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Abstract . This paper develops a planetary theory in three dimensions with elliptic functions and 
elliptic integrals. In an earlier treatment, (Williams, Van Flandern, and Wright, 1987) presented 
a two dimensional planetary theory to the first order of a Picard iteration. The theory did avoid 
expansions in powers of the ratio of the semi-major axes and it contained only two explicit small 
divisors, n — n' and 2n — n'. These advantages are retained in the new theory and in fact no small 
divisors appear explicitly. Secular terms are removed by adopting an averaging technique rather 
than continuing the Picard iteration. The Lie series method of (Deprit, 1969) is chosen for the 
averaging. In order to simplify the Lie operator, the framework for the problem is chosen to be 
the circular restricted three body problem written in the polar-nodal coordinates of Whittaker. 
The algorithm is described and a few representative terms are discussed. 

Key words: 
Planetary Theory, Elliptic Functions, Restricted Problem. 

A method of simplifying planetary theories by averaging the reciprocal of the dis-

tance ( Δ ) between two planets with elliptic functions was presented by (Richardson, 

1982). He established a generator for a Lie transformation together with an aver-

aged Hamiltonian to first order for a problem with an arbitrary number of planets, 

but for only one degree of freedom per planet. 

A first order treatment for two degrees of freedom appeared in (Williams, Van 

Flandern, and Wright, 1987). The basic problem in going to two dimensions is the 

incorporation of a second degree of freedom into the integration of the Lie operator 

to obtain an averaged Hamiltonian. If a linear function of the synodic angle, φ, 

is the first frequency and the mean longitude of a planet, λ, the second, then a 

typical term exhibiting both angles is cosA/A(y?). This problem was handled in 

(Williams, Van Flandern, and Wright, 1987) by expanding trigonometric functions 

of λ as Fourier series in integral multiples of <p} by writing 

λ = ω<ρ + (ρο, (1) 

To first order, both λ and φ are linear functions of time and ω can be treated as 

a constant. The method of handling the second frequency took advantage of the 

fact that ω was constant. In fact, this allowed an exact representation for cos λ 

with a finite number of terms when ω was an integer. This case corresponded to 

mean motion commensurabilities of the type p/(p + 1) and (2p — l) / (2p + 1). If 

this method were carried to higher orders, when ω can no longer be treated as a 

constant, mixed secular terms would most likely arise. 

1. Introduction 

oo 

(2) 
n = 0 
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One way to avoid adopting Eq.(l) is to set the planetary theory in the con-

text of the restricted three body problem. In a rotating coordinate system, in two 

dimensions, the synodic angle is the polar angle of the massless particle. For the 

right choice of coordinates, this feature will allow us to apply an averaging method, 

using this angle as the basis for the averaging. The addition of the third dimension 

will not destroy this property, and so a three dimensional model is adopted for this 

work. 

In the previous paper, the Fourier series associated with Eq.(l) gave rise to 

secular perturbations from cos 2η^>/Δ(^>). The adoption of a method of averaging 

allows for the removal of the secular terms; that of (Deprit, 1969) is chosen here. 

2. Development of the Hamiltonian 

The three dimensional circular restricted three body problem is considered in a 

coordinate system rotating about the ζ axis with angular frequency ω and with 

origin at mi, one of the primaries. The second primary m 2 is fixed on the χ axis at 

X2 = a. The Hamiltonian of this system is given by 

w = ̂  + y» + z ' ) - w ( « y - l ^ ) + J i ^ y - * ! 2 i - * ^ > (3) 
2 mi + m 2 r A 

where 

2 2 , 2 , 2 

Δ 2 = ( χ _ α ) 2 + τ/2 + ζ 2 , 

ω2α3 = k2(mi -f m 2 ) . 

The momenta (XyY,Z) are conjugate to the rectangular coordinates (x,y,z) of 

the particle in this system. Polar-nodal coordinates are introduced relative to this 

frame. These coordinates are (γ , 0 , ^ ) , the radius vector of the particle orbit, the 

argument of the latitude of the particle, and the longitude of the ascending node 

of the particle's orbit measured in the x-y plane from the rotating χ axis. The 

conjugate momenta are i2, Θ, and TV, where Ν is related to the inclination of the 

orbit through Ν — Θ cos/. In these variables, the Hamiltonian of Eq.(3) becomes 

! / r , 2 . θ 2 , k2m1 . _ at k2™>2 

2 r r Δ 

ωαπΐ2 

+ 1 -h ^ ^Äsin(0 -f ν) -f ® cos(0 -h ι/)^ (4) 
2(mi -f- m 2 ) L 

_ ^1 _ !Pj ^Rsin(0 - ι/) + ® cos(0 - i^j 

The distance between the particle and m 2 is 

Δ = [r 2 + a2 - 2ar cos(0 + v) - r2 sin2 / sin2 θ - Aar sin2 ^ sin θ sin v] 2 

. With the choice of the Keplerian part of Eq.(4) as the Hamiltonian of order zero, 

we may define the Lie derivative in polar-nodal variables as 
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(5) 

One way to simplify this operator is, of course, to treat the problem in the Delaunay 

chart where CQ = nd/d£. However it is possible to retain the polar-nodal variables 

and yet simplify the operator given in Eq.(5). The simplification follows a method 

used by (Deprit, 1981) in the elimination of the parallax. Define two variables 

S := (- - - ) sin(0 + v) - Acos(0 + ν) = -
\ r ρ J ρ 

C "~ ( r p ) 

esmw 

θ 
cos(0 + v) + R sin(0 + v) = —e cos w, 

Ρ 

(6) 

and ρ = Q2/k2mi — a(l — e 2 ) . 

If it is agreed to replace r and Ä in the Hamiltonian and in the generating 
function for the Lie transformation by the use of Eq.(6), then the Lie operator 
reduces to 

θ d 
(7) 

One reason for this success is that S and C are in the kernel of Co, i.e. Co(S) = 

C0(C) = 0. In the variables (S, C,θ,Θ, ν,Ν), 1 / Δ is given by, 

1 

Δ ( l + f ) r * 
1 + 

Δ ι + Δ 2 

( l + £ ) 2 * 2 

- 1 / 2 

(8) 

where 

Ψ 

κ = 

δ 

τ 2 

Λ 

Δι 

Δ 2 

4α/ρ 

1 + α / ρ ) 2 ' 

\J\ — κ2 sin2 <ρ, 

• 2 ' 
sin - , 

- - 1 = £ [Ssin(0 + ι/) + Ccos(0 +1/)] = e cos(0 + ι/ - τσ), 

2 - Ρ ι 
α cos(0 -f ^) 

-^rP? -4y2 sin 2 0 
η * 

α 
(1 + γ ) sin θ + - sin ι/( 1 + Ρι ) 
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3. Solution at First Order 

From Eq.(4) and Eq.(8), we obtain the Hamiltonian to first order 

Ηι = -»Ν+ 2 - cos(0 + ^ (9) 
mi + m 2 ρ (1 + - ) ro 

We choose the new first order Hamiltonian, /C, so that secular terms are removed 

from the generating function, W. Formally, we choose 

wam 2 A k2m2 Β 
/Ci = -wTV-f • τ—TT "TT' ( 1 0 ) 

m! + m 2 ρ 1 4- j r2o 

where A and ,0 are to be determined when W\ is found. We write W\ as the sum 

Wia + Wib, obviously connected to the two terms in Eq.(lO). In fact, 

θ dWiA ωατη2 Θ 

r*6 0 0 mi + rri2 ρ 

r 2 off " (1 + f ) \rS ~ r26J' 

The integration of Eqs.(ll) require that r and r 2 be written as functions of Θ. From 

Eq.(6), we obtain 

r = p/[l + e cos(0 + ν - w)\ (12) 

and expand r and r 2 in powers of e cos(0 + ν — τσ). Since and ν are in the kernel 

of (£o), integration of W\a is immediate and A is chosen to cancel the secular term. 

To the first order in the eccentricity 

W i a = i ω α Π ΐ 2 [Csin(20 + 2i/) - Scos(20 + 2i/)] (13) 
2 m\ -f m2 θ 

where A = —e cos w = —pC/Q. 

For the integration of W\b we introduce the variable
 u by 

ti = / \ / l - κ 2 sin2 χ dx, (14
) 

so that 

sin φ = sn u 

cos φ — en u 

δ — dn u — yj\ — κ2 sin2 φ. 

For the purposes of integration, we also need the differential relation 

άθ = 2d<p = 2dn u du. (15) 

https://doi.org/10.1017/S0074180900090926 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900090926


47 

Then, choosing Β so that secular terms in u are removed from W\b, we obtain 

where Β = C/Θ - 1 - [20/(κ2Θ)](Ε/Κ - /c' 2). Ε and Κ are the complete elliptic 

integrals of the first and second kind respectively and κ' is the complementary 

modulus. 

4 . Remarks Concerning the Second Order 

The equation for the generating function and IC2 at second order is 

C0(W2) = K,2-H2- ((Wi + Ki)\ Wx). (17) 

The choice for Ή2 depends on the assumptions made concerning the size of the 
eccentricity and inclination. Some terms involving Δ 1 / 6 3 or Δ 2 / 5 3 will certainly 
be involved; they present no difficulty in the averaging. The Poisson bracket for 
W\} is more complicated. There are many terms present in this expression. Those 
involving merely sin(0 -f i/),cos(0 -f z/), and δ can be treated in a manner similar 
to what has been given in the previous section. This is also true for %2- The terms 
we need to mention are those that contain Z(u). There are three types of integrals 
arising for the determination of W2 from Eq.(17). These are: 

j snlu cn*u Z(u) du, 

J snlu en? u dn u Z(u) du, (18) 

/ sn%u cn^u x , 

where i and j are non-negative integers and i + j is even. 

Some of these terms, if they are not retained in £2 , will introduce the quantity 

1η[θ(ΐί)/θ(0)] in the generator. With the exclusion of the theta function, 0 (u) , 

from W2 it would appear that higher order partial differential equations for the 

generator will require only the Jacobian elliptic functions and the Lagrange elliptic 

integrals of the first and second kind. However, if the theta functions are allowed, 

the Hamiltonian will contain very few terms that have not been averaged and no 

other functions will be required at higher orders. 

Further algebraic study is required before one can be certain of the terms that 

the new Hamiltonian, /C, will contain. It appears that r is introduced at higher 

orders with negative powers (a feature that aids the development) and that the 

absence of small divisors will continue. 

5. Conclusion 

The recent development of computer codes to integrate rational functions of the Ja-
cobi elliptic functions in symbolic form have encouraged this exploration. Computer 
codes have been developed by Abad, V. Coppola, and A. Deprit in Mathematica 
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and Β. Miller, in MACSYMA. It is clear that before the full power of algebraic 

manipulators can be brought to bear on these problems, codes will be needed to 

integrate quantities containing the elliptic integrals of the first, second, and third 

kind, as well as theta functions. 

Our understanding of the classical averaging methods, especially with the pres-

ence of small divisors, is not complete. It is hoped, that by developing perturbations 

with elliptic functions, since they contain no small divisors explicitly, we may come 

to reach a better understanding of this question. 
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