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THE REAL LINE IN ELEMENTARY SUBMODELS OF SET THEORY 

KENNETH KUNEN1 AND FRANKLIN D. TALL2 

The use of elementary submodels has become a standard tool in set-theoretic 
topology and infinitary combinatorics. Thus, in studying some combinatorial ob­
jects, one embeds them in a set, M, which is an elementary submodel of the uni­
verse, V (that is, (M; e) -< (V; e)). Applying the downward Lowenheim-Skolem 
Theorem, one can bound the cardinality of M. This tool enables one to capture 
various complicated closure arguments within the simple "-<". 

However, in this paper, as in the paper [JT], we study the tool for its own sake. [JT] 
discussed various general properties of topological spaces in elementary submodels. 
In this paper, we specialize this consideration to the space of real numbers, R. Our 
models M are not in general transitive. We will always have R e M, but not usually 
R C M. We plan to study properties of the R n M's. In particular, as M varies, 
we wish to study whether any two of these M n M's are isomorphic as topological 
spaces, linear orders, or fields. 

As usual, it takes some sleight-of-hand to formalize these notions within the 
standard axioms of set theory (ZFC), since within ZFC, one cannot actually define 
the notion (M;e) -< (F;g). Instead, one proves theorems about M such that 
(M;e) -< (H(8);e), where 6 is a "large enough" cardinal; here, H{6) is the 
collection of all sets whose transitive closure has size less than 9. 

For the rest of this paper, when we talk about a topological space (X, ST) in 
M, we really mean that {X,?T) e M and (M; e) -< (H(0); e), where 0 is large 
enough to make the argument at hand work. In practice, it is sufficient to choose 
6 > 2^1, since that will guarantee that H{G) contains all elements oiX, all subsets 
of A", and all subsets of &>(X). This is sufficient because the standard topological 
properties of X are expressed by quantifying over such objects. Of course, this 
estimate 0 > 2|A'I presumes that the elements of X are chosen so that the transitive 
closure of X has size \X\. 

Now, working in ZFC, we can apply the Lowenheim-Skolem Theorem to the 
set H{0): Given any S C H{0), there is an M such that (M; e) -< (H(6); e) and 
|M| = max(|S|,N0). 
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Given a topological space {X, !T) in M, we define XM to be X n M with topology 
generated by { £/ n M : ( J e J n M } [JT]. In particular, taking H(0) such that the 
reallineR is a member of// (0) (i.e., 0 > 2N°), we can look at elementary submodels 
M of / / (#) containing R. Let us emphasize that these models contain R as an 
element but need not include it as a subset. We came to the subject of this paper from 
[JT] via considering ! « - how does it depend on M, in particular the cardinality 
of Ml These R M ' s are the subject of our study. In fact, though, the topological 
space R A/ is nothing other than the subspace topology I f l M inherits from R 
(this is easy to prove directly, and follows more generally for first countable spaces 
[JT]). Thus, from now on we shall talk about R n M rather than R M. Now R n M 
also has an order and algebraic structure; R n M is topologically dense in R by 
elementarity, and so its linear order topology coincides with its subspace topology. 
Also by elementarity, it is easy to see that (R n M, +, •, 0,1) is a subfield of R. The 
basic question we shall study in this paper is, how many different types ofR n M 's 
can there be of the same cardinality! The answers will vary according to the way 
we consider two R n M 's to be the same—topologically, order-theoretically, or 
algebraically—and also according to what set-theoretic axioms we assume. The 
non-logician will be able to understand the statements of most of our results, but 
the proofs involve non-trivial set theory. In addition to standard forcing arguments, 
we will be using some basic large cardinal theory. We refer the reader to [K] for 
information about 0# and Ramsey cardinals. 

Here are our principal results: 

THEOREM. 

(a) As subfields ofR, R D M is isomorphic toR C\ N if and only if they are equal. 
(b) CH implies that there are only two order-isomorphism (homeomorphism) types 

ofR n M 's, namely Q and R. 
(c) It is consistent that there are exactly three order-isomorphism (homeomorphism) 

types ofR CiM's. 
(d) If it is consistent that there is a Ramsey cardinal, then it is consistent that there 

are 22 ° pairwise non-homeomorphic (non-order isomorphic) R C\M's of power 
2N». 

(e) It is consistent with 2N° = H2 that there are 2Nl pairwise non-homeomorphic 
(non-order isomorphic) I n M ' j of size Ni. 

(f) It is consistent that allRC\M 's of size Nj are homeomorphic but that there exist 
R fl M andR n N of size Ni which are not order-isomorphic. 

It turns out that the algebraic types are trivial, and that most of the results about 
topological types follow from those about order types. Therefore we will quickly 
dispose of the algebra of R D M , then consider the order, and then the topology. 
We will end by looking at R" n M, and in particular a t C n M . 

THEOREM 1. Considering R n M andR n N as subfields ofR, R n M is isomorphic 
to R n N if and only ifR n M = R n N. 

PROOF. Suppose that / is a field isomorphism from R n M onto RnJV. Then / 
is the identity on the rationals, Q (every field isomorphism is), and / is order-
preserving (these are real-closed fields, so the order is defined from the field opera­
tions). Since Q is dense in R, / must be the identity map. H 
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Actually, as is well-known, no two distinct real-closed subfields of the reals can 
be isomorphic. 

Now we come to order. If R n M is countable, it is easy to see that by elementar­
ily, R n M is a countable dense linear order without endpoints and so is isomorphic 
to Q. Under V = L, there is little else to be said: 

THEOREM 2. V = L implies that R fl M is either equal to K or order-isomorphic 

to®. 

This follows immediately from 

LEMMA 3. IfV = L and M is uncountable then R C M. 
PROOF. By a standard argument, there is an e-isomorphism i from some La 

onto M. Since M is uncountable, a > co\, so that R C La. Now, i(q) = q for 
each q e Q, since q has an absolute definition in set theory. Thus, since i is order 
preserving, i{x) = x for each x e R, so that R C M. H 

If 2*<> > Ni it is easy to get M, N such that \M n R | = | iV n R | = Hi but 
M n R ^ N n R (start with M, choose r e R \ M , and let N be the Skolem hull 
of M U {/•}). However, getting |M n R | = |iV n R | = Ni but M n R, J V n R 
non-isomorphic is not so easy. In fact it's consistent with 2N° > Kj that it can't be 
done: 

THEOREM 4. // is consistent with ZFC that 2H° > Kj and for every M and N such 
that |R D M\ = |R D iV| = K,, R n M is order-isomorphic toRnN. 

DEFINITION. Let K an infinite cardinal, Y a topological space, and X C Y. X is 
«;-dense in Y if and only if every non-empty open subset of Y meets X in a set of 
size exactly K. Y is K-dense if and only if Y is «-dense in Y. 

PROOF OF THEOREM 4. I f | R n M | = K, then R n M is K,-dense in R (s inceRnM 
is a subfield of R) . Baumgartner [Bi] forced to obtain a model in which every two 
sets of reals N| -dense in R are order-isomorphic and (hence) 2No > ttu establishing 
Theorem 4. H 

We can improve Theorem 4 to: 

THEOREM 5. It is consistent with ZFC that 2No = K2 and for every M and N of 
size Hi, R n M andR n N are order-isomorphic. 

To help reduce Theorem 5 to Theorem 4, first observe: 
LEMMA 6. Suppose \a>\ n M\ = N, = |M|. 7%e« |R n M\ = N,. 

0# is a A3 set of natural numbers, the existence of which has large cardinal 
strength. Its existence is equivalent to the existence of an elementary embedding 
j : La —> Lp for some a and /?, such that some ordinal less than \a\ is moved 
(Kunen, see e.g., [K, p. 277]). 

LEMMA 7. TfO* does not exist, then if\M\ > n, then M D K. 

PROOF. Consider the Mostowski isomorphism, i : M = T, where T is transitive. 
Since |Af| > K, T D K and hence T 3 LK. Then / - 1 : r ^ M C 7̂ (6*) is an 
elementary embedding and therefore so is / \LK '. LK —> LQ. But if M 2 K> some 
a < K gets moved. H 

PROOF OF THEOREM 5. Start with L and perform Baumgartner's forcing to get 
2No = N2 and all sets of reals Hi-dense in R order-isomorphic. 0# cannot be added 
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by set forcing (see e.g., [K, p. 186]), so in the resulting model, any uncountable M 
will include uncountably many reals. Now apply the proof of Theorem 4. -\ 

THEOREM 8. IfO# does not exist and |R n M\ = 2No, then R C M. 

PROOF. By elementarity and by taking 6 sufficiently large, we may assume there 
is in M a bijection between the cardinal 2N° and R. But by Lemma 7, 2No C M, so 
therefore R is. H 

COROLLARY 9. In the model of Theorem 5, there are only 3 isomorphism types 
o/R nM's. 

It follows from Theorem 8 that if CH holds and 0# does not exist, then i n M 
is isomorphic to either Q or R. Surprisingly, I. Farah has improved this to get the 
following result, which we include with his kind permission. 

THEOREM 10. CH implies that if R D M is uncountable, then R n M = R and 
hence there are only 2 isomorphism types ofRDM 's. 

PROOF. By CH, there is a bijection / : co\ —> R. Hence there is such a bijection 
/ € Mand/" («winM) = R n M . R P\M is uncountable, so co\ DM is uncountable 
and hence = co\. But then R = f"cox = R n M . H 

This is quite a contrast to the situation under CH for order types of subsets of R 
which need not be of form R n M—there are 22 ° different ones—see e.g., [B2]. 

REMARK. Notice the difference between Lemma 3 and Theorem 10: in the former, 
we assume M is uncountable, in the latter R n M is uncountable. By Lemma 7, 
the nonexistence of 0# makes the difference: if M is uncountable, it includes a>\ 
(by -i0#); since there is an injection from co\ into R; the range of the injection in M 
is uncountable. However, assuming CH plus Chang's Conjecture, there are indeed 
uncountable models M for which R n M is countable; just apply Chang's Conjecture 
to {H{6),R), which is a structure of type (> K2, Hi), to get an elementary submodel 
of type (Ni, No). 

We can get sharper, axiomatic versions of Theorems 4 and 5 and in the process 
obtain a theorem distinguishing consistently between the number of order types of 
Ni-dense sets and the number of order-types of R fl M's of size Ni. First, some 
definitions from [ARS]: 

DEFINITION. Let X be a second countable space of size Ni. Let 

D{X) = 1 x 1 - {(x, x):xe X}. 

An open cove r t = {Uo,... , £/„_i} of D{X) consisting of symmetric sets is called 
an open coloring of X. A C X is ^-homogeneous if for some i < n, D{A) C Uj. 

[ARS] call the assertion that for every such X and %, X can be partitioned into 
countably many ^-homogeneous sets "OCA"; the second author is grateful to S. 
Todorcevic for informing him that this is not equivalent to what is now known as 
"OCA" (see [T]) and that the proof in [ARS] that MA plus their OCA (which we 
will call "OCAi") implies 2N° = N2 is incorrect, although the conjunction of these 
three hypotheses is consistent. 

DEFTNITION. A set A C R of cardinality Hi is called an increasing set if for every 
n e co and any set {(a(a,0),... ,a(a,n - 1)) : a < a>\} C A" of pairwise disjoint 
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w-tuples there are a,fi<co\, such that for every i < n, a(a, i) < a{fl, i). ISA is the 
assertion that an increasing set exists. 

THEOREM 11. MAplusOCAx implies that if'\R n M | = |R f)N\ = ^jhenRDM 
and R n N are isomorphic. 

COROLLARY 12. MA plus OCAi plus 2Ho = K2 plus 0# doesn't exist implies there 
are exactly 3 order-types ofR n M's. 

In order to prove these, we first need three results from [ARS]. 

LEMMA 13. Assume MA plus OCAi plus not ISA. Then every two $.\-dense sets of 
reals are isomorphic. 

LEMMA 14. Assume MAplus OCAi plus ISA. Then there is an increasing ~£\-dense 
set A such that A,A*{= {—a : a G A}) and ADA* are homogeneous, and every 
homogeneous tt\-dense set is isomorphic to one of these three sets. 

LEMMA 15. If A is increasing, A ^ A*. 

PROOF OF THEOREM 11. By elementarily, any R n M is homogeneous, and 

(R n MY = R n M. 

Therefore, assuming ISA, every RDM of size Ni is isomorphic to A U A*. On the 
other hand, by Lemma 13, we also have only one type of R n M of size Ni if ISA 
fails. H 

Corollary 12 follows as usual. The conjunction of MA, OCAi, and ISA is 
interesting in that it gives an example to show the structure of R n M-types may 
differ from that of the Ki-dense types, even without CH. 

So far, we have been looking at models in which the number of isomorphism 
types of R n M's has been very small; however it is indeed consistent that it be as 
large as possible, i.e., 22 °, assuming the consistency of a Ramsey cardinal. 

DEFINITION, K is Ramsey if and only if K —> ( K ) ^ . 

Comparing with our previous assumption, let us note that the existence of a 
Ramsey cardinal implies 0# exists, but not vice versa. 

THEOREM 16. If it is consistent that there is a Ramsey cardinal, then it is con­
sistent that there are 22 ° pairwise non-homeomorphic and hence non-isomorphic 
R C\ M's of size 2*°. 

The proof will use the Ramsey cardinal to obtain a model in which there are 22 ° 
distinct R n M's; on the other hand, by LavrentiefFs Theorem (see e.g., [E, 4.3.21]) 
any homeomorphism from S C R to T C R can be extended to a homeomorphism 
from 5" to T', where 5" and T' are G$ subsets of R. There are only 2N° many such 
homeomorphisms, so each R n M is homeomorphic to at most 2K° many R n N's, 
so if there are 22 ° distinct ones, there are 22 ° pairwise non-homeomorphic ones. 

Let K be Ramsey. Let P be the partial order for adding K Cohen reals. The idea 
of the proof is that the Ramsey cardinal gives us a set I of K indiscernibles. The 
submodels M of the generic extension determined by independent subsets of/ will 
yield distinct R n M's. Now for the details. 

DEFINITION. For a model M and / C « n M, K an ordinal, / is a set of indis­
cernibles for M if and only if for every formula (p(v\,... ,v„) and x\ < • • • < x„ 
andj i < • • • < y„ all in / , M f= tp[x\,... ,xn] if and only if M f= <p[y\,... ,y„]. 
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LEMMA 17 (Silver, see e.g., [K, p. 100]). « Ramsey implies that there is a set of 
indiscernibles I G [K]K for any M D K. 

Let H{6) denote H{6) with Skolem functions added; these are needed when 
discussing indiscernibles so that the notion of "Skolem hull" is defined. 

PROOF OF THEOREM 16. Let 6 be sufficiently large, and let / G [K]K be a set of 
indiscernibles for H (0). Let {Ia}a<2« be an independent family of subsets of/. Let 
W(Ia) be the Skolem hull of Ia U {«} in H(6). Since no indiscernible can be defined 
from the others, %"{Ia) n / = Ia. Let G be P-generic over V and hence over H{6). 
In V[G] take Ma = {xG : T is a P-name and x G %?{Ia)}. 

By a standard argument [S, 3.2.1], Ma is an elementary submodel of H(d)v^G]. 
We now claim that a ^ yS implies (in V[G]) that R n M „ / R n M f . Another 
standard argument [S, 3.2.13] shows MaC\I = %f{Ia) n / = Ia. In F[G] there is a 
bijection / : K —* R, which is named by a P-name T which is in %?($) and hence in 
every &(Ia). Then / is in Ma and in Afy. Take i e Ia — Ip. Then / ( i ) e R n Ma, 
but / ( 0 g" R flMf, else i e ^(Ip), which is impossible. H 

We do not know the precise consistency strength of the conclusion to Theorem 16, 
but it is at least "0# exists" by Theorem 8. Without any large cardinals, we can still 
get a large number of types, but of size Hi rather than 2No: 

THEOREM 18. Adjoin^ Cohenreals to amodel ofGCH. Then there exist2Hl =#2 
non-homeomorphic {and hence non-isomorphic) R D M's of size Kj. 

PROOF. In the ground model, V, let {Ma }Q<m2 be an increasing sequence of count-
ably closed elementary submodels of H{8), each of size Kj, with a>2 Q {JQ<co2 Ma-
Let ya = Ma n C02; this is an ordinal and a>\ < yQ < a>2- Choose the Ma so 
that ya < yp (and hence \yp \ya\ = Hi) whenever a < p. Let G be Fn(a»2,2)-
generic over V. If S C a>2, let G \S = G D Fn(S, 2), which is then Fn(S, 2)-generic 
over V. Let M'a = Ma[G\ya]. Then, by a standard argument [S, 3.2.12], M'a is an 
elementary submodel of H{8) y^aK 

In V[G], let E Q = E n M'a. Note that since Ma is countably closed, 

l „ = R n V[G\ya]. 

Fix a < p < a>2, we shall show that E a and Rp cannot be homeomorphic. If 
they were homeomorphic, then, by Lavrentieff s Theorem, we would have a map h, 
such that dom(h) and ran(A) are Gs sets of reals, h is a homeomorphism from 
dom(/i) onto ran(/j), and h"Ra =Rp. Then h is coded by a real, in some F[G|S], 
where S G V is a countable subset of a>2. But then, l ^ C F[G|(5 U ya)\, which is 
impossible, since \yp \ ya\ = Hi. -\ 

Note that we can have 0# not existing in such a model, so the number of types of 
R n M's of a certain size bears no linear relationship to that size. 

In view of the above results, one might conjecture that R nM's are homeomorphic 
if and only they are isomorphic. For example, this is trivially true if V = L by 
Theorem 2. However, this is also consistently false by: 

THEOREM 19. It is consistent that every two R n M's of cardinality Hi are home­
omorphic, but there exist 2Nl many R n M's of cardinality Hi that are pairwise 
non-order-isomorphic. 
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To prove this, we will use the fact a -centered partial orders can force homeomor-
phisms (Lemma 20), but not isomorphisms (Lemma 22). 

LEMMA 20. Let A, B be n-dense separable metric spaces. Then there is a a-centered 
partial order which forces them to be homeomorphic. 

PROOF. We will be brief, since results of this type are folklore. First, set 

A = \J Aa and B = (J Ba, 

where the Aa are disjoint, the Ba are disjoint, \Aa\ = \Ba\ = No, and each Aa, Ba 

is dense in A, B, respectively. Then, as in Lemma 3.1 of [BB], there is a cr-centered 
partial order which forces a homeomorphism / : A —> B which takes each Aa 

to Ba. The proof in [BB] assumes that A, B are 0-dimensional, but this is not a 
problem, since A, B may be made 0-dimensional by a preliminary forcing which 
adds one Cohen real. H 

COROLLARY 21. If MA(<7-centered) holds and K < 2No, then any two K-dense 
separable metric spaces are homeomorphic. 

Of course, the K = No case of this is true in ZFC, and is a classical result of 
Sierpihski [Si]. To prove Theorem 19, we also need: 

LEMMA 22. Let V[F][H] be obtained by forcing over V with Fn(coi x co, 2) * Q, 
where F is Fn(a>i x co, 2)-generic, and Q names a a-centered partial order in V[F]. 
Then in V[F][H] there is no order-preserving injection from R n V[F] into R f l F . 

PROOF. In V[F], think of F as coding a set of Cohen reals, 

C = {ca : a < coi} C R 

in some standard way; say, we obtain ca from F n Fn({a} x co, 2). 
We shall actually show that in F[.F][//], there is no order-preserving injection 

from C into R n V: Suppose we had such an injection. Then, in V[F], the fact 
that we could force such a map in a cr-centered (in fact, property (K)) extension 
implies that we have g,D € V[F] such that D is an uncountable subset of C and g 
is an order-preserving injection from D into R n V. Since g is order-preserving, it 
can have only countably many discontinuities, so, as in the proof of Theorem 18, 
we could, in V[F], extend g to a bijection / ' : B\ —> B2, where B\ and B2 are Borel 
sets and / is a Borel map. Let y < co\ be large enough so that the Borel codes for 
f,B\,B2 all lie in V[F n Fn(y x co,2)]. But then, applying / _ 1 , we see that all 
elements of D lie in V[F n Fn(y x co, 2)], which is impossible. H 

PROOF OF THEOREM 19. We start with a model V of GCH, and now let V[G] 
be a ccc extension satisfying MA(a-centered) and 2Ko = H2. By Corollary 21, all 
R n M's of cardinality Hi are homeomorphic in V[G]. To produce the desired 
non-isomorphic R n M's, we construct V[G] specifically as follows: 

G will be P-generic over V. P = PW2 is obtained as a finite support iteration, 
{Pa '• a < C02), where \Pa\ = Ki for each a < co2. As usual in finite support 
iterations, take unions at limits. Pa+\ is Pa * Fn(«i x co, 2) * Qa, where Qa is a 
Pa * Fn(co! x co, 2)-name for a cr-centered partial order. The Qa are chosen by 
the usual bookkeeping to make sure that MA (cr-centered) holds in V[G]. Let Ga 

abbreviate G n Pa, and let RQ denote the set of reals in F[Ga]. 
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In V, let K be the set of all a < co2 such that there is a countably closed elementary 
submodel M of H(6) such that \M\ = N,, M R co2 = a, and P e M. Call such 
an M nr'ce for a. By standard arguments, if M is nice for a £ K, then in V[G], 
M[Ga] will be an elementary submodel of the # ( 0 ) of V[G], and R nM[Ga] = R a. 

Since 2Nl = H2 = \K\ in V[G], we will be done if we can show that in V[G], 
these R a , for a e A', are non-isomorphic. Suppose we had a < (i < a>2 and an 
isomorphism / : R/ ; —> R a in F[G]. Fix y with / € V[GY] and a < {I < y < co2. 
But then / contradicts Lemma 22, where we now view V[Gy] as obtained by forcing 
over F[GQ]. Thus, V[Gy] is obtained by first adding a Fn(coi x « , 2)-generic filter, F, 
to F[GQ], and then doing a finite support iteration of < Ni cr-centered partial 
orders, and such an iteration is also er-centered. But now, in K[Gj,] / provides 
an order-preserving injection from R n P"[Ga][F] into R n F[GQ], contradicting 
Lemma 22. H 

Now let us turn to two dimensions and consider C R M, where C is the set of 
complex numbers. Again, we first consider algebra and regard C n M a s a subfield 
ofC. 

THEOREM 23. CH is equivalent to the assertion that ifRDM is uncountable, 
( C n M + , - , 0 , 1 ) ^ {CnN,+,-,0,l) implies (RDM,+,;0,l) = (K RAT, +, -,0,1). 

PROOF. We have seen that the conclusion merely says 1 n M = 1 n ^ ; on 
the other hand, if R R M and hence C R M is uncountable, the hypothesis is 
equivalent to |R R M| = |R R iV|. To see this, note that C R M is, by elementarily, 
an algebraically closed field of characteristic 0. Any two such fields of the same 
uncountable cardinality are isomorphic. Under CH, if R R M is uncountable then 
l n M = M, and the implication in the theorem is trivially true. On the other hand, 
if 2K° > H] and we construct distinct R R M and R C\N of cardinality tt\, they will 
not be field-isomorphic but C R M and C R N will be. H 

For the countable case, any two countable C R M's are also isomorphic, since 
each has a countably infinite transcendence base over the algebraic numbers. On 
the other hand, we can construct distinct countable R R M's. 

It is interesting to note that although R and C are not homeomorphic, I n M 
and C n M may be. This is trivially true if R R M and (hence) C R M are countable, 
since then, as countable metrizable spaces without isolated points, they are both 
homeomorphic to Q [Si]. For the uncountable case: 

THEOREM 24. ZFC does not decide whether there is an M such that R R M is 
uncountable and R R M and CC\ M are homeomorphic. 

PROOF. If CH and R R M is uncountable, then R R M = R and C R M = C, so 
they are of course not homeomorphic. The consistency the other way is immediate 
from the next theorem. H 

THEOREM 25. Assume MA(a-centered) plus 0# does not exist. Then R R M and 
COM are homeomorphic if they have cardinality less than 2N°, but not if they have 
cardinality 2K°. 

PROOF. If |R R M\ = 2No then R R M = R a n d C R M = Cby Theorem 8, so 
they are not homeomorphic. However, if |R R M\ = K < 2Ho then both R R M 
and C R M are K-dense separable metric spaces, so they are homeomorphic by 
Corollary 21. H 
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Getting back toR, a stronger assertion than that there is a homeomorphism 
between any two n-dense sets A, B is the assertion that there is an autohomeo-
morphism h of R such that h"A = B. Steprans and Watson [SW] show that this 
is equivalent to any such sets being order-isomorphic, and so for say K = Ni, re­
quires more than MA. On the other hand, if one works with the Cantor set rather 
than R, one only needs MA {a -centered): the homeomorphism of Corollary 21 
extends [BB]. Surprisingly, this also works for K-dense subsets of R",« > 1 [SW]. 

We close with a question. It is a long-standing open problem whether it is 
consistent with 2No > K2 that all K2-dense sets of reals are order-isomorphic; a less 
demanding question is: Is it consistent with 2N° > K2 that all the R n M's of size 
N2 are order-isomorphic? 

The second author wishes to express his thanks to the members of the Department 
of Mathematics at the University of Wisconsin, where this research was conducted 
while he was an honorary fellow in 1997, for their hospitality, and also to the 
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