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Abstract

We compute commutativity degrees of wreath products A : B of finite Abelian groups A and B. When B
is fixed of order n the asymptotic commutativity degree of such wreath products is 1/n%. This answers
a generalized version of a question posed by P. Lescot. As byproducts of our formula we compute the
number of conjugacy classes in such wreath products, and obtain an interesting elementary number-
theoretic result.
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1. Introduction

For a finite group G let G denote the set of pairs of commuting elements of G:
G={(g,h) e G x G |gh=hg}.

The quantity |G|/|G|*> measures the probability of two random elements of G
commuting and is called the commutativity degree of G. In [1] Lescot computes the
commutativity degree of dihedral groups and shows that it tends to 1/4 as the order
of the group tends to infinity. He then asks whether there are other natural families of
groups with the same property. In this paper we show that if B is an Abelian group of
order n and A is a finite Abelian group, then the commutativity degree of the wreath
product A ¢ B tends to 1/n? as the order of A tends to infinity.

THEOREM 1.1. Let G=A1B, where A is a finite Abelian group and
B ={by, by, ..., by} isan Abelian group of order n. Then

n
IGl= > A0, (1)

s,t=1
where a(s, t) denotes the index of the subgroup of B generated by by and b;.
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The exact value of the quantity «(s, ), of course, depends on the structure of B
as an Abelian group. We show how to obtain it in Section 3. Here we just note that
when B=7, ={1, 2, ..., n}is acyclic group of order n, a(s, t) = (n, s, t) (where
(n, s, t) denotes the greatest common divisor of n, s, and ¢). More generally, for a
fixed value of n the farther B is away from a cyclic group, the larger the commutativity
degree of the wreath product A @ B is. For example, the commutativity degree of A : Z4
is 1/16 + 3|A|72 4 12| A|~3, while that of A 2 (Zy x Z)is 1/16 +9|A|72 + 6]A| 3.
However, the asymptotic behaviour of the commutativity degree of the wreath product
A B as |A| — oo does not depend on the structure of B as an Abelian group.

COROLLARY 1.2. Let A be a finite Abelian group and B be an Abelian group of
order n. Then the commutativity degree of the wreath product A B tends to 1/n* as
|A| — oo.

A straightforward computation with indices of centralizers shows that the number of
conjugacy classes in a finite group G is equal to |G|/|G]|, hence (1) yields the formula
for the number of conjugacy classes in wreath products of finite Abelian groups.

COROLLARY 1.3. Let A and B be as in Theorem 1.1. Then the number of
conjugacy classes in the wreath product A B is (1/n) Z?,t:l |A|2G:D),

By taking B = Z, in Corollary 1.3, we obtain the following interesting elementary
number-theoretic result. We have not been able to find an elementary proof of this fact.

COROLLARY 1.4. For any natural number a, the sum Y " ,_, a"5! is divisible
by n. If n is prime, this gives Fermat’s little theorem.

2. Notation and terminology for wreath products

We shall use some of the notation from [2]. Let A and B be groups and let A*
be the direct sum of copies of A indexed by elements of B. We shall write this as
A* =), cp Ap, Where each group A, is a copy of A. Elements of A* can be thought
of as functions from B to A with finite support. An element f € A* such that

a ifb=>by e B,
fb) = 0

es otherwise,

will be denoted by o,(bg). In this notation, every element of A* can be uniquely
written in the form

Ual(bl) s O'ax(bs)a

where by, ..., by are distinct elements of B, and ay, . .., as are any elements of A.
Such a presentation will be called a canonical word. Define an action of B on A* by

fb)y= fbc™"), ceB, beB. )
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The (standard restricted) wreath product of A and B, denoted by A: B, is the
semidirect product of A* and B with the action of B on A* given by (2). If we denote
the elements of the canonical copy of B in A B by t., ¢ € B, then (2) becomes

704 (b) = 04(bO)Te,
and thus every element of A : B can be uniquely written in the canonical form
O'al(bl) s Uas(bs)fba

where oy, (b1) - - - 04,(bs) is a canonical word in A*. We shall work with wreath
products where the group B is finite, in which case the restricted wreath product and
the complete wreath product are the same.

3. Proof of Theorem 1.1

Since both groups A and B are Abelian we shall use additive notation for their
group operations. To make the proof transparent we first work out in detail the case
when B =7, is the cyclic group of order n. We may represent elements of B by
arbitrary integers assuming that one takes the residue modulo n to obtain an actual
element of Z,,.

We shall count the number of commuting pairs of elements of G = A:Z, as
follows. Fix sandrin {1, ..., n — 1, n} and let

8= Gao(O)Ual(]) ce O—an_l(n - D1y,
and
h= 04y )0, (1) (1 — DTy,

We then count the number of commuting pairs (g, /&) with prescribed values of s and
t but allowing the a; and x; to be arbitrary elements of A. To do so we think of an
element g as being ‘fixed’ and count the number of elements & that commute with
every such given g. As we shall see shortly, there might be some conditions on the «;
for g to commute with at least one such A.

We shall make a convention that a,, and a, represent the same element of the group
A if u and v are equal modulo n; similarly for x, and x,. With this notation, the
elements g and & as above commute if and only if

X0 — Xs = 4o — 4y,

X1 — Xg+1 = A1 — 4g+1,

Xpn—1 — Xs+(n—1) = An—1 — At4+(n—1);
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which can be thought of as a ‘linear system’ in unknowns xg, xp, ..., X,—1. Letd + 1
be the order of s in Z,,, then d + 1 = n/(n, s) and there are (n, s) cosets of the cyclic
subgroup (s) generated by s in Z,,.

The above linear system will split into (n, s) independent subsystems in unknowns
{xi, Xits, Xi42s, - - -, Xi+qs} Where i varies over the representatives of the cosets of (s)
in Z,, say 0 <i < (n, s) — 1. The matrix of each such subsystem has rank d; hence
for the subsystem to be consistent the ‘constant’ column consisting of differences of
a; must add up to zero. This gives the following condition for consistency of the
ith subsystem:

ai + aits + -+ ditds = iyt + Qigstr + -+ Aitdstr, 3)
0<i<(n,s) —1.

If ¢ € (s) then the conditions (3) are automatically satisfied for all i, and hence for any

choice of the elements ag, ay, . . ., a,—1 the number of elements 7z commuting with
given g is |A|"*) since each subsystem has one free variable.
Suppose now that ¢t € j + (s) for some j € {1, ..., (n, s) — 1}. Let u denote the

order of ¢ (= order of j) in the quotient group Z,/(s). Then u = (n, s)/(n, s, t)
and the index of the subgroup (¢) in Z,/(s) is (n, s)/u = (n, s, t); in the notation
of Theorem 1.1 this is nothing but a (s, ¢).

The conditions (3) split into «(s, ¢) blocks corresponding to the cosets of (¢) in
Zn/{s). The kth block (0 < k < a(s, t) — 1) looks as follows:

ak + Qg5 + - - -+ Akvds = k1 + k45 T+ - + Aktr+dss
Akt + Aktt4s + + - -+ Akr+ds = Ak+2¢ + Ak42t4+s5 + + - - + A2t +ds,

A+ (u—1)t + Gk+@—Dt+s T+ Akt @—Dt+ds = k+ut + Aktur+s + -+ + Qktut+ds-

But ut is a multiple of s, and hence the right-hand side of the last equation is equal to
the left-hand side of the first equation. It follows that exactly one of these u equations
is a consequence of the others and each block produces u — 1 independent ‘linear’
conditions on the q;.

To summarize, among the |A|" sequences (ag, a1, . .., a,—1) of elements of A,
there are exactly |A["~¢&DW=D — | g|n=(n9)+els.D sequences for which the original
linear system in xg, x1, ..., X,—1 is consistent. For each such fixed sequence,
the number of sequences (xg, X1, . .., X,—1) satisfying the corresponding system is

|A|™9) since each of the (n, s) (= index of the subgroup of B generated by s)
subsystems contributes one free variable. Thus, for fixed s and ¢ the total number
of commuting pairs (g, &) of elements of G where the canonical form of g ends in 7_;
and the canonical form of / ends in 7_; is |A|*t26-) The formula (1) now follows.

In the general case, when B = {by, by, ..., by} is an arbitrary Abelian group, fix
bs, b; € B and consider two elements of G = A B,

8 = Og, (bl)o'az b)) - - Oa, (bn)f—bp
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and
h= Ox, (bl)axz (b2) - - Ox, (bn)ffb,.

Note that the above proof essentially did not use the fact that B was a cyclic group (it
was only used so as to have a convenient way to label the indices of ¢; and x;). Rather,
the computation involves the following quantities:

(1) the index of the cyclic subgroup of B generated by by, say B(s);
(2) the index of the cyclic subgroup of the quotient group B/(bs) generated by the
image of b;, which is precisely «(s, t) in our notation.

The ‘linear system’ which gives conditions for elements g and / to commute then splits
into B(s) subsystems each of which corresponds to a coset of the cyclic subgroup (by)
of B, and hence the same reasoning carries over verbatim to the general case. Further,
the conditions on the a; will split into «(s, t) blocks each of which corresponds to a
coset of the cyclic subgroup generated by the image of b; in B/ (bs).

It follows that among the |A|"” sequences (ai, az, . . ., a,) of elements of A, there
are exactly |A|"P®)+eD sequences for which the linear system is consistent. For
each such fixed sequence, the number of sequences (x1, x2, ..., x,) satisfying the
corresponding system is |A|#). Thus, for fixed s and 7 the total number of commuting
pairs (g, h) of elements of G where the canonical form of g ends in 7_,, and
the canonical form of  ends in 7_j, is |A["**0 This completes the proof of

Theorem 1.1.
Finally, we give a formula for «(s, t) which depends on the structure of B as an
Abelian group. Let B=7Z,, X --- X Ly, and let s =(s1, ..., 8), t =(t1, ..., &)

be two elements of B. Let a(s, t) =[B : (s, t)].
Consider the surjective homomorphism 7 : ZK — B with

kerm =mZ x - - - X n;Z.

Let a, b € ZF be such that 7w (a) = s and 7 (b) = ¢. Then Zk/H = B/(s, t) where H =

ker w + (a, b). We determine the order of 7k /H as follows. Write a = (ay, .. ., a)
and b = (b1, . . ., by) (thinking of the s; and ¢; as integers one may take a; = s; and
bj=tjforalli, j€{l,...,k}), then

H ={(nimy +uay + vby, ..., ngmy + uay + vby) | m;, u, v € Z}.

If R: ZF? — 7F is a homomorphism given by the k x (k + 2) matrix

np 0 -+ 0 a b
0 ny -+ 0 a b
0O 0 -+ nry ap by

then H =Im R. Let P € GLy(Z) and Q € GLy3(Z) be such that
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d 0 0 0 0
0 d 0 0 0
PRQ = .
0 0 --- d 00
where di | dy | - - - | dy are the elementary divisors of R. We have

ZF/Im R = P(Z*)/PR(Z*?) =2} ) PRQ(Z}?),
so that
als, t)=|Z/Im R| = |did> - - - di|.

For the reader’s convenience we recall a well-known method for finding elementary
divisors. For i =1, ..., k, let h; denote the greatest common divisor of all i x i
minors of R; then h; =dd> - - - d;. This is because the numbers /; do not change
when multiplied on the left and on the right by elementary matrices and these generate
all invertible integer matrices. In particular, note that if k = 1 then «(s, t) = (n, s, t).
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