ON RINGS WITH NIL COMMUTATOR IDEAL

Hazar Abu-Khuzam

Abstract

Let R be a ring in which for each x, y in R there exists a positive integer $n=n(x, y)$ such that $(x y)^{n}-(y x)^{n}$ is in the center of R. Then R has a nil commutator ideal.

A theorem of Belluce, Herstein and Jain [2] states that, if R is a ring in which for each x, y in R there exists integers $m=m(x, y) \geq 1, n=n(x, y) \geq 1$ such that $(x y)^{m}=(y x)^{n}$, then the commutator ideal of R is nil. Our objective is to generalize the above result for the case where $m(x, y)=n(x, y)$. Indeed, we prove that, if R is a ring in which for each x, y in R there exists an integer $n=n(x, y) \geq 1$ such that $(x y)^{n}-(y x)^{n}$ is in the center of R, then R has a nil commutator.

In preparation for the proofs of our main theorem, we first consider the following lemmas. Throughout, R will denote a ring, Z will denote the center of R, and J the jacobson radical of R. We use the standard notation $[x, y]=x y-y x$.

The first two lemas are known and we omit their proofs.
LEMMA 1. If $[x, y]$ commutes with x, then $\left[x^{k}, y\right]=k x^{k-1}[x, y]$.

LEMMA 2. Let d be a derivation of R. If $x \in R$ is such that $d^{2}(x)=0$ then $d^{k}\left(x^{k}\right)=k!(d(x))^{k}$ for all $k \geq 1$.

Received 18 November 1980.

LEMMA 3. If R is a ring in which for each x, y in R, there exists an integer $n=n(x, y) \geq 1$ such that $(x y)^{n}-(y x)^{n} \in z$. Then for each $a \in J, x \in R$ there exist integers $n=n(x, a) \geq 1$ and $m=m(x, a) \geq 1$ such that $(4 m)!\left[a, x^{2 n}\right]^{4 m}=0$.

Proof. Let $a \in J, x \in R .(1+\alpha)$ is formally invertible (R need not have an identity element). Using the hypothesis for the elements $(1+a) x$ and $x(1+a)^{-1}$, there exists an integer $n \geq 1$ such that

$$
\left((1+a) x^{2}(1+a)^{-1}\right)^{n}-x^{2 n} \in z
$$

Thus

$$
\begin{aligned}
(1+a) x^{2 n}-x^{2 n}(1+a) & =(1+a)\left((1+a) x^{2 n}(1+a)^{-1}-x^{2 n}\right), \\
\left((1+a) x^{2 n}-x^{2 n}(1+a)\right)(1+a) & =(1+a)\left((1+a) x^{2 n}-x^{2 n}(1+a)\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left(a x^{2 n}-x^{2 n} a\right) a=a\left(a x^{2 n}-x^{2 n} a\right), \quad a \in J, x \in R \tag{1}
\end{equation*}
$$

Let $d(y)=a y-y a . d$ is a derivation of R. Using (1), $d^{2}\left(x^{2 n}\right)=0$. Applying (1) for $x^{4 n}$ instead of x, there exists an integer $m \geq 1$ such that

$$
\left(a\left(x^{4 n}\right)^{2 m}-\left(x^{4 n}\right)^{2 m} a\right) a=a\left(a\left(x^{4 n}\right)^{2 m}-\left(x^{4 n}\right)^{2 m} a\right)
$$

Thus, $d^{2}\left(x^{8 m n}\right)=0$. Hence, by Lemma 2,

$$
0=d^{4 m}\left(\left(x^{2 n}\right)^{4 m}\right)=(4 m)!\left(d\left(x^{2 n}\right)\right)^{4 m}
$$

and so $(4 m)!\left[a, x^{2 n}\right]^{4 m}=0$.
Theorem 1 below is proved in [1] and we omit its proof here.
THEOREM 1. If R is a semisimple ring in which, for each x, y in R there exists an integer $n=n(x, y) \geq 1$ such that $(x y)^{n}=(y x)^{n} \in Z$. Then R is commutative.

THEOREM 2. Let R be a ring in which, for each x, y in R there exists an integer $n=n(x, y) \geq 1$ such that $(x y)^{n}-(y x)^{n} \in z$. Then the commutator ideal of R is nil. Equivalently, if R has no nonzero
nil ideals then R is commutative.
Proof. To prove that the commutator ideal of R is nil it is enough to show that if R has no nonzero nil ideals then it is commutative. So we suppose that R has no nonzero nil ideals. Then R is a subdirect product of prime rings R_{α}, having no nonzero nil ideals, such that in each R_{α} there is a nonnilpotent element b_{α} in which $b_{\alpha}^{t(I)} \in I$ for every nonzero ideal I of R_{α}. Clearly, R_{α} satisfies the condition $(x y)^{n}-(y x)^{n} \in z_{\alpha}\left[\right.$ center of $\left.R_{\alpha}\right]$. So we may assume that R is a prime ring, having no nonzero nil ideals, in which there is a nonnilpotent element $b \in R$ such that $b^{t(I)} \in I$ for all nonzero ideals I of R. We may assume that $J \neq 0$, otherwise the result follows from Theorem 1. If char $R=p \neq 0$, then, by (1), for any $x \in R$ and $a \in J$, there exists an integer $n=n(a, x) \geq 1$ such that

$$
\left[a,\left[a, x^{2 n}\right]\right]=0
$$

Hence, by Lemma 1,

$$
\left[a^{p}, x^{2 n}\right]=p a^{p-1}\left[a, x^{2 n}\right]=0
$$

So for any $x, y \in J,\left[x^{p}, y^{2 n}\right]=0$. This implies by [3] that J is commutative, and therefore R is commutative since it is prime and has a nonzero commutative ideal [4].

So we may assume that char $R=0$, and since R is prime with char $R=0, R$ is torsion-free.

CLAIM 1. Every zero divisor in R is nilpotent.
To prove Claim 1 , suppose that $a c=0$, with $a \neq 0$ and c
nonnilpotent. Let $A=\left\{x \in R: x c^{r}=0\right.$ for some $\left.r \geq 1\right\}$ and $B=\left\{x \in R: c^{s} x=0\right.$ for some $\left.a \geq 1\right\}$. Then A is a left ideal of R, and B is a right ideal. $A \neq 0$ since $0 \neq a \in A$. If $x \in A$, then $x c^{r}=0$ for some $r \geq 1$, and hence $\left(c^{r} x\right)^{2}=0$. By hypothesis, there exists an integer $n \geq 1$ such that $\left(c^{r}\left(x+c^{r}\right)\right)^{n}-\left(\left(x+c^{r}\right)^{c r}\right)^{n} \in 2$. This implies that $\left(c^{2 n}\right)^{n-1} c^{r} x \in Z$. So $0=c^{(2 n-1) r} x c^{r}=c^{r} c^{(2 n-1) r} x$, and
hence $c^{s} x=0$ for a positive integer B. Thus $x \in B$, and $A \subset B$. Similarly, $B \subset A$. So $A=B$ and hence A is an ideal of R. Since A is a nonzero ideal of $R, b^{t} \in A$ for some $t \geq 1$. Thus $b^{t} c^{r}=0$ for some $r \geq I$, and since c is not nilpotent, then b^{t} is a zero divisor. Now we can repeat the above argument to show that the set $C=\left\{x \in R:\left(b^{t}\right)^{u} x=0\right.$ for some $\left.u \geq 1\right\}$ is an ideal of R. Since $c^{r} \neq 0 \in C, C \neq 0$, and hence $b^{k} \in C$ for some $k \geq 1$. So $b^{t u} \cdot b^{k}=0$. This contradicts the fact that b is nonnilpotent. This proves Claim 1.

CLAIM 2. R has no nonzero nilpotent elements.
To prove Claim 2, suppose that $u^{2}=0$ with $y \neq 0$. Then every element of $y R$ is a zero divisor, and hence by claim l every element of $y R$ is nilpotent. Thus $y R$ is a nil right ideal, and so

$$
\begin{equation*}
y R \subset J \tag{2}
\end{equation*}
$$

If $Z=0$, then by hypothesis, for every c, d in R there exists an integer $n=n(c, d) \geq 1$ such that $(c d)^{n}=(d c)^{n}$, which implies by [2] that R is commutative. So we may assume that $Z \neq 0$, and let $0 \neq z \in Z$. Since R is prime and $0 \neq z \in Z$, then

```
z is not a zero divisor, 0}\not=z\inZ
```

Let $a \in J$. Using (1) with $(y+z)$ instead of x, there exists an integer $n \geq 1$ such that

$$
\begin{equation*}
\left(a(y+z)^{2 n}-(y+z)^{2 n} a\right) a=a\left(a(y+z)^{2 n}-(y+z)^{2 n} a\right) \tag{4}
\end{equation*}
$$

Since $y^{2}=0$ and $z \in Z$, (4) implies

$$
\left[a\left(2 n z^{2 n-1} y+z^{2 n}\right)-\left(2 n z^{2 n-1} y+z^{2 n}\right) a, a\right]=0
$$

and hence

$$
2 n z^{2 n-1}[[a, y], a]=0
$$

and since R is torsion-free and $z^{2 n-1}$ is not a zero divisor

$$
\begin{equation*}
[[a, y], a]=0 \text { for all } a \in J, y^{2}=0 \tag{5}
\end{equation*}
$$

Using induction on the index of nilpotence of nilpotent elements v and proceeding as above yields that

$$
\begin{equation*}
[[a, v], a]=0 \text { for all } a \in J \text {, and all nilpotents } v . \tag{6}
\end{equation*}
$$

Since $y R$ is nil, (2) and (6) imply that

$$
[[a, v], a]=0 \text { for all } a, v \text { in } y R
$$

Hence $y R$ is a nil right ideal satisfying a polynomial identity. So by Lemma 2.l.1 of [4], R has a nonzero nilpotent ideal, a contradiction. Hence $y R=0$, and so $y x=0$ for all $x \in R$. Thus every element of R is a zero divisor, and hence nilpotent by Claim 1 . This is a contradiction since R has no nonzero nil ideals. Thus $y=0$ and Claim 2 is now proved.

Now we can complete the proof of Theorem 2. By Lemma 3, for each $a \in J, x \in R$, there exist integers $n=n(x, a) \geq 1$ and $m=m(x, a) \geq 1$ such that $(4 m)!\left[a, x^{2 n}\right]^{4 m}=0$. Using Claim 2 , and that R is torsion-free, we get $\left[a, x^{2 n}\right]=0$. Thus for every $x, a \in J$ there exists an integer $n=n(x, a) \geq 1$ such that $\left[a, x^{2 n}\right]=0$, and hence J is commutative [3]. R is prime, and has a commutative nonzero ideal J, hence R is commutative [4]. This completes the proof of Theorem 2.

References

[1] Hazar Abu-Khuzam and Adil Yaqub, "A commutativity theorem for division rings", Bull. Austral. Math. Soc. 21 (1980), 43-46.
[2] L.P. Belluce, I.N. Herstein and S.K. Jain, "Generalized commutative rings", Nagoya Math. J. 27 (1966), 1-5.
[3] I.N. Herstein, "A comutativity theorem", J. Algebra 38 (1976), 112-118.
[4] I.N. Herstein, Rings with involution (University of Chicago Press, Chicago, Illinois; London; 1976).

Department of Mathematical Sciences, University of Petroleum and Minerals, Drahran, Saudi Arabia.

