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Abstract

We compute commutativity degrees of wreath products A o B of finite Abelian groups A and B. When B
is fixed of order n the asymptotic commutativity degree of such wreath products is 1/n2. This answers
a generalized version of a question posed by P. Lescot. As byproducts of our formula we compute the
number of conjugacy classes in such wreath products, and obtain an interesting elementary number-
theoretic result.
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1. Introduction

For a finite group G let G denote the set of pairs of commuting elements of G:

G = {(g, h) ∈ G × G | gh = hg}.

The quantity |G|/|G|
2 measures the probability of two random elements of G

commuting and is called the commutativity degree of G. In [1] Lescot computes the
commutativity degree of dihedral groups and shows that it tends to 1/4 as the order
of the group tends to infinity. He then asks whether there are other natural families of
groups with the same property. In this paper we show that if B is an Abelian group of
order n and A is a finite Abelian group, then the commutativity degree of the wreath
product A o B tends to 1/n2 as the order of A tends to infinity.

THEOREM 1.1. Let G = A o B, where A is a finite Abelian group and
B = {b1, b2, . . . , bn} is an Abelian group of order n. Then

|G| =

n∑
s,t=1

|A|
n+α(s,t), (1)

where α(s, t) denotes the index of the subgroup of B generated by bs and bt .
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The exact value of the quantity α(s, t), of course, depends on the structure of B
as an Abelian group. We show how to obtain it in Section 3. Here we just note that
when B = Zn = {1, 2, . . . , n} is a cyclic group of order n, α(s, t) = (n, s, t) (where
(n, s, t) denotes the greatest common divisor of n, s, and t). More generally, for a
fixed value of n the farther B is away from a cyclic group, the larger the commutativity
degree of the wreath product A o B is. For example, the commutativity degree of A o Z4
is 1/16 + 3|A|

−2
+ 12|A|

−3, while that of A o (Z2 × Z2) is 1/16 + 9|A|
−2

+ 6|A|
−3.

However, the asymptotic behaviour of the commutativity degree of the wreath product
A o B as |A| → ∞ does not depend on the structure of B as an Abelian group.

COROLLARY 1.2. Let A be a finite Abelian group and B be an Abelian group of
order n. Then the commutativity degree of the wreath product A o B tends to 1/n2 as
|A| → ∞.

A straightforward computation with indices of centralizers shows that the number of
conjugacy classes in a finite group G is equal to |G|/|G|, hence (1) yields the formula
for the number of conjugacy classes in wreath products of finite Abelian groups.

COROLLARY 1.3. Let A and B be as in Theorem 1.1. Then the number of
conjugacy classes in the wreath product A o B is (1/n)

∑n
s,t=1 |A|

α(s,t).

By taking B = Zn in Corollary 1.3, we obtain the following interesting elementary
number-theoretic result. We have not been able to find an elementary proof of this fact.

COROLLARY 1.4. For any natural number a, the sum
∑n

s,t=1 a(n,s,t) is divisible
by n. If n is prime, this gives Fermat’s little theorem.

2. Notation and terminology for wreath products

We shall use some of the notation from [2]. Let A and B be groups and let A∗

be the direct sum of copies of A indexed by elements of B. We shall write this as
A∗

=
∑

b∈B Ab, where each group Ab is a copy of A. Elements of A∗ can be thought
of as functions from B to A with finite support. An element f ∈ A∗ such that

f (b) =

{
a if b = b0 ∈ B,

eA otherwise,

will be denoted by σa(b0). In this notation, every element of A∗ can be uniquely
written in the form

σa1(b1) · · · σas (bs),

where b1, . . . , bs are distinct elements of B, and a1, . . . , as are any elements of A.
Such a presentation will be called a canonical word. Define an action of B on A∗ by

f c(b) = f (bc−1), c ∈ B, b ∈ B. (2)
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The (standard restricted) wreath product of A and B, denoted by A o B, is the
semidirect product of A∗ and B with the action of B on A∗ given by (2). If we denote
the elements of the canonical copy of B in A o B by τc, c ∈ B, then (2) becomes

τcσa(b) = σa(bc)τc,

and thus every element of A o B can be uniquely written in the canonical form

σa1(b1) · · · σas (bs)τb,

where σa1(b1) · · · σas (bs) is a canonical word in A∗. We shall work with wreath
products where the group B is finite, in which case the restricted wreath product and
the complete wreath product are the same.

3. Proof of Theorem 1.1

Since both groups A and B are Abelian we shall use additive notation for their
group operations. To make the proof transparent we first work out in detail the case
when B = Zn is the cyclic group of order n. We may represent elements of B by
arbitrary integers assuming that one takes the residue modulo n to obtain an actual
element of Zn .

We shall count the number of commuting pairs of elements of G = A o Zn as
follows. Fix s and t in {1, . . . , n − 1, n} and let

g = σa0(0)σa1(1) · · · σan−1(n − 1)τ−s,

and

h = σx0(0)σx1(1) · · · σxn−1(n − 1)τ−t .

We then count the number of commuting pairs (g, h) with prescribed values of s and
t but allowing the ai and xi to be arbitrary elements of A. To do so we think of an
element g as being ‘fixed’ and count the number of elements h that commute with
every such given g. As we shall see shortly, there might be some conditions on the ai
for g to commute with at least one such h.

We shall make a convention that au and av represent the same element of the group
A if u and v are equal modulo n; similarly for xu and xv . With this notation, the
elements g and h as above commute if and only if

x0 − xs = a0 − at ,

x1 − xs+1 = a1 − at+1,

...

xn−1 − xs+(n−1) = an−1 − at+(n−1),
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which can be thought of as a ‘linear system’ in unknowns x0, x1, . . . , xn−1. Let d + 1
be the order of s in Zn , then d + 1 = n/(n, s) and there are (n, s) cosets of the cyclic
subgroup 〈s〉 generated by s in Zn .

The above linear system will split into (n, s) independent subsystems in unknowns
{xi , xi+s, xi+2s, . . . , xi+ds} where i varies over the representatives of the cosets of 〈s〉
in Zn , say 0 6 i 6 (n, s) − 1. The matrix of each such subsystem has rank d; hence
for the subsystem to be consistent the ‘constant’ column consisting of differences of
ai must add up to zero. This gives the following condition for consistency of the
i th subsystem:

ai + ai+s + · · · + ai+ds = ai+t + ai+s+t + · · · + ai+ds+t , (3)

0 6 i 6 (n, s) − 1.

If t ∈ 〈s〉 then the conditions (3) are automatically satisfied for all i , and hence for any
choice of the elements a0, a1, . . . , an−1 the number of elements h commuting with
given g is |A|

(n,s) since each subsystem has one free variable.
Suppose now that t ∈ j + 〈s〉 for some j ∈ {1, . . . , (n, s) − 1}. Let u denote the

order of t (= order of j) in the quotient group Zn/〈s〉. Then u = (n, s)/(n, s, t)
and the index of the subgroup 〈t〉 in Zn/〈s〉 is (n, s)/u = (n, s, t); in the notation
of Theorem 1.1 this is nothing but α(s, t).

The conditions (3) split into α(s, t) blocks corresponding to the cosets of 〈t〉 in
Zn/〈s〉. The kth block (0 6 k 6 α(s, t) − 1) looks as follows:

ak + ak+s + · · · + ak+ds = ak+t + ak+t+s + · · · + ak+t+ds,

ak+t + ak+t+s + · · · + ak+t+ds = ak+2t + ak+2t+s + · · · + ak+2t+ds,

...

ak+(u−1)t + ak+(u−1)t+s + · · · + ak+(u−1)t+ds = ak+ut + ak+ut+s + · · · + ak+ut+ds .

But ut is a multiple of s, and hence the right-hand side of the last equation is equal to
the left-hand side of the first equation. It follows that exactly one of these u equations
is a consequence of the others and each block produces u − 1 independent ‘linear’
conditions on the ai .

To summarize, among the |A|
n sequences (a0, a1, . . . , an−1) of elements of A,

there are exactly |A|
n−α(s,t)(u−1)

= |A|
n−(n,s)+α(s,t) sequences for which the original

linear system in x0, x1, . . . , xn−1 is consistent. For each such fixed sequence,
the number of sequences (x0, x1, . . . , xn−1) satisfying the corresponding system is
|A|

(n,s) since each of the (n, s) (= index of the subgroup of B generated by s)
subsystems contributes one free variable. Thus, for fixed s and t the total number
of commuting pairs (g, h) of elements of G where the canonical form of g ends in τ−s
and the canonical form of h ends in τ−t is |A|

n+α(s,t). The formula (1) now follows.
In the general case, when B = {b1, b2, . . . , bn} is an arbitrary Abelian group, fix

bs , bt ∈ B and consider two elements of G = A o B,

g = σa1(b1)σa2(b2) · · · σan (bn)τ−bs ,
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and

h = σx1(b1)σx2(b2) · · · σxn (bn)τ−bt .

Note that the above proof essentially did not use the fact that B was a cyclic group (it
was only used so as to have a convenient way to label the indices of ai and xi ). Rather,
the computation involves the following quantities:

(1) the index of the cyclic subgroup of B generated by bs , say β(s);
(2) the index of the cyclic subgroup of the quotient group B/〈bs〉 generated by the

image of bt , which is precisely α(s, t) in our notation.

The ‘linear system’ which gives conditions for elements g and h to commute then splits
into β(s) subsystems each of which corresponds to a coset of the cyclic subgroup 〈bs〉

of B, and hence the same reasoning carries over verbatim to the general case. Further,
the conditions on the ai will split into α(s, t) blocks each of which corresponds to a
coset of the cyclic subgroup generated by the image of bt in B/〈bs〉.

It follows that among the |A|
n sequences (a1, a2, . . . , an) of elements of A, there

are exactly |A|
n−β(s)+α(s,t) sequences for which the linear system is consistent. For

each such fixed sequence, the number of sequences (x1, x2, . . . , xn) satisfying the
corresponding system is |A|

β(s). Thus, for fixed s and t the total number of commuting
pairs (g, h) of elements of G where the canonical form of g ends in τ−bs and
the canonical form of h ends in τ−bt is |A|

n+α(s,t). This completes the proof of
Theorem 1.1.

Finally, we give a formula for α(s, t) which depends on the structure of B as an
Abelian group. Let B = Zn1 × · · · × Znk and let s = (s1, . . . , sk), t = (t1, . . . , tk)
be two elements of B. Let α(s, t) = [B : 〈s, t〉].

Consider the surjective homomorphism π : Zk
→ B with

ker π = n1Z × · · · × nkZ.

Let a, b ∈ Zk be such that π(a) = s and π(b) = t . Then Zk/H ∼= B/〈s, t〉 where H =

ker π + 〈a, b〉. We determine the order of Zk/H as follows. Write a = (a1, . . . , ak)

and b = (b1, . . . , bk) (thinking of the si and t j as integers one may take ai = si and
b j = t j for all i, j ∈ {1, . . . , k}), then

H = {(n1m1 + ua1 + vb1, . . . , nkmk + uak + vbk) | mi , u, v ∈ Z}.

If R : Zk+2
→ Zk is a homomorphism given by the k × (k + 2) matrix

n1 0 · · · 0 a1 b1
0 n2 · · · 0 a2 b2
...

...
. . .

...
...

...

0 0 · · · nk ak bk


then H = Im R. Let P ∈ GLk(Z) and Q ∈ GLk+2(Z) be such that

https://doi.org/10.1017/S0004972708000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000038


36 I. V. Erovenko and B. Sury [6]

P RQ =


d1 0 · · · 0 0 0
0 d2 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · dk 0 0


where d1 | d2 | · · · | dk are the elementary divisors of R. We have

Zk/Im R ∼= P(Zk)/P R(Zk+2) = Zk/P RQ(Zk+2),

so that

α(s, t) = |Zk/Im R| = |d1d2 · · · dk |.

For the reader’s convenience we recall a well-known method for finding elementary
divisors. For i = 1, . . . , k, let hi denote the greatest common divisor of all i × i
minors of R; then hi = d1d2 · · · di . This is because the numbers hi do not change
when multiplied on the left and on the right by elementary matrices and these generate
all invertible integer matrices. In particular, note that if k = 1 then α(s, t) = (n, s, t).
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