alpha=u(P)=(\sigma u)(P)=\zeta^{i} \alpha$, hence $\alpha=0$. Moreover $\beta=v(P)=(\sigma v)(P)=\zeta^{j} \beta$, hence $\beta=0$. This conflicts with the condition $\alpha^{q+1}+\beta^{q+1}+1=0$.

Case (ii). $P=Q_{\alpha}$. Assume that $\sigma P=P$. Then

$$
\alpha=\left(\frac{u}{v}\right)(P)=\left(\frac{\sigma u}{\sigma v}\right)(P)=\zeta^{i-j} \alpha
$$

As $i \neq j$ it follows that $\alpha=0$ which is a contradiction to $\alpha^{q+1}+1=0$.
THEOREM 5.8. Let $\mathcal{G}$ be a subgroup of $\mathfrak{D}$ (as defined in (5.3)). Then

$$
g\left(H^{\mathcal{g}}\right)=1+\frac{(q+1)\left(q+1-r_{1}-r_{2}-r_{3}\right)}{2 r}
$$

with $r=\operatorname{ord}(\mathcal{G}), r_{1}=\operatorname{ord}\left(\mathcal{G} \cap\left\langle\sigma_{1}\right\rangle\right), r_{2}=\operatorname{ord}\left(\mathscr{q} \cap\left\langle\sigma_{2}\right\rangle\right)$ and $r_{3}=\operatorname{ord}\left(\mathcal{G} \cap\left\langle\sigma_{1} \sigma_{2}\right\rangle\right)$.
Proof. Since $\left\langle\sigma_{1}\right\rangle \cap\left\langle\sigma_{2}\right\rangle=\left\langle\sigma_{1}\right\rangle \cap\left\langle\sigma_{1} \sigma_{2}\right\rangle=\left\langle\sigma_{2}\right\rangle \cap\left\langle\sigma_{1} \sigma_{2}\right\rangle=\{1\}$, we obtain from Lemma 5.7 that

$$
\sum_{1 \neq \sigma \in g} N(\sigma)=\left(\left(r_{1}-1\right)+\left(r_{2}-1\right)+\left(r_{3}-1\right)\right) \cdot(q+1)
$$

The result follows now from Proposition 5.2.
EXAMPLE 5.9. Let $a, b$ be integers. Define

$$
\begin{aligned}
& d:=\operatorname{gcd}(q+1, a, b), \quad d_{1}:=\operatorname{gcd}(q+1, a), \\
& d_{2}:=\operatorname{gcd}(q+1, b) \quad \text { and } \quad d_{3}:=\operatorname{gcd}(q+1, a-b) .
\end{aligned}
$$

Then there exists a subgroup $\mathcal{G} \subseteq \mathscr{D}$ such that

$$
g\left(H^{g}\right)=1+\frac{1}{2}\left(d(q+1)-d_{1}-d_{2}-d_{3}\right)
$$

Proof. We consider the cyclic group $\mathcal{G} \subseteq \mathscr{D}$ which is generated by the automorphism $\sigma:=\sigma_{1}^{a} \sigma_{2}^{b}$. Then

$$
\begin{aligned}
& \operatorname{ord}(\mathcal{G})=(q+1) / d, \quad \operatorname{ord}\left(\mathcal{G} \cap\left\langle\sigma_{1}\right\rangle\right)=d_{2} / d \\
& \operatorname{ord}\left(\mathcal{G} \cap\left\langle\sigma_{2}\right\rangle\right)=d_{1} / d \quad \text { and } \quad \operatorname{ord}\left(\mathcal{G} \cap\left\langle\sigma_{1} \sigma_{2}\right\rangle\right)=d_{3} / d
\end{aligned}
$$

The result now follows from Theorem 5.8.
EXAMPLE 5.10. Let $c \geqslant 1$ be an odd divisor (resp. even divisor) of $(q+1)$. Then there exists a subfield $H_{0} \subseteq H$ such that $H / H_{0}$ is cyclic of degree $\left[H: H_{0}\right]=c$ and

$$
g\left(H_{0}\right)=1+\frac{(q-2)(q+1)}{2 c}\left(\operatorname{resp} . g\left(H_{0}\right)=1+\frac{(q-3)(q+1)}{2 c}\right)
$$

Moreover the extension $H / H_{0}$ is unramified if $c$ is odd.
Proof. Let $q+1=a \cdot c$ and $b:=2 a$. With notations as in Example 5.9 (i.e., $\mathcal{G}$ is the cyclic group generated by $\sigma_{1}^{a} \sigma_{2}^{2 a}$ ), we have

$$
\begin{array}{ll}
d=d_{1}=d_{2}=d_{3}=a, & \text { if } c \text { is odd } \\
d=d_{1}=d_{3}=a ; d_{2}=2 a, & \text { if } c \text { is even. }
\end{array}
$$

The formula for the genus $g\left(H_{0}\right)$ now follows from Example 5.9. If $c$ is an odd divisor of $(q+1)$ then $H / H_{0}$ is unramified because $d=d_{1}=d_{2}=d_{3}=a$ in this case and hence

$$
\mathfrak{g} \cap\left\langle\sigma_{1}\right\rangle=\mathfrak{g} \cap\left\langle\sigma_{2}\right\rangle=\mathfrak{g} \cap\left\langle\sigma_{1} \sigma_{2}\right\rangle=\{1\}
$$

EXAMPLE 5.11. Let $a, b \geqslant 1$ be divisors of $q+1$, and let $d:=\operatorname{gcd}(a, b)$. Then there exists a subgroup $\mathcal{G} \subseteq \mathcal{D}$ such that $g\left(H^{g}\right)=1+\frac{1}{2}(a b-a-b-d)$.

Proof. In this case we choose the subgroup $\mathcal{G} \subseteq \mathscr{D}$ that is generated by $\sigma_{1}^{a}$ and $\sigma_{2}^{b}$. Then

$$
\operatorname{ord}(\mathcal{q})=(q+1)^{2} / a b, \quad \operatorname{ord}\left(\underline{q} \cap\left\langle\sigma_{1}\right\rangle\right)=(q+1) / a
$$

$$
\operatorname{ord}\left(\mathcal{G} \cap\left\langle\sigma_{2}\right\rangle\right)=(q+1) / b \quad \text { and } \quad \operatorname{ord}\left(\mathscr{q} \cap\left\langle\sigma_{1} \sigma_{2}\right\rangle\right)=(q+1) / \operatorname{lcm}(a, b)
$$

The result follows from Theorem 5.8.
We give yet another example of a tame subgroup $\mathcal{E} \subseteq \mathcal{A}$. Let $H=K(u, v)$ be generated as above, i.e. $u^{q+1}+v^{q+1}+1=0$. Consider the automorphisms $\tau$ and $\rho \in \mathcal{A}$ given by

$$
\tau(u)=v, \quad \tau(v)=u, \quad \text { and } \quad \rho(u)=\frac{v}{u}, \quad \rho(v)=\frac{1}{u}
$$

Then $\tau^{2}=\rho^{3}=1$ and $\tau^{-1} \rho \tau=\rho^{2}$, hence

$$
\begin{equation*}
\mathcal{E}:=\langle\tau, \rho\rangle \tag{5.4}
\end{equation*}
$$

is a group of order 6 isomorphic to the symmetric group $\delta_{3}$. For $p \neq 2,3$ this is a tame subgroup of $\mathcal{A}$.

EXAMPLE 5.12. The genus of the fixed field of $\mathcal{E}$ is

$$
g\left(H^{\S}\right)= \begin{cases}\frac{1}{12}\left(q^{2}-4 q+3\right) \text { for } q \equiv 1 \bmod 6 \\ \frac{1}{12}\left(q^{2}-4 q+7\right) \text { for } q \equiv 5 \bmod 6\end{cases}
$$

Proof. The automorphism $\tau$ fixes exactly the places $P=Q_{\alpha, \alpha}$ with $2 \alpha^{q+1}+1=$ 0 , hence $N(\tau)=q+1$. One checks easily that

$$
N(\rho)= \begin{cases}2 & \text { if } q \equiv 1 \bmod 6 \\ 0 & \text { if } q \equiv 5 \bmod 6\end{cases}
$$

As all elements of order 2 in $\mathcal{E}$ are conjugate to $\tau$, we obtain

$$
\begin{aligned}
\sum_{1 \neq \sigma \in \mathscr{E}} N(\sigma) & =3 \cdot N(\tau)+N(\rho)+N\left(\rho^{2}\right) \\
& =3(q+1)+2 N(\rho) \\
& =\left\{\begin{array}{l}
3 q+7 \text { if } q \equiv 1 \bmod 6 \\
3 q+3 \text { if } q \equiv 5 \bmod 6
\end{array}\right.
\end{aligned}
$$

The claim follows now from Proposition 5.2.

## 6. Supplementary Remarks

In Section 1 we defined the set $\Gamma\left(q^{2}\right)=\{g \geqslant 0 \mid$ there is a maximal function field over $\mathbb{F}_{q^{2}}$ of genus $\left.g\right\}$, and we remarked that

$$
\begin{equation*}
g \in \Gamma\left(q^{2}\right) \Rightarrow g \leqslant \frac{(q-1)^{2}}{4} \quad \text { or } g=\frac{q(q-1)}{2} \tag{6.1}
\end{equation*}
$$

The genera of subfields of the Hermitian function field $H / \mathbb{F}_{q^{2}}$ are in $\Gamma\left(q^{2}\right)$. Combining (6.1) with the results of this paper, we obtain.

Remark 6.1. For $q \leqslant 16$ holds

$$
\begin{aligned}
& \Gamma\left(2^{2}\right)=\{0,1\}, \quad \Gamma\left(3^{2}\right)=\{0,1,3\} \\
& \Gamma\left(4^{2}\right)=\{0,1,2,6\} ; \quad \Gamma\left(5^{2}\right)=\{0,1,2,3,4,10\} \\
& \{0,1,2,3,5,7,9,21\} \subseteq \Gamma\left(7^{2}\right) \subseteq[0,9] \cup\{21\} \\
& \{0,1,2,3,4,6,7,9,10,12,28\} \subseteq \Gamma\left(8^{2}\right) \subseteq[0,12] \cup\{28\} ; \\
& \{0,1,2,3,4,6,8,9,12,16,36\} \subseteq \Gamma\left(9^{2}\right) \subseteq[0,16] \cup\{36\} \\
& \{0,1,2,3,4,5,7,9,10,11,13,15,18,19,25,55\} \subseteq \Gamma\left(11^{2}\right) \\
& \subseteq[0,25] \cup\{55\} ; \\
& \{0,2,3,6,9,12,15,18,26,36,78\} \subseteq \Gamma\left(13^{2}\right) \subseteq[0,36] \cup\{78\} \\
& \{0,1,2,4,6,8,12,24,28,40,56,120\} \subseteq \Gamma\left(16^{2}\right) \subseteq[0,56] \cup\{120\}
\end{aligned}
$$

Proof. We give the details only for $q=5$ and $q=8$; the other cases are similar.
$q=5: \quad \Gamma\left(5^{2}\right) \subseteq\{0,1,2,3,4,10\}$ follows from (6.1). By Corollary 4.9 the Hermitian function field $H / \mathbb{F}_{25}$ contains subfields of genus $0,1,2,4$ and 10 , and Theorem 5.1 provides a subfield of genus 3 .
$q=8: \quad \Gamma\left(8^{2}\right) \subseteq[0,12] \cup\{28\}$ follows from (6.1). By Corollary 4.9 the Hermitian function field over $\mathbb{F}_{64}$ contains subfields of genus $0,1,4,7$ and 28 . Corollary 3.4 gives subfields of $H$ of genus $g=2^{2-v}\left(2^{3-w}-1\right)$ for $(v, w)=(0,0),(0,1),(0,2)$, $(1,1),(1,2),(2,2)$ and $(2,1)$, so $1,2,3,4,6,12,28$ are in $\Gamma\left(8^{2}\right)$. Theorem 5.1 provides a subfield of genus $(19-1) / 2=9$, and Theorem 5.8 yields a subfield of genus 10 (taking $r=3$ and $r_{1}=r_{2}=r_{3}=1$, with notations as in Theorem 5.8).

All entries in the tables of Remark 6.1 come from subfields of the Hermitian function field. We can add the entry $g=1$ for $q=13$, since $1 \in \Gamma\left(q^{2}\right)$ for all $q$, see
[Se]. The results of Remark 6.1 for $q=2,3,4,5$ and 9 are known [Se], [X-St], [G-V 8]. For $q=8$ the fact that $9 \in \Gamma\left(8^{2}\right)$ seems to be new [G-V 8].

It is known that $\{0,1,2\} \subseteq \Gamma\left(q^{2}\right)$ for all sufficiently large $q$, see [Se]. For an arbitrary integer $a \geqslant 0$ we can prove a weaker result

Remark 6.2. Given an integer $a \geqslant 0$, there exist infinitely many $q$ with $a \in \Gamma\left(q^{2}\right)$.

Proof. Choose $q$ such that $q \equiv-1 \bmod (2 a+1)$ holds. Then $m:=\left(q^{2}-\right.$ 1) $/(2 a+1)$ is a divisor of $q^{2}-1$ and $\operatorname{gcd}(m, q+1)=(q+1) /(2 a+1)$. By Corollary 4.9 there is a subfield $E$ of $H$ of genus

$$
g=\frac{1}{2 m}\left(q+1-\frac{q+1}{2 a+1}\right)(q-1)=a
$$

In many cases one can easily describe the fixed field $E=H^{g}$ (for a group $\mathcal{G}$ of automorphisms of the Hermitian function field $H$ ) in terms of generators of $E$. Here are some examples.

EXAMPLE 6.3 (cf. Corollary 4.9). Consider $H=\mathbb{F}_{q^{2}}(x, y)$ with $y^{q}+y=x^{q+1}$ and the automorphism $\epsilon$ of $H / \mathbb{F}_{q^{2}}$ given by $\epsilon(x)=a x, \epsilon(y)=a^{q+1} y$, where $a$ is a primitive $\left(q^{2}-1\right)$ th root of unity. Then $\operatorname{ord}(\epsilon)=q^{2}-1$, and for any $m \mid\left(q^{2}-1\right)$ there is a unique subgroup $\mathcal{G} \subseteq\langle\epsilon\rangle$ of order $m$. The fixed field $E=H^{g}$ can be generated by two functions $z$, $t$ satisfying the irreducible equation

$$
z^{n}=t(t+1)^{q-1}, \text { with } n:=\left(q^{2}-1\right) / m
$$

Proof. Let $t:=y^{q-1}$; then $H=\mathbb{F}_{q^{2}}(x, y)=\mathbb{F}_{q^{2}}(x, t)$ with

$$
x^{q^{2}-1}=\left(y^{q}+y\right)^{q-1}=y^{q-1}\left(y^{q-1}+1\right)^{q-1}=t(t+1)^{q-1}
$$

Setting $z:=x^{m}$ we obtain $E=H^{g}=\mathbb{F}_{q^{2}}(z, t)$ and $z^{n}=t(t+1)^{q-1}$.
EXAMPLE 6.4 (cf. also [La] and [L, p. 40]). Here we give equations for some other maximal curves. Let the Hermitian function field be represented by its Fermat equation:

$$
\begin{equation*}
v^{q+1}=(-1) \cdot\left(u^{q+1}+1\right) \tag{6.2}
\end{equation*}
$$

We will consider two cases and in both cases we will have that $u^{q+1}$ belongs to the function field of the maximal curve considered and hence Theorem 5.8 applies to both cases.

Case 1. Let $k \in \mathbb{N}$ and $m \mid(q+1)$. Multiplying Equation (6.2) by $u^{k m}$, we get

$$
\begin{equation*}
z^{m}+t^{k}\left(t^{\frac{q+1}{m}}+1\right)=0 \tag{6.3}
\end{equation*}
$$

where $z=u^{k} \cdot v^{\frac{q+1}{m}}$ and $t=u^{m}$.
Equation (6.3) is the equation of a maximal curve over $\mathbb{F}_{q^{2}}$ with genus $g$ given by (see [St 1, Prop. III.7.3])

$$
2 g=\frac{q+1}{m}(m-1)-\left(\delta_{1}+\delta_{2}-2\right)
$$

where $\delta_{1}=\operatorname{gcd}(m, k)$ and $\delta_{2}=\operatorname{gcd}\left(m, \frac{q+1}{m}+k\right)$.
The field $K(z, t)$ is the fixed field of the group $g$ inside $\mathscr{D}$ (notations as in (5.3)) of order $q+1$ corresponding to pairs $(i, j)$ with

$$
i \equiv 0\left(\bmod \frac{q+1}{m}\right) \quad \text { and } \quad \frac{m i}{q+1} \cdot k+j \equiv 0(\bmod m)
$$

Case 2: Let $k$ and $b$ be two natural numbers. Raising Equation (6.2) to the $k$ th power and then multiplying by $u^{b(q+1)}$, we get

$$
\begin{equation*}
z^{m_{1}}=(-1)^{k} t^{b m} \cdot\left(t^{m}+1\right)^{k} \tag{6.4}
\end{equation*}
$$

where $m_{1}$ and $m$ are divisors of $(q+1), z=\left(u^{b} v^{k}\right)^{\frac{q+1}{m_{1}}}$ and $t=u^{\frac{q+1}{m}}$.
Equation (6.4) is the equation of a maximal curve over $\mathbb{F}_{q^{2}}$ with genus $g$ given by (see [St 1, Prop. III.7.3]) $2 g=m\left(m_{1}-\delta_{1}\right)-\left(\delta_{2}+\delta_{3}-2\right)$, where $\delta_{1}=\operatorname{gcd}\left(m_{1}, k\right)$, $\delta_{2}=\operatorname{gcd}\left(m_{1}, b m\right)$ and $\delta_{3}=\operatorname{gcd}\left(m_{1},(b+k) m\right)$.

In this case, the field $K(z, t)$ is the fixed field of the group $g$ of the order $(q+1)^{2} / m m_{1}$ corresponding to pairs $(i, j)$ with

$$
i \equiv 0(\bmod m) \quad \text { and } \quad i b+j k \equiv 0\left(\bmod m_{1}\right)
$$

Remark 6.5. Defining equations for the fields $H^{g}$, where $\mathcal{G} \subseteq \mathcal{A}$ is a nonabelian tame subgroup of $\mathcal{A}$ as considered in Theorem 5.4, are related to Chebyshev polynomials; for details we refer to $[\mathrm{G}-\mathrm{S}]$.

Remark 6.6. Subfields of the Hermitian function field cover almost all examples of maximal function fields that we found in the literature, see $[\mathrm{D}-\mathrm{H}],[\mathrm{D}-\mathrm{S}-\mathrm{V}]$, [G-V, 1-8], [I], [La], [M-K], [Se], [St 1], [W 1,2].

Except at the end of Section 5 and in Example 6.4 we have not used the fact that the Hermitian function field $H$ can be given by a Fermat equation.

$$
H=K(u, v) \quad \text { with } \quad u^{q+1}+v^{q+1}+1=0
$$

There is a natural subgroup $\mathcal{F}$ of the automorphism group $\mathcal{A}$ to consider here. It consists of the elements $\sigma(u)=a u+b v$ and $\sigma(v)=c u+d v$ satisfying:

$$
a^{q+1}+c^{q+1}=1, \quad b^{q+1}+d^{q+1}=1 \quad \text { and } \quad a^{q} b+c^{q} d=0
$$

It can be shown that the order of this subgroup $\mathcal{F}$ is equal to $\left(q^{3}-q\right) \cdot(q+1)$. It would be interesting to determine the genera of fixed fields of subgroups of this group $\mathcal{F}$. At the end of Section 5 we have considered subgroups with $b=c=0$. Here we will consider two further examples:

EXAMPLE 6.7 (char $K \neq 2$ ). For two elements $b, c \in K$ with $b^{q+1}=c^{q+1}=1$, let $\sigma$ be the automorphism given by:

$$
\sigma(u)=b v \quad \text { and } \quad \sigma(v)=c u
$$

We then have that

$$
\begin{aligned}
& \sigma^{2 n}(u)=(b c)^{n} \cdot u \quad \text { and } \quad \sigma^{2 n}(v)=(b c)^{n} \cdot v \\
& \sigma^{2 n+1}(u)=(b c)^{n} \cdot b v \quad \text { and } \quad \sigma^{2 n+1}(v)=(b c)^{n} \cdot c u
\end{aligned}
$$

Denoting by $M$ the multiplicative order of the element $b c$, we have that the cyclic subgroup of $\mathcal{F}$ generated by $\sigma$ has order equal to $2 M$. Since we assumed that char $K \neq 2$, the cyclic group $\langle\sigma\rangle$ is tame. Denoting by $N\left(\sigma_{1}\right)$ the number of fixed points of an automorphism $\sigma_{1} \in\langle\sigma\rangle$, one can check that:

$$
\begin{aligned}
& N\left(\sigma^{2 n}\right)=q+1, \text { for } n=1,2, \ldots, M-1, \quad \text { and } \\
& N\left(\sigma^{2 n+1}\right)= \begin{cases}2, & \text { if }(q+1) / M \text { is odd }, \\
q+1, & \text { if } M \text { is odd and } n=(M-1) / 2, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Now it follows from Proposition 5.2 that the genus $g$ of the fixed field of $\langle\sigma\rangle$ is given by:

$$
4 M g= \begin{cases}(q+1)(q-1)-(q-1) M, & \text { if }(q+1) / M \text { odd } \\ (q+1)(q-1)-(q-3) M, & \text { if }(q+1) / M \text { even and } M \text { even } \\ (q+1)(q-2)-(q-3) M, & \text { if } M \text { odd }\end{cases}
$$

If $M$ is odd the genus formula above coincides with the one in Example 5.5(iv). If $M$ is even and $M$ is a proper divisor of $(q+1)$, then the genus formula above does not coincide with the one given in Example 5.5(iii).

EXAMPLE 6.8 (char $K \neq 2$ ). Let $m$ be a divisor of $(q+1)$. We have $m^{2}$ automorphisms of $H$ of the form below.

$$
\begin{equation*}
\sigma(u)=b v \quad \text { and } \quad \sigma(v)=c u, \quad \text { with } b^{m}=c^{m}=1 \tag{6.5}
\end{equation*}
$$

These automorphisms generate a subgroup $\mathcal{q}$ of $\mathcal{F}$ having $2 m^{2}$ elements; the other $m^{2}$ elements being of the form below.

$$
\begin{equation*}
\tau(u)=b u \quad \text { and } \quad \tau(v)=c v, \quad \text { with } b^{m}=c^{m}=1 \tag{6.6}
\end{equation*}
$$

Since $\operatorname{char}(K) \neq 2$, we have that $g$ is tame. The number of fixed points $N(\tau)$ for automorphisms $\tau$ as in (6.6) above is easily seen to satisfy (see Lemma 5.7):

$$
N(\tau)= \begin{cases}q+1, & \text { if } b=1 \text { and } c \neq 1 \\ q+1, & \text { if } c=1 \text { and } b \neq 1 \\ q+1, & \text { if } b=c \neq 1 \\ 0, & \text { otherwise }\end{cases}
$$

Hence summing over $\tau$ as in (6.6), we get

$$
\begin{equation*}
\sum_{1 \neq \tau} N(\tau)=3(m-1)(q+1) \tag{6.7}
\end{equation*}
$$

It remains to determine $N(\sigma)$ for automorphisms $\sigma$ as in (6.5) above. For these automorphisms we have:

$$
N(\sigma)= \begin{cases}q+1, & \text { if } b c=1 \\ 2, & \text { if }(b c)^{\frac{q+1}{2}}=-1 \\ 0, & \text { otherwise }\end{cases}
$$

Hence summing over $\sigma$ as in (6.5), we get

$$
\sum_{\sigma} N(\sigma)= \begin{cases}m(q+1), & \text { if }(q+1) / m \text { is even } .  \tag{6.8}\\ m(q+1+m), & \text { if }(q+1) / m \text { is odd } .\end{cases}
$$

It now follows from (6.7), (6.8) and Proposition 5.2 that the genus $g=g\left(H^{g}\right)$ is given by:

$$
4 m^{2} g= \begin{cases}4 m^{2}+(q+1)(q+1-4 m), & \text { if }(q+1) / m \text { is even } . \\ 3 m^{2}+(q+1)(q+1-4 m), & \text { if }(q+1) / m \text { is odd. }\end{cases}
$$

Particularly interesting is the case $m=2$. In this case the group $\mathcal{G}$ is the dihedral group with 8 elements and we have:

$$
g= \begin{cases}(q-3)^{2} / 16, & \text { if } q \equiv 3 \bmod 4 \\ (q-1)(q-5) / 16, & \text { if } q \equiv 1 \bmod 4\end{cases}
$$

The following remark was communicated to us by J.-P. Serre:
Remark 6.9. The natural action of $\mathcal{A}=\mathcal{A} u t(H)$ on the $l$-adic Tate module of the Hermitian curve (where $l$ is a prime number not dividing $q$ ) gives rise to a representation $\rho: \mathscr{A} \rightarrow \mathrm{GL}_{2 g}\left(\mathbb{Q}_{l}\right)$. The corresponding character $\chi$ is irreducible and has values in $\mathbb{Q}$. For a subgroup $\mathscr{B} \subseteq \mathcal{A}$, the genus $g\left(H^{\mathcal{B}}\right)$ is given by

$$
2 g\left(H^{\mathcal{B}}\right)=\frac{1}{\operatorname{ord} \mathscr{B}} \cdot \sum_{\sigma \in \mathcal{B}} \chi(\sigma)
$$

This formula comes from the orthogonality relations for characters of irreducible representations, applied to the restriction $\left.\chi\right|_{\mathcal{B}}$ and to the identity $\mathrm{id}_{\mathcal{B}}$.

As an example, consider the case $q=8$ and a subgroup $\mathscr{B}=\langle\sigma\rangle \subseteq \mathscr{A}$ of order 3. The values of the character $\chi$ can be found in the Atlas of finite groups [C, p. 64]. Depending on the type of $\sigma$ one has $\chi(\sigma)=-7$ or $\chi(\sigma)=-1$ or $\chi(\sigma)=2$. Hence

$$
g\left(H^{\mathcal{B}}\right)=\frac{1}{6}\left(\chi(\mathrm{id})+\chi(\sigma)+\chi\left(\sigma^{2}\right)\right)=\frac{1}{6}(56+2 \cdot \chi(\sigma)),
$$

and therefore $g\left(H^{\mathcal{B}}\right)=7$ or 9 or 10 . The case $g\left(H^{\mathcal{B}}\right)=9$ corresponds to our Theorem 5.1; the other cases are special cases of Example 5.11.

## References

[C] Conway, J. H. et al.: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[D-H] Davenport, H. and Hasse, H.: Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1934), 151-182.
[D-S-V] Duursma, I., Stichtenoth, H. and Voss, C.: Generalized Hamming weights for duals of BCH codes, and maximal algebraic function fields, In: R. Pellikaan, M. Perret, S. G. Vladut (eds), Arithmetic, Geometry and Coding Theory, Proceedings Luminy (1993), De Gruyter, Berlin, 1996, pp. 53-65.
[F-T 1] Fuhrmann, R. and Torres, F.: The genus of curves over finite fields with many rational points, Manuscr. Math. 89 (1996), 103-106.
[F-T 2] Fuhrmann, R. and Torres, F.: On curves over finite fields with many rational points. International Centre for Theoretical Physics Preprint IC/96/47, Trieste, 1996.
[F-G-T] Fuhrmann, R., Garcia, A. and Torres, F.: On maximal curves, J. Number Theory 67 (1997), 29-51.
[G-S] Garcia, A. and Stichtenoth, H.: On Chebyshev polynomials and maximal curves, Preprint 1998.
[G-V 1] van der Geer, G. and van der Vlugt, M.: Weight distributions for a certain class of codes and maximal curves, Discr. Math. 106/107 (1992), 209-218.
[G-V 2] van der Geer, G. and van der Vlugt, M.: Fibre products of Artin-Schreier curves and generalized Hamming weights of codes, J. Comb. Theory A 70 (1995), 337-348.
[G-V 3] van der Geer, G. and van der Vlugt, M.: Curves over finite fields of characteristic 2 with many rational points, C.R. Acad. Sci. Paris, Ser. I 317 (1993), 693-597.
[G-V 4] van der Geer, G. and van der Vlugt, M.: Generalized Hamming weights of codes and curves over finite fields with many points, in Israel Math. Conf. Proc. 9 (1996), 417-432.
[G-V 5] van der Geer, G. and van der Vlugt, M.: Generalized Reed-Muller Codes and Curves with Many Points, Preprint 1997.
[G-V 6] van der Geer, G. and van der Vlugt, M.: Quadratic forms, generalized Hamming weights of codes and curves with many points, J. Number Theory 59 (1966), 20-36.
[G-V 7] van der Geer, G. and van der Vlugt, M.: How to construct curves over finite fields with many points, In: F. Cortona (ed.), Arithmetic Geometry, Cambridge Univ. Press, Cambridge, 1997, pp. 169-189.
[G-V 8] van der Geer, G. and van der Vlugt, M.: Tables for the Function $N_{q}(g)$, Jan. 1998. ttp://www.wins.uva.nl/~ geer.
[I] Ibukiyama, T.: On rational points of curves of genus 3 over finite fields. Tohoku Math. J. 45 (1993) 311-329.
[L] Lang, S.: Introduction to Algebraic and Abelian Functions, 2nd edn, Springer-Verlag, Berlin, Heidelberg, 1982.
[La] Lachaud, G.: Sommes d'Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis, C.R. Acad. Sci. Paris 305 (1987), 729-732.
[Le] Leopoldt, H. W.: Über die Automorphismengruppe des Fermatkörpers, J. Number Theory 56 (1996), 256-282.
[M-K] Miura, S. and Kamiya, N.: Geometric Goppa codes on some maximal curves and their minimum distance, Proc. IEEE Workshop on Information Theory, Susono-shi, Japan, June (1993), pp. 85-86.
[N-X] Niederreiter, H. and Xing, C. P.: Drinfeld modules of rank 1 and algebraic curves with many rational points II, Acta Arith. 81 (1997), 81-100.
[R-St] Rück, H. G. and Stichtenoth, H.: A Characterization of Hermitian Function Fields over Finite Fields, J. Reine Angew. Math. 457 (1994), 185-188.
[Se] Serre, J.-P.: Résumé des cours de 1983-1984, In: Ann. Collège de France, 1984, pp. 79-83.
[St 1] Stichtenoth, H.: Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.
[St 2] Stichtenoth, H.: Algebraic-geometric codes associated to Artin-Schreier extensions of $\mathbb{F}_{q}(z)$, In: Proc. 2nd Int. Workshop on Algebra and Combin. Coding Theory, Leningrad (1990), pp. 203-206.
[St 3] Stichtenoth, H.: Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik I, II, Arch. Math. 24 (1973), 524-544 and 615-631.
[W 1] Wolfmann, J.: Nombre de points rationnels de courbes algébriques sur des corps finis associées à des codes cycliques, C.R. Acad. Sci. Paris, Sér. I 305 (1987), 345-348.
[W 2] Wolfmann, J.: The number of points on certain algebraic curves over finite fields, Comm. Algebra 17 (1989), 2055-2060.
[X-St] Xing, C. P. and Stichtenoth, H.: The genus of maximal function fields over finite fields, Manuscr. Math. 86 (1995), 217-224.


[^0]:    ${ }^{\star}$ The first and second authors were partially supported by GMD-CNPq, the third author was supported by DFG.

