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THE TORSION FREE PIERI FORMULA

D. J. BRITTEN AND F. W. LEMIRE

ABSTRACT. Central to the study of simple infinite dimensional g‡(n,C)-modules
having finite dimensional weight spaces are the torsion free modules. All degree 1 tor-
sion free modules are known. Torsion free modules of arbitrary degree can be con-
structed by tensoring torsion free modules of degree 1 with finite dimensional simple
modules. In this paper, the central characters of such a tensor product module are shown
to be given by a Pieri-like formula, complete reducibility is established when these cen-
tral characters are distinct and an example is presented illustrating the existence of a
nonsimple indecomposable submodule when these characters are not distinct.

0. Introduction. Let G be a finite dimensional simple Lie algebra over the complex
numbers C with Cartan subalgebra H . Let V be a simple H -diagonalizable G-module
having finite dimensional weight spaces. The problem of classifying such modules V is
progressing. The classical case when V is a highest weight module is well known. Since
this includes all simple finite dimensional modules, we focus our attention on infinite
dimensional V . Recently, [BBL2] gave an explicit construction of all multiplicity free
modules V (i.e. having only 1-dimensional weight spaces). Earlier, [BL1] gave a less
explicit construction of such modules under the weaker condition that they have at least
one 1-dimensional weight space realizing them as quotients of the universal enveloping
algebra. This work relied heavily on a paper by Fernando [F] which reduces the general
classification problem to one of determining the simple torsion free modules of finite
degree and shows that torsion free modules exist for G of type A and C only. When G
is A2 ≥ s‡(3,C), the simple torsion free modules are completely classified and found to
be submodules of the tensor product of a multiplicity free simple torsion free G-module
and a simple finite dimensional one [BFL]. The definition and basic properties of torsion
free modules are presented in Section 1c).

Let s‡(n,C) denote the n ð n traceless complex matrices. If °1 denotes the first fun-
damental weight of s‡(n,C) then for each positive integer K, the simple s‡(n,C)-module
L(K°1) with highest weight K°1 is multiplicity free and provides a finite dimensional
analogue of the multiplicity free torsion free s‡(n,C)-modules. Moreover, the tensor
product of L(K°1) with any finite dimensional simple s‡(n,C) module L(ï) is completely
reducible and its simple constituents are described by the Pieri formula [FH].

Working under mild constraints which are justified by example, we establish a mod-
ified Pieri formula for the tensor product of a multiplicity free, torsion free s‡(n,C)-
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module M with a simple finite dimensional module L(ï). In fact, we transport infor-
mation from the finite setting to the infinite one via the Pieri formula. The main result
of this paper is stated in Theorem 3.4. This result provides an explicit specialization of
Kostant’s results [K] on the general decomposition of the tensor product of an infinite
dimensional module, admitting a central character, with a finite dimensional module.

Each submodule of M 
L(ï) is a torsion free module of finite degree and we conjec-
ture that every simple torsion free module of finite degree can be realized in this manner.
As indicated above, this conjecture is valid when n ≥ 3.

1. Preliminaries. In this section, we set down some background results in a fashion
which facilitates our use of them and prove some general results concerning torsion free
modules.

(a) FINITE DIMENSIONAL MODULES. Throughout, let Gn ≥ gl(n,C) be the Lie
algebra of nð n matrices over C determined by the commutator product. Let feij j i, j ≥
1, 2, . . . , ng be the set of standard matrix units of Gn. The subalgebra of Gn having basis
feij j i, j ≥ 1, . . . , rg is denoted Gr. The Cartan subalgebra of diagonal matrices of Gr is
denoted Hr and the subalgebra of traceless matrices in Gr is denoted s‡(r,C). Let èi be the
linear transformation which maps any nðn diagonal matrix to its (i, i)-th component. The
weight functions of s‡(n,C) are normally described in terms of the fundamental weights
f°i j i ≥ 1, . . . , n � 1g, see for example [H]. However, we find it more convenient to
describe weight functions in terms of the èi’s. Since there are n independent è’s and only
n � 1 °i’s this means that a normalization choice is to be made. This is equivalent to
specifying the action of Inðn 2 Gn. This point is illustrated below.

Zelobenko, [Z], modified the Gel’fand-Zetlin presentation of simple finite dimen-
sional Gn-modules V by redefining the action. In both presentations, a decreasing se-
quence of integers m1n ½ m2n ½ Ð Ð Ð ½ mnn uniquely labels V ≥ V(m1n, . . . , mnn) having
linear basis B ≥ fê(m) j m 2 I (m1n, . . . , mnn)g indexed by the set I (m1n, . . . , mnn) of all
triangular patterns of integers,

(1. 1) m ≥

2
6664

m1n m2n Ð Ð Ð mnn

m1,n�1 m2,n�1 Ð Ð Ð mn�1,n�1

Ð Ð Ð
m11

3
7775

where the components mij satisfy the inequalities

(1. 2) mi,j+1 ½ mi,j ½ mi+1,j+1 for 1 � i � j � n� 1.

For convenience, we set mr ≥ [m1r, . . . , mrr], Rr(m) ≥
Pr

i≥1 mir and R0(m) ≥ 0. In order
to describe the module action of Gn on V, it suffices to give the actions of the generators
ekk, ek�1,k and ek,k�1. Following Zelobenko, we have

(1.3) ekkê(m) ≥
�
Rk(m) � Rk�1(m)

�
ê(m);

(1.4) ek�1,kê(m) ≥
k�1X
j≥1

�
Πk

i≥1(li,k � lj,k�1)

Πk�1
i≥1,i Â≥j(li,k�1 � lj,k�1)

ê(m + éj,k�1);
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(1.5) ek,k�1ê(m) ≥
k�1X
j≥1

Πk�2
i≥1 (li,k�2 � lj,k�1)

Πk�1
i≥1,i Â≥j(li,k�1 � lj,k�1)

ê(m � éj,k�1);

where li,j ≥ mi,j � i, and m š éj,k�1 denotes the pattern m with the (j, k � 1) component
replaced by mj,k�1 š 1. By convention, we assume that ê(m) ≥ 0 for any pattern m Â2
I (m1n, . . . , mnn). Evidently, ê(m) is a weight vector belonging to the functional

ï ≥
nX

i≥1

�
Ri(m) � Ri�1(m)

�
èi.

We further note that subpatterns give us a natural branching of V with respect to sub-
algebras Gr for each r ≥ 1, . . . , n and we define the symbol mr by

2
6664

m1r m2r Ð Ð Ð mrr

m1,r�1 m2,r�1 Ð Ð Ð mr�1,r�1

Ð Ð Ð
m11

3
7775 2 I (m1r, . . . , mrr).

The s‡(n,C)-module V obtained by restricting the action above to elements of s‡(n,C)
remains simple. However, the labeling by decreasing sequences is no longer a one-to-one
correspondence. In particular, V(m1n, . . . , mnn) and V(m1n � c, . . . , mnn � c) are isomor-
phic s‡(n,C)-modules since the only elements in Gn which distinguish these modules are
the nonzero multiples of the identity Inðn. Since we are primarily interested in s‡(n,C)-
modules, we may pick c so that mnn � c is zero. This allows us to label our simple finite
dimensional modules by partitions

ô ≥ fô1 ½ ô2 ½ Ð Ð Ð ½ ôn�1 ½ ôn ≥ 0g.

with ôi positive integers whenever convenient. Our basis is then labeled by I (ô) where
the conditions on our triangular patterns in I (ô) satisfy conditions described in (1.2) with
min ≥ ôi. Our notation for this module is V(ô).

Of considerable interest to us are the multiplicity free simple modules V(ô) corre-
sponding to ô ≥ fK ½ 0 ½ Ð Ð Ð ½ 0g. In addition to the pattern realization, there is a
very elementary realization of V(K, 0, . . . , 0) as being isomorphic to the module

spanC
²

xq ≥ xq1
1 xq2

2 Ð Ð Ð xqn
n j q ≥ (q1, . . . , qn), qi 2 Z½0 with K ≥

nX
i≥1

qi

¦

under the action
eijx

q ≥ qjx
q+éi�éj

where q + éi � éj denotes the vector obtained from q by adding 1 to its i-th coordinate
and subtracting 1 from its j-th coordinate so that formally eij is multiplication by xi and
partial differentiation with respect to xj. We notice that xq is a weight vector belonging
to weight

Pn
i≥1 qièi , since eiixq ≥ qixq.

Vector exponential notation such as xq is used throughout this paper to denote the prod-
uct of the xi’s raised to the corresponding coordinate powers, i.e. xq ≥ xq1

1 xq2
2 Ð Ð Ð xqn

n . Also,
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throughout this paper, we assume that ô ≥ fô1 ½ ô2 ½ Ð Ð Ð ½ ôn�1 ½ ôn ≥ 0g is a par-
tition of the non-negative integer N and consider it in Zn

½0. For p ≥ (p1, p2, . . . , pn�1) 2
Zn�1
½0 , we write

p � ô () ô1 ½ p1 ½ ô2 ½ Ð Ð Ð ½ pn�1 ½ ôn ≥ 0.

To facilitate later generalizations, fix ‡ 2 Zn
½0 with

Pn
i≥1 ‡i ≥ K Ù nô1 and set

(1. 6) M (‡; N) ≥ spanC
²

x‡+h j ‡i + hi 2 Z½0 with
nX

i≥1
hi ≥ �N

¦
.

Clearly M (‡; N) ' V(K � N, 0, . . . , 0). We now consider the tensor product module

(1. 7) T(‡;ô) ≥ M (‡; N) 
 V(ô) ' V(K � N, 0, . . . , 0)
 V(ô).

In the setting of the Littlewood Richardson algorithm and Young tableaux (see for ex-
ample [BBL1], pp. 79–81 for a brief description), there are a total ofK boxes representing
T(‡,ô). Applying this algorithm, we obtain a direct sum of simple modules:

(1. 8) T(‡;ô) '
MX

p�ô
V
�

K �
n�1X
i≥1

pi, p1, . . . , pn�1

�
.

This restricted case of the Littlewood Richardson algorithm is known as the Pieri For-
mula (see for example [FH]).

The action of Inðn on M (‡; N) is multiplication by K � N and on V(ô) '
V(K�N, 0, . . . , 0) multiplication by N. Therefore V(K�

Pn�1
i≥1 pi, p1, . . . , pn�1) has high-

est weight ï ≥ (K�
Pn�1

i≥1 pi)è1 +p1è2 +p2è3 + Ð Ð Ð+pn�1èn. For each p � ô, set X (‡)
p equal

to the character of the simple highest weight module L
�
(K �

Pn�1
i≥1 pi)è1 + p1è2 + p2è3 +

Ð Ð Ð + pn�1èn

�
. It should be noted that when (K �

Pn�1
i≥1 pi)è1 + p1è2 + p2è3 + Ð Ð Ð + pn�1èn

is restricted to s‡(n,C), it is equal to the weight given in the basis (1.1) by (K � p1 �Pn�1
i≥1 pi)°1 + (p1 � p2)°2 + Ð Ð Ð + (pn�2 � pn�1)°n�1 which is the usual expression for this

weight.
This means that the set of highest weights and the central characters of the decompo-

sition of T(‡;ô) are

²
(K �

n�1X
i≥1

pi)è1 + p1è2 + p2è3 + Ð Ð Ð + pn�1èn j p � ôg and Ch(‡; N) ≥ fX (‡)
p j p � ô

¦
,

respectively.

PROPOSITION 1.9. Fix any n-tuple ‡ 2 Zn
½0 with ‡i ½ ô1 for i ≥ 1, . . . , n andPn

i≥1 ‡i ≥ K. Let ï(‡) denote the weight function
Pn

i≥1 ‡ièi, p � ô with P ≥
Pn�1

i≥1 pi and
qi ≥ ‡1 + Ð Ð Ð + ‡i. Then

(i) the weight space T(‡;ô)ï(‡) of T(‡;ô) belonging to ï(‡) ≥
Pn

i≥1 ‡ièi has basis

Bï(‡) ≥
² nY

r≥1
x‡r�Rr(m)+Rr�1(m)

r 
 ê(m) j m 2 I (ô)
¦
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and so dimC T(‡;ô)ï(‡) ≥ dimC V(ô),

(ii) V(K �
Pn�1

i≥1 pi, p1, . . . , pn�1)ï(‡) has basis fê([‡; m]) j m 2 I (ô), mn�1 ≥ pg
where [‡; m] is described using the bottom n� 1 rows of m as given by:

2
6666664

qn � P p1 Ð Ð Ð pn�1

qn�1 � Rn�2(m) m1,n�2 Ð Ð Ð mn�2,n�2

Ð Ð Ð
q2 � R1(m) m1,1

q1

3
7777775 .

PROOF. For any pattern m ≥ (mij) 2 I (ô)

0 � mr,r � Rr(m) � Rr�1(m) � m1r � ô1

for r ≥ 1, . . . , n. Since ‡r ½ ô1, it follows that ‡r � Rr(m) + Rr�1(m) ½ 0. Also,Pn
i≥1

�
�Ri(m) + Ri�1(m)

�
≥ �Rn(m) ≥ �N and hence

nY
r≥1

x‡r�Rr(m)+Rr�1(m)
r 2 M (‡; N).

Moreover, for each r ≥ 1, . . . , n we have

err

� nY
s≥1

x‡s�Rs(m)+Rs�1(m)
s 
 ê(m)

�
≥ ‡r

� nY
s≥1

x‡s�Rs(m)+Rs�1(m)
s 
 ê(m)

�

and therefore
Qn

s≥1 x‡s�Rs(m)+Rs�1(m)
s 
ê(m) belongs to the ï(‡) weight space. Since fê(m) j

m 2 I (ô)g is a linear independent set, it is clear that Bï(‡) forms a basis for T(‡;ô)ï(‡) .
This completes part (i). Part (ii) follows from (1.3), since ê([‡; m]) are the only basis
vectors of V(K �

Pn�1
i≥1 pi, p1, . . . , pn�1) having weight ï(‡).

(b) GEL’FAND-ZETLIN ALGEBRA. Let Ur ≥ U(Gr) denote the universal enveloping
algebra of Gr, U0

r denote the centralizer of Hr in Ur and Zr denote the center of Ur.
Clearly Zr ² U0

r . By the universal mapping property of the universal enveloping algebra,
every Gr-module is a U(Gr)-module and by the inclusion Gr ² U(Gr) the converse is
true.

From [Z], we know that Zr is generated by the set of all elements

crk ≥
X

ej1j2ej2j3 Ð Ð Ð ejkj1

where k ≥ 1, 2, . . . , r and the sum ranges over all distinct sequences of integers
fj1, . . . , jkg with 1 � ji � r.

In [L2], it is shown that if one wants to study simple Hr-diagonalizable modules, then
it suffices, in the following sense, to study simple U0

r -modules.
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THEOREM 1.10. (i) If M is a simple Hr-diagonalizable module, then each weight
space Mó of M is a simple U0

r -module.
(ii) If Mó is a simple U0

r -module, then there exist a unique simple Hr-diagonalizable
module having Mó as one of its weight spaces.

Although U0
n is important to us there is an abelian subalgebra of U0

n—which is equally
important. Following Drozd-Ovienko-Futorny [DOF], we define the Gel’fand-Zetlin
subalgebra Γ of Un to be the subalgebra generated by fcrk j 1 � k � r � ng. From
[DOF], Γ is an abelian subalgebra of Un which is isomorphic to the polynomial ring
in n(n+1)

2 variables crk over C. We wish to address the Γ-diagonalizability of simple fi-
nite dimensional Gn-modules. By this we mean that there exists a basis of simultaneous
eigenvectors for the operators in Γ. Towards this end, we let N +

r denote the subalge-
bra of Gr consisting of all strictly upper triangular matrices and throughout we choose a
description of U0

r which makes computations on maximal vectors easy.

(1. 11) U0
r ≥ U(Hr) ý (U0

r \ UrN +
r ).

Let z ≥ pz +uz 2 U0
r with pz 2 U(Hr) and uz 2 U0

n\UrN +
r . If v+ is a maximal vector in a

Gr-module, then N +
r v+ ≥ 0 and so we have zv+ ≥ pzv+. U(Hr) is isomorphic to the poly-

nomial ring C[e11, . . . , err]. We identify these rings and write U(Hr) ≥ C[e11, . . . , err].
Let ë: U0

n ! U0
n denote the projection of U0

n onto U(Hn) along U0 \UnN +
n which gives

ë(z) ≥ pz 2 U(Hr) ≥ C[e11, . . . , err]. For m 2 I (ô), let

(1.12) Λm
r : U(Hr) ! C;

Λm
r

�
p(e11, . . . , err)

�
≥ p(m1r, . . . , mrr).

Λm
r is the natural extension of the weight

Pr
i≥1 mirèi to an algebra homomorphism on

U(Hr). As we did for z above, we write crk ≥ prk(e11, . . . , enn) + urk 2 U(Hr) ý
(U0

r \ UrN +
r ). Since Γ is the polynomial ring in the n(n+1)

2 variables crk over C, an al-
gebra homomorphism çm: Γ ! C is determined by its action on each crk given by

(1. 13) çm(crk) ≥ Λm
r Ž ë(crk) ≥ Λm

r

�
prk(e11, . . . , err)

�
≥ prk(m1r, . . . , mrr)

An algebra homomorphism ç: Γ ! C is called a GZ-character.

LEMMA 1.14. Let m, m0 2 I (ô). Then
(i) if z 2 Zr, then zê(m) ≥ (Λm

r Ž ë)(z)ê(m), and the restriction to Zr, Λm
r Ž (ë#Zr

), is
the central character of the simple Gr-module V(mr),

(ii) if z 2 Γ, then zê(m) ≥ çm(z)ê(m),
(iii) if mr Â≥ m0

r then çm0 #Zr
Â≥ çm #Zr

,
(iv) V(ô) is Γ-diagonalizable with 1-dimensional Γ-weight spaces Cê(m).

PROOF. First, we notice that (i) implies (ii) and so we prove (i). From 1.3–1.5, we
see that if we ignore the top n� r rows of the labeling patterns, then the action of z 2 Zr

on ê(m) is the “same” as the action of z on ê(mr) in the Gr-module V(mr) where mr ≥
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[m1r, m2r, . . . , mrr]. Express z as z ≥ pz + uz with pz ≥ pz(e11, . . . , err) 2 C[e11, . . . , err]
and uz 2 U0

n \UrN +
r . The maximal vector v+ 2 V(mr) is labeled by the pattern

m̂r ≥

2
6664

m1r m2r Ð Ð Ð mrr

m1,r m2,r Ð Ð Ð mr�1,r

Ð Ð Ð
m1r

3
7775

and so it belongs to the weight

ï ≥
rX

i≥1

�
Ri(m̂r)� Ri�1(m̂r)

�
èi ≥

rX
i≥1

mirèi

Thus, for z 2 Zr,

zv+ ≥ (pz + uz)v+ ≥ pz(e11, . . . , err)v+ ≥ pz(m1r, . . . , mrr)v+ ≥ (Λm
r Ž ë)(z)v+.

The simplicity of the Gr-module V(mr) implies zê(m0
r) ≥ (Λm

r Ž ë)(z)ê(m0
r) for all z 2 Zr

which implies Λm
r Ž (ë#Zr

) is the central character of the Gr-module V(mr). Also, by our
observation above, we have zê(m) ≥ pz(e11, . . . , err)v+ ≥ pz(m1r, . . . , mrr)ê(m).

Since (ii) and (iii) imply (iv) and (ii) is established, we prove (iii). Assume that mr Â≥
m0

r are distinct. If çm #Zr
≥ çm0 #Zr

then we haveΛm
r #Hr

≥ Λm0

r #Hr
where Hr denotes

the Cartan subalgebra of diagonal matrices in s‡(r,C). By the Harish-Chandra Theorem,
this in turn implies that the highest weights

Pr
i≥1 mirèi #Hr

and
Pr

i≥1 m0
irèi #Hr

are linked.
Thus, for é ≥

Pr
i≥1( r+1

2 � i)èi , half the sum of the positive roots of s‡(r,C), there exists
an element õ in the Weyl group Sr such that

rX
i≥1

�
mir +

r + 1
2

� i
�
èõ(i) ≥

rX
i≥1

�
m0

ir +
r + 1

2
� i

�
èi.

Thus, mõ�1(i)r � õ�1(i) ≥ m0
ir � i for all i. However since m1r ½ Ð Ð Ð ½ mrr and m0

1r ½
Ð Ð Ð ½ m0

rr it follows that mir ≥ m0
ir, contradicting the assumption that mr Â≥ m0

r.

(c) TORSION FREE MODULES. An Hn-diagonalizable Gn-module M is said to be
torsion free provided each root vector eij, i Â≥ j, acts injectively on M . It is shown
in [F] that we need only require that ek�1,k and ek,k�1 act injectively for k ≥ 2, . . . , n.
Throughout, M is an Hn-diagonalizable torsion free module having weights Φ ≥ ï +
f
Pn

i≥1 kièi j ki 2 Z,
Pn

i≥1 ki ≥ 0g for some fixed weight ï. The torsion free assumption
and the condition on the weights of M imply that we may move from one weight space
to another by the repeated action of root vectors of the form ek�1,k and ek,k�1. Thus, the
injectivity assumption implies that the weight spaces of M all have the same dimension
called the degree of M . Throughout, we assume that M is of finite degree.

THEOREM 1.15. Let M be a torsion free Gn-module of degree d.
(i) Every submodule of M is torsion free.
(ii) Every quotient module of M is torsion free.
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(iii) If F is a Un-module of dimension m, then the tensor product module M 
 F is
torsion free of degree md.

PROOF. (i) is clear. For (ii), let N be a torsion free submodule of M . Then

M ÛN ≥
M X

ó2Φ
(Mó + N )ÛN

is the weight space decomposition of M ÛN . Clearly, eij is injective on M ÛN if and
only if it is injective on each (Mó + N )ÛN . Suppose (ii) is false then, for some choice
of i Â≥ j, ejieij 2 U0

n is not injective on the finite dimensional U0
n-module

(Mó + N )ÛN ' MóÛNó.

But this implies that dim ejieijMó Ú dim Mó, contrary to M being torsion free.
To prove (iii) we first note that by the complete reducibility of finite dimensional Un-

modules, we may assume that F is simple. Let v+ be a maximal vector of F of weight
ã and let ñ be any weight of F . Then ã � ñ ≥

Pn
i≥1 kièi with ki 2 Z and since it is

in the root lattice of Gn,
Pn

i≥1 ki ≥ 0. Suppose the weight space Fñ belonging to ñ has
basis fv(ñ)

1 , . . . , v(ñ)
t g and the weight space Mó belonging to ó ≥ ï +

Pn
i≥1 kièi has basis

fm(ó)
1 , . . . , m(ó)

d g. Then m(ó)
i 
 v(ñ)

j is in the weight space of M belonging to ï + ã. Since
this can be done for every weight space of F , we see that (M 
 F )ï+ã has dimension
greater than or equal to md. The reverse inequality follows also by noting that we have
accounted for all simple tensors which lie in (M 
 F )ï+ã. Thus, deg(M 
 F ) ≥ md.

Finally suppose M 
 F is not torsion free. Then there is some element eij with i Â≥ j
which annihilates a nonzero weight vector v. We can write v ≥

Ph
k≥1 mk
vk where the mk

are linearly independent weight vectors with weights ïk in M . Since M is torsion free,
we have that feijmk j k ≥ 1, . . . , hg is linearly independent set of weight vectors with
weights ïk +èi�èj. Without loss of generality we may assume that ï1 +èi�èj Û2 fïk j k ≥
1, . . . , hg, which implies that eijm1 Û2 fmk j k ≥ 2, . . . , hg. It follows then that (eijm1)
v1

is not in the span of the set f(eijmk) 
 vk j k ≥ 2, . . . , hg [ fmk 
 (eijvk) j k ≥ 1, . . . , hg
and therefore eijv Â≥ 0. This contradiction establishes that M 
 F is torsion free as
required.

LEMMA 1.16. Suppose that M has degree d with weights Φ ≥ ï + f
Pn

i≥1 kièi j ki 2
Z,
Pn

i≥1 ki ≥ 0g for some fixed weightï. Let Mó denote the weight space of M belonging
to ó. Then

(i) M is a simple Gn-module if and only if Mó is a simple U0
n-module for some weight

ó 2 Φ (or equivalently for all ó 2 Φ ),
(ii) M has a composition series 0 ² M1 ² M2 ² Ð Ð Ð ² Mm ≥ M of Gn-modules

if and only if the U0
n-module Mó has a composition series

0 ² (M1)ó ² (M2)ó ² Ð Ð Ð ² (Mm)ó ≥ Mó

for some ó 2 Φ (or equivalently for all ó 2 Φ).
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(iii) For 1 � i � q, let Mi be Un-modules. Then M ≥
LPq

i≥1 Mi if and only if each
Mi is torsion free with weight lattice Φ and Mó ≥

LPq
i≥1(Mi)ó for some ó 2 Φ (or

equivalently for all ó 2 Φ).

PROOF. By Theorem 1.10, if M is simple, then each of its weight spaces is a simple
U0

n-module. Suppose some weight space Mó is a simple U0
n-module and yet M is not

a simple Un-module having a proper submodule N . Since the weights of M are Φ ≥
ï+f

Pn
i≥1 kièi j ki 2 Z,

Pn
i≥1 ki ≥ 0g for some fixed weight ï and N is torsion free, it too

has this set of weights. The degree of N must be less than d but this implies that Mó has
a proper U0

n-submodule, contrary to assumption. Also, we now have that if any weight
space of M is simple then they all are. This gives (i).

Since �
MiÛMi�1

�
ó
' (Mi)óÛ(Mi�1)ó

as U0
n-modules, (ii) follows from (i). Part (iii) is clear.

Before closing this part we point out that, by [BL1], if M is multiplicity free, then
for some fixed positive integer N and some choice of noninteger complex numbers
a1, . . . , an,

(1. 17) M ' M (a; N) � spanC
²

xa+h j hi 2 Z with
nX

i≥1
hi ≥ �N

¦

under the action of multiplication and partial differentiation

eijx
b ≥ bjx

b+éi�éj .

Compare (1.17) with (1.6).

(d) THE POLYNOMIAL LEMMAS. Let t1, . . . , tn be algebraically independent over the
complex numbers C, C[t] ≥ C[t1, . . . , tn] be the polynomial ring in t1, . . . , tn, C(t) ≥
C(t1, . . . , tn) be the transcendental field extension. There are two results concerning the
zeroes of polynomials which we require.

LEMMA 1.18. Let B be a positive integer and k0 ≥ 0.
(i) Suppose û1(t),û2(t) 2 C(t) with ûi(t) ≥

fi(t)
gi(t)

where fi(t), gi(t) 2 C[t] and û1(q) ≥
û2(q) for all q ≥ (q1, . . . , qn) 2 Zn

½0 with qi � qi�1 ½ B for i ≥ 1, . . . , n. Then û1(t) ≥
û2(t).

(ii) Suppose f1(t), f2(t) 2 C[t] and f1(‡) ≥ f2(‡) for all ‡ ≥ (‡1, . . . , ‡n) 2 Zn
½0 with

‡i ½ B for i ≥ 1, . . . , n. Then f1(t) ≥ f2(t).

PROOF. Let h(t) ≥ f1(t)g2(t)� f2(t)g1(t). By assumption h(q) ≥ 0 for all n-tuples of
integers q ≥ (q1, . . . , qn) with qi � qi�1 ½ B. It suffices to prove that h(t) ≥ 0.

Proceed by induction on n. For n ≥ 1 the result is obvious since any nontrivial poly-
nomial in one variable can have only finitely many zeroes.

Assume n Ù 1 and write

h(t) ≥
NX

j≥0
íj(t1, . . . , tn�1)tj

n
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For any n� 1 tuple of integers (q1, . . . , qn�1) satisfying qi� qi�1 ½ B, h(q1, . . . , qn�1, tn)
is a polynomial in one variable with infinitely many zeroes, namely all integers qn ½
qn�1 + B and hence must be identically zero. It follows that íj(q1, . . . , qn�1) ≥ 0 for any
sequence of integers fq1, . . . , qn�1g satisfying qi�qi�1 ½ B. By our inductive hypothesis
then we have that íj(t1, . . . , tn�1) ≥ 0 and hence h(t) ≥ 0 as required for (i).

For (ii), set qj ≥ ‡j + qj�1 for 1 � j � n and ûi(t1, t2 � t1, . . . , tn � tn�1) ≥ fi(t). Then
fi(‡) ≥ ûi(‡1, ‡2 �‡1, . . . , ‡n � ‡n�1) ≥ ûi(q) for all qj � qj�1 ≥ ‡j ½ B and so this part
follows from (i).

LEMMA 1.19. For n ½ 2, let a1, . . . , an be fixed complex numbers. Let B be a fixed
positive integer. Let p(t) be a polynomial in C[t]. If p(a1 + h1, . . . , an + hn) ≥ 0 for all
h1, . . . , hn�1 ½ B and hn ≥ �

Pn�1
i≥1 hi, then

p(t1, . . . , tn) ≥
�
t1 + Ð Ð Ð + tn � (a1 + Ð Ð Ð + an)

�
g(t1, . . . , tn)

for some g(t1, . . . , tn) 2 C[t].

PROOF. Replacing ti by ti + ai in p(t1, . . . , tn), we obtain a polynomial p0(t1, . . . , tn)
such that p0(h1, . . . , hn) ≥ 0 for all h1, . . . , hn�1 ½ B and hn ≥ �

Pn�1
i≥1 hi. Set si ≥

t1 + Ð Ð Ð + ti. Then we may express p0(t1, . . . , tn) as a polynomial p00(s1, . . . , sn). Now, if
we set qi ≥ h1 + Ð Ð Ð + hiand q0 ≥ 0, then p00(q1, . . . , qn�1, 0) ≥ 0 for all qi � qi�1 ½ B
and i ≥ 1, . . . , n� 1. It suffices to prove that p00(s1, . . . , sn) is divisible by sn.

Our proof is by induction on n ½ 2.
If n ≥ 2 then p00(s1, s2) ≥

P
j íj(s2)sj

1 has the property that p00(s1, 0) ≥
P

j íj(0)sj
1 has

infinitely many roots, namely q1 ½ B and so this is the zero polynomial. Thus each íj(s2)
is divisible by s2.

Assume now that n Ù 2 and set p00(s1, . . . , sn) ≥
P

j íj(s1, . . . , sn�2, sn)sj
n�1. By our

inductive assumption it suffices to show that íj(q1, . . . , qn�2, 0) ≥ 0 for all qi�qi�1 ½ B.
Clearly the polynomial

p00(q1, . . . , qn�2, sn�1, 0) ≥
X

j
íj(q1, . . . , qn�2, 0)sj

n�1

is zero whenever sn�1 is replaced by any value qn�1 ½ B + qn�2 and hence each
íj(q1, . . . , qn�2, 0) is zero for all qi � q?i�1 ½ B with i ≥ 1, . . . , n� 2.

2. Generic modules. As noted in the introduction our primary goal is to study
the decomposition of tensor product modules of the form M (a; N) 
 V(ô) where a ≥
(a1 . . . , an) is an n-tuple of complex noninteger scalars. However when computing in
such modules we are continually plagued with the problem of knowing when certain co-
efficients depending on the scalars ai might be zero. In order to overcome this difficulty
we replace the scalars ai by algebraically independent variables ti and study the analo-
gous decomposition problem over the transcendental field extension C(t). We first need
to formulate this problem precisely.

Let Gr(t) ≥ gl(r,C) 
C C(t) denote the Lie algebra obtained from Gr by extension
of the base field. This construction carries along with it the Cartan subalgebra Hr(t) ≥
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Hr 
C C(t) consisting of all diagonal matrices in Gr(t), the universal enveloping algebra
Ur(t) ≥ Ur 
C C(t) of Gr(t), the center Zr(t) ≥ Zr 
C C(t) of Ur(t), and the centralizer
U0

r (t) ≥ U0
r 
 C(t) of the Cartan subalgebra Hr(t) in Ur(t). Zr(t) is generated by the

elements fcrk 
 1 j 1 � k � rg. Finally the Gel’fand-Zetlin subalgebra of Un(t) is given
by Γ(t) ≥ Γ 
C C(t).

It is clear that if V is a Gn-module then V 
C C(t) is a Gn(t)-module under the action�
g
 f1(t)

��
v 
 f2(t)

�
≥ gv
 f1(t)f2(t)

where f1(t), f2(t) 2 C(t), g 2 Gn and v 2 V. Moreover, the simplicity of V implies the
simplicity of V
CC(t). In this section, we establish the analogues of (1.8), Proposition 1.9
and Lemma 1.14 as formulated in the setting of Gn(t)-modules.

REMARK 2.1. Evidently, the analogues of Theorem 1.10, Theorem 1.15, and
Lemma 1.16 hold in the setting of Hn(t) diagonalizable Gn(t)-modules.

The following notion of specialization allows us to transport information for one set-
ting to another.

DEFINITION 2.2. Let a ≥ (a1, . . . , an) 2 Cn. Let A be an associative algebra over the
complex numbers which is generated by fgã j ã 2 Ωg and let M(a) be an A-module with
basis B(a) ≥ fm(a)

i j i 2 Ig. Assume M(t) is an A
C(t)-module with basis B(t) ≥ fm(t)
i j

i 2 Ig, also index by I. Then M(a) is said to be a specialization of M(t) by a provided for
each gã:

(gã 
 1)m(t)
i ≥

X
j2I

qi,j,ã(t)m(t)
j for qi,j,ã(t) 2 C(t), and

gãm(a)
i ≥

X
j2I

qi,j,ã(a)m(a)
j

where qi,j,ã(a) is obtained from the rational function qi,j,ã(t) by substituting ai for ti. Im-
plicitly, we are assuming that qi,j,ã(a) are well defined.

We now present an example which illustrates the notion of specialization.

EXAMPLE 2.3. Every multiplicity free torsion free Gn-module M (a; N) defined in
Section 1 part (c) can be obtained through specialization of the Gn(t)-module M (t; N) by
a where M (t; N) is defined as follows. Let fx1, . . . , xng be a set of n commuting variables.
Let

(2. 4) M (t; N) ≥ spanC(t)

²
xt+h j h ≥ (h1, . . . , hn) 2 Zn,

nX
i≥1

hi ≥ �N
¦

.

For 1 � i, j � n the action of eij on M (t; N) is defined by

eijx
t+h ≥ (tj + hj)xt+h�éj +éi .

Compare (2.4) with (1.6) and (1.17). It is clear that xt+h is a weight vector belonging to
the weight

Pn
i≥1(ti + hi)èi.

According to [BL2], the algebras U0
r and U0

r (t) are finitely generated associative al-
gebras. In fact, the generators of U0

r are given by

fei1i2ei2i3 Ð Ð Ð eiki1 j 1 � ij � r, i1, . . . , ik distinctg

We now establish some general results on specializations for finitely generated algebras.
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LEMMA 2.5. Let A be an associative algebra over C with a finite generating set
fgk j 1 � k � mg and let M(t) be a finite dimensional A 
 C(t)-module with basis
B(t) ≥ fm(t)

i j 1 � i � dg. Assume that there exists a B 2 Z such that M(‡) with basis
B(‡) ≥ fm(‡)

i j 1 � i � dg is a specialization of M(t) by ‡ for all ‡ with ‡i 2 Z, and
‡i ½ B. If each specialization M(‡) is simple, then M(t) is simple.

PROOF. Suppose that M(t) is a reducible A 
 C(t)-module. It follows that we can
select a basis B(t)

0 ≥ fvi(t) ≥
Pp

j≥1 pij(t)m
(t)
j j i ≥ 1, . . . , dg of M(t) such that for some

1 � d1 Ú d the elements fvi(t) j i ≥ 1, . . . , d1g span a proper submodule. Thus, each
generator ghk 
 1 has a matrix representation of the form"

Ł Ł
0 Ł

#

with respect to the ordered basis B(t)
0 . Without loss of generality, we may assume that

the coefficients pij(t) have been selected to be polynomials. Clearly, det[pij(t)] Â≥ 0. By
Lemma 1.18, there exists a vector ‡ such that ‡i ½ B and det[pij(‡)] Â≥ 0 and all the
rational functions are well defined. Hence, B(‡)

0 ≥ fvi(‡) j i ≥ 1, . . . , dg is a basis of
M(‡) and the matrix representation of each generators gk of A with respect to the basis
B(‡) is obtained by substituting ‡i for ti in the matrix representation of gk
1 with respect
to B(t)

0 . However this implies that fvi(‡) j i ≥ 1, . . . , d1g spans a proper submodule of
M(‡), contrary to our assumption.

LEMMA 2.6. Let A be an associative algebra over C with finite generating set fgk j
1 � k � mg and let M(t) and M0(t) be two A 
 C(t)-modules with bases B(t) ≥ fm(t)

i j
1 � i � dg and B0(t) ≥ fm0(t)

i j 1 � i � dg, respectively. Assume there exists a B 2 Z
such that M(‡) is a specialization of both M(t) and M0(t) by ‡ for all ‡ with ‡i 2 Z, and
‡i ½ B with Cm(‡)

1 ≥ Cm0(‡)
1 for all ‡. Then, if M(t) is simple so is M0(t) and M(t) ' M0(t).

PROOF. We claim that the annihilator of m(t)
1 is equal to the annihilator of m0(t)

1 . In
fact let a ≥

Pq
i≥1 ai 


fi(t)
gi(t)

where each ai is a product of the generators fgk j 1 � k � mg
and fi(t), gi(t) 2 C[t]. Then

am(t)
1 ≥ 0 ()

� qX
i≥1

�
ai 
 fi(t)

Y
j Â≥i

gj(t)
�½
C(t)m(t)

1 ≥ 0

()
� qX

i≥1

�
fi(‡)

Y
j Â≥i

gj(‡)ai

�½
Cm(‡)

1 ≥ 08‡ with ‡i ½ B

()
� qX

i≥1

�
fi(‡)

Y
j Â≥i

gj(‡)ai

�½
Cm0(‡)

1 ≥ 08‡ with ‡i ½ B

()
� qX

i≥1

�
ai 
 fi(t)

Y
j Â≥i

gj(t)
�½
C(t)m0(t)

1 ≥ 0

() am0(t)
1 ≥ 0.

Thus, the annihilators of m(t)
1 and m0(t)

1 in A
C(t) are equal. This means that the submodule
of M0(t) generated by m0(t)

1 is isomorphic to the submodule of M(t) generated by m(t)
1 . By
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simplicity, the submodule generated by m(t)
1 is M(t) and has dimension d. Therefore, the

submodule generated by m0(t)
1 is M0(t) because each has dimension d.

We now construct a family of torsion free simple Gn(t)-modules which will be proven
to be isomorphic to the direct summands in the decomposition of the tensor product
module M (t; N) 
 V(ô).

EXAMPLE 2.7. For p � ô, construct an indexing set I (t; p) consisting of all triangular
patterns [t; l; m] defined using the bottom n�1 rows of m 2 I (ô) which have mn�1 ≥ p:
(2. 8)

[t; l; m] ≥

2
6664

sn � P p1 Ð Ð Ð pn�2 pn�1

sn�1 � ln�1 m1,n�2 Ð Ð Ð mn�2,n�2

Ð Ð Ð
s1 � l1

3
7775

where sr ≥
P

i≥1 ti, P ≥
Pn�1

i≥1 pi, and li 2 Z.
Let V(t; p) denote the C(t) linear space having a formal basis consisting of vectors

ê([t; l; m]) indexed by the elements [t; l; m] 2 I (t; p). We define an action of Gn(t) on
V(t; p) by abuse of notation, writing eij 
 1 as eij and [t; l; m] as m and using (1.3)–(1.5)
to define our action by replacing the pattern entries appearing in these formulas by the
corresponding entries from [t; l; m]. Once we have shown that V(t; p) is a Gn(t)-module,
then we shall focus on its ï(t) ≥

Pn
i≥1 tièi weight space and so we give the patterns

indexing these weight vectors a special designation as [t; m] which denotes:
2
6666664

sn �
P

pi p1 Ð Ð Ð pn�1

sn�1 � Rn�2(m) m1,n�2 Ð Ð Ð mn�2,n�2

Ð Ð Ð
s2 � R1(m) m1,1

s1

3
7777775

and so we have the analogue of the finite situation described in Proposition 1.9.

REMARK 2.9. For a given [t; l; m] 2 I (t; p), let B([t; l; m]) be the maximum value in
the set f0, p1 + l1, l2 � l1, . . . , ln�1 � ln�2, P� ln�1g. Let A be any finite set of indexing
patterns in I (t;ô). Define B(A) to be the maximum value in fB([t; l; m]) j [t; l; m] 2 Ag.
Let q ≥ (q1, . . . , qn) 2 Zn

Ù0 and q0 ≥ 0 be such that ‡i ≥ qi � qi�1 ½ B(A). Then
substituting qi for si (or equivalently ‡i for ti) into any indexing pattern in A yields an
indexing pattern in I (qn � P, p1, . . . , pn�1).

THEOREM 2.10. V(t; p) is a simple torsion free Gn(t)-module of dimension jI (p)j
which is the dimension of the Gn�1-module V(p).

PROOF. Since the algebra structure of Gn(t) is determined by the commutation rela-
tions

[eij, ekl] ≥ (éjkeil � éilekj),

V(t; p) is a Gn(t)-module provided

(2. 11) [eij, ekl]ê([t; l; m]) ≥ (éjkeil � éilekj)ê([t; l; m]).
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We express both sides of (2.11) in terms of our basis using (1.3)–(1.5) as described above:

(2.12) [eij, ekl]ê([t; l; m]) ≥
X
ûh(t)ê([t; l; m]h )

(2.13) (éjkeil � éilekj)ê([t; l; m]) ≥
X
û0h(t)ê([t; l; m]h ).

Let A be the finite set of indexing patterns appearing in (2.12) and (2.13). Let q ≥
(q1, . . . , qn) 2 Zn

½0 and q0 ≥ 0 be such that qi � qi�1 ½ B(A). Then substituting qi for si

into any indexing pattern in A yields an indexing pattern in I (qn�P, p1, . . . , pn�1) and so
the complex numbers ûh(q) ≥ û0h(q). It now follows from Lemma 1.18 that ûh(t) ≥ û0h(t)
and so (2.11) holds.

In view of the definition of the action of eii on the basis vectors of V(t; p) it is clear
that this module is an Hn(t) diagonalizable module and in fact its weights are given by

Φ(t) ≥ ï(t) +
² nX

i≥1

�
li�1 � li + Ri�1(m) � Ri�2(m)

�
èi j li 2 Z,

nX
i≥1

li ≥ 0 and m 2 I (ô)
¦

As noted in Remark 2.1, in order to show that V(t; p) is simple it suffices to show that
any weight space is a simple U0

n(t)-module.
Consider the ï(t) ≥

Pn
i≥1 tièi weight space V(t; p)ï(t) . As noted earlier, a basis for this

weight space is indexed by the finite set of patterns A ≥ f[t; m] j m 2 I (ô), mn�1 ≥ pg.
Fix K, ‡, q, and ï(‡) satisfying the conditions of Proposition 1.9. Then substituting qi

for si in the patterns of A yields exactly the patterns labeling a basis for the simple U0
n-

module V(qn �P, p1, . . . , pn�1)ï(‡) . U0
n and U0

n(t) are finitely generated and it is clear that
V(kn � P, p1, . . . , pn�1)ï(‡) is a specialization of V(t; p)ï(t) . Therefore, by Lemma 2.5, it
follows that V(t; p)ï(t) is a simple Gn(t)-module.

Finally we show that V(t; p) is a torsion free Gn(t)-module. It suffices to show that
ek�1,k and ek,k�1 act injectively on V(t; p). We restrict attention to the action of ek�1,k

on V(t; p) since the case of ek,k�1 is similar. By definition of the action of ek�1,k it is
clear that the coefficient of ê([t;‡; m] + é1,k�1) in the expansion of ek�1,kê([t;‡; m]) is a
nonzero rational function. Now consider any nonzero element x 2 V(t; p) and assume
that ê([t;‡; m]) is a basis vector with a nonzero coefficient in the expansion of x such that
lk�1 is minimal then by the minimality condition the only contribution to the coefficient of
ê([t;‡; m]+é1,k�1) arises from the action of ek�1,k on ê([t;‡; m]) we have that ek�1,kx Â≥ 0
as required.

Let
T(t;ô) ≥ M (t; N) 
C(t)

�
V(ô) 
C C(t)

�
and ï(t) ≥

Pn
i≥1 tièi. Then the weight space T(t;ô)ï(t) of T(t;ô) has basis:

Bï(t) ≥
²� nY

i≥1
xti�Ri(m)+Ri�1(m)

i ) 
 ê(m) j m 2 I (mn

�¦

and so dim T(t;ô)ï(t) ≥ jI (ô)j, i.e. this torsion free tensor product module has degree
equal to the dimension of V(ô). Since dim T(t;ô)ï(t) ≥ jI (ô)j and dim V(t; p)ï(t) ≥ jI (p)j,
we see that

(2. 14) dim T(t;ô)ï(t) ≥
X
p�ô

dim V(t; p)ï(t) .
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Our aim now is to improve (2.14) by showing

(2.15) T(t;ô) '
MX

p�ô
V(t; p) or equivalently

(2.16) T(t;ô)ï(t) '
MX

p�ô
V(t; p)ï(t) .

To this end we prove first that, in analogy with the finite dimensional case, the weight
space T(t;ô)ï(t) can be decomposed into one dimensional eigenspaces with respect to
the action of the elements of the Gel’fand-Zetlin subalgebra Γ(t). In fact for each r ≥
1, . . . , n we observe that the universal enveloping algebra U

�
Hr(t)

�
≥ U(Hr) 
 C(t) '

C(t)[e11, . . . , err]. Then for each pattern m 2 I (ô) we define the map

(2.17) Λm,t
r : U

�
Hr(t)

�
! C(t);

Λm,t
r

�
p(e11, . . . , err)

�
≥ p

�
sr � Rr�1(m), m1,r�1, . . . , mr�1,r�1

�
and the map

ç[t;m]: Γ(t) ! C(t) by defining its action on each crk;

ç[t;m](crk) ≥ Λm,t
r

�
ë(crk)

�
and extending as an algebra homomorphism to all of Γ(t). (Compare with (1.12) and
(1.13).)

PROPOSITION 2.18. (i) For any pattern m 2 I (ô) and any element z 2 Zr we have
that ç[t;m](z) is a polynomial over C in the single variable sr.

(ii) If m, m0 2 I (ô) with mr�1 Â≥ m0
r�1 then ç[t;m] #Zr

Â≥ ç[t;m0] #Zr
.

(iii) For any element z 2 Zr we have zê([t; m]) ≥ ç[t;m](z)ê([t; m]).

PROOF. Since Zr is generated by the elements crk part (i) follows directly from the
definition of the map ç[t;m].

For (ii) it is clear that if m, m0 2 I (ô) with mr�1 Â≥ m0
r�1 then Λm,t

r is not linked to
Λm0,t

r and hence by the Harish-Chandra Theorem, the maps ç[t;m] #Zr
and ç[t;m0] #Zr

are
not equal.

Finally for part (iii) let A ≥ f[t; m] j m 2 I (ô)g. Following the technique described
in Remark 2.9, we take any vector q 2 Zn

Ù0 such that ‡i ≥ qi�qi�1 ½ B(A). Then substi-
tuting qi for si (or equivalently ‡i for ti) into any indexing pattern in A yields an indexing
pattern in I

�
qn � Rr�1(m), m1,r�1, . . . , mr�1,r�1

�
. Now in each of these finite dimension

representations we have that zê([‡; m]) ≥ ç[‡;m](z)ê([‡; m]). Therefore by part (i) of this
proposition and Lemma 1.18(i), we may conclude that zê([t; m]) ≥ ç[t;m](z)ê([t; m]).

By Proposition 2.18 the right hand side of (2.16) decomposes as a Γ(t)-module into
inequivalent one dimensional submodules with scalar action given by the maps ç[t;m] for
each m 2 I (ô). We now show that the same is true for the left hand side of (2.16).

Fix m 2 I (ô). For each m0 2 I (ô) with m0 Â≥ m, there exists a maximal index r such
that m0

r Â≥ mr and hence by Proposition 2.18(ii) an element zm0 2 Zr such that

ç[t;m](zm0 ) Â≥ ç[t;m0](zm0)
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In fact ç[t;m](zm0) � ç[t;m0](zm0 ) is a nonzero polynomial over C in the single variable sr.
Now we define the operator

P(t)
m ≥

Y
m02I (ô);m0 Â≥m

�
zm0 � ç[t;m0](zm0)

�
.

PROPOSITION 2.19. For each z 2 Γ(t) and each v 2 P(t)
m T(t;ô)ï(t) we have

zv ≥ ç[t;m](z)v

and moreover dim P(t)
m T(t;ô)ï(t) ≥ 1.

PROOF. This result follows by considering various specializations of T(t;ô)ï(t) . In
particular select any integral n-tuple ‡ with sufficiently large components so that
T(‡,ô)ï(‡) is a specialization of T(t;ô)ï(t) and

Y
m02I (ô);m0 Â≥m

�
zm0 � ç[‡;m0](zm0)

��MX
p�ô

V(‡; p)ï(‡)

�
≥ Cê([‡; m]) Â≥ 0.

From (1.8), we know that

T(‡,ô)ï(‡) '
MX

p�ô
V(‡; p)ï(‡)

Therefore, P(‡)
m T(‡,ô)ï(‡) is 1-dimension and for any z 2 Γ we have

�
z � ç[‡;m](z)

�
P(‡)

m T(‡;ô)ï(‡) ≥ (0)

It follows then that
P(t)

m T(t;ô)ï(t) Â≥ (0)

and for any z 2 Γ we have
�
z � ç[t;m](z)

�
P(t)

m T(t;ô)ï(t) ≥ (0).

Finally, since dim T(t;ô)ï(t) ≥ jI (ô)j and the maps ç[t;m] for m 2 I (ô) are distinct, we
have that dim P(t)

m T(‡;ô)ï(‡) ≥ 1.
We now summarize the main results of this section in the following theorem.

THEOREM 2.20. For each p � ô let J (p) ≥ fm 2 I (ô) j mn�1 ≥ pg and let
X (t)

p ≥ ç[t,m] #Zn
for m 2 J (p). Then

(i)
M X

m02J (p)
P(t)

m0T(t;ô)ï(t) ≥
n

v 2 T(t;ô)ï(t) j
�
z� ç[t;m](z)

�
v ≥ 0 for all z 2 Zn

o

'
M X

m02J (p)
C(t)ê([t; m0 ]) ≥ V(t; p)ï(t)

is a U0
n(t)-module isomorphism where these modules have dimension jI (p)j equal to the

dimension of the Gn�1-module V(p),
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(ii) the module T(t;ô) is completely reducible

T(t;ô) '
MX

p�ô
V(t; p) '

MX
p�ô

TX (t)
p

,

with simple constituents V(t; p) ' TX (t)
p
≥ fv 2 T(t;ô) j

�
z � X (t)

p (z)
�
v ≥ 0 for all

z 2 Zn(t)g,
(iii) the central character X (t)

p is determined by the pseudo-highest weight

�
sn �

n�1X
i≥1

pi

�
è1 + p1è2 + Ð Ð Ð + pn�1èn,

(iv) Ch(t; N) ≥ fX (t)
p j p � ôg is the set of central characters of the decomposition

of the tensor product module T(t;ô).

PROOF. First, we notice that ç[t;m] restricted to Zn is a central character and that these
central characters are different for m 2 I (ô) having distinct (n� 1)st rows. In particular
the definition of X (t)

p is independent of our choice of m 2 J (p). Also we see that
M X

m02J (p)
P(t)

m0T(t;ô)ï(t) ≥
n

v 2 T(t;ô)ï(t) j
�
z � ç[‡,m](z)

�
v ≥ 0 for all z 2 Zn

o
.

Since the maps ç[t;m0] are distinct,
P

m02J (p) P(t)
m0T(t;ô)ï(t) is direct and hence as a U0

n(t)-
submodule has dimension jI (p)j.

For all ‡with ‡i large, we have that V(‡; p)ï(‡) is a specialization of both V(t; p)ï(t) andP
m02J (p) P(t)

m0T(t;ô)ï(t) . Moreover, our isomorphism
X

m02J (p)
P(‡)

m0 T(‡;ô)ï(‡) ' V(‡; p)ï(‡)

carries P(‡)
m0 T(‡;ô)ï(‡) to Cê([‡; m0]) and so by Lemma 2.6 we have a Γ(t)-module direct

sum M X
m02J (p)

P(t)
m0T(t;ô)ï(t) ' V(t; p)ï(t) .

This completes the proof of part (i).
Part (ii) follows from part (i) and Lemma 1.16, part (iii) is merely the definition of

X (t)
p and part (iv) is clear.

3. Main Theorem. Let M be an arbitrary simple multiplicity free torsion free Gn-
module. Our goal in this section is to study the torsion free Gn-module M 
 V(ô) or
equivalently, by (1.17), the Gn-module T(a;ô) ≥ M (a; N) 
 V(ô) where a is a given
n-tuple of complex noninteger scalars.

As a first step we determine the central characters which can occur in the decom-
position of T(a;ô). For each p � ô, the central character X (t)

p of the module V(t; p) is
determined by the pseudo-highest weight

Λ(t)
p ≥

�
sn �

n�1X
i≥1

pi

�
è1 +

n�1X
i≥1

pièi+1.
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By Proposition 2.18, if p, q � ôwith p Â≥ q we have that X (t)
p Â≥ X (t)

q . Now for each p � ô
we define X (a)

p to be the central character determined by the pseudo-highest weight

Λ(a)
p ≥

� nX
i≥1

ai �
n�1X
i≥1

pi

�
è1 +

n�1X
i≥1

pièi+1

and define
Ch(a,ô) ≥ fX (a)

p j p � ôg.

PROPOSITION 3.1. The central characters which occur in the decomposition of
T(a;ô) are contained in the set Ch(a;ô).

PROOF. By Proposition 2.18, for each p � ô and any element z 2 Zn we have that�
z � X (t)

p (z)
�
V(t; p) ≥ 0. Since by Theorem 2.20 we have that

T(t;ô) '
X
p�ô

ýV(t; p),

we may conclude that for any elements zp 2 Zn

Y
p�ô

�
zp � X (t)

p (zp)
�
T(t;ô) ≥ 0.

It follows that if we substitute ti ≥ ai we have that

Y
p�ô

�
zp � X (a)

p (zp)
�
T(a;ô) ≥ 0.

Although the central characters X (t)
p are distinct for distinct p � ô, this property may

be lost when we substitute a for t.

PROPOSITION 3.2. Let p, q � ô with p Â≥ q. Then X (a)
p ≥ X (a)

q if and only if there
exists an index i such that pj ≥ qj for j Â≥ i, and

Pn
k≥1 ak ≥

Pn�1
j≥1 pj + qi � i.

PROOF. By the Harish-Chandra Theorem, X (a)
p ≥ X (a)

q if and only if

Λ(a)
p ≥

� nX
i≥1

ai �
n�1X
j≥1

pj

�
è1 +

n�1X
i≥1

pièi+1 and Λ(a)
q ≥

� nX
i≥1

ai �
n�1X
j≥1

qj

�
è1 +

n�1X
i≥1

qièi+1

are linked which is equivalent to the sequences (
Pn

i≥1 ai�
Pn�1

j≥1 pj�1, p1�2, . . . , pn�1�n)
and (

Pn
i≥1 ai�

Pn�1
j≥1 qj�1, q1�2, . . . , qn�1�n) being permutations of one another. Since

p, q � ô, this permutation cannot map pi � i� 1 to qj � j� 1 with i Â≥ j. Therefore since
p Â≥ q we must have

Pn
i≥1 ai �

Pn�1
j≥1 pj � 1 ≥ qi � i � 1 and pj � j � 1 ≥ qj � j � 1 for

j Â≥ i.

REMARK 3.3. Proposition 3.2 implies that for any fixed ô there exist only finitely
many values (necessarily integer) for

Pn
i≥1 ai which will permit X (a)

p ≥ X (a)
q for p, q � ô

with p Â≥ q.
We are now in position to state the main theorem of this paper.
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MAIN THEOREM 3.4. For any n-tuple a ≥ (a1, . . . , an) of complex noninteger scalars
such that the central characters X (a)

p are distinct for p � ô the module T(a;ô) is com-
pletely reducible. In fact

T(a;ô) ≥
MX

p�ô
T(a;ô)X (a)

p

where, for each p � ô, T(a;ô)X (a)
p
≥ fv 2 T(a;ô) j zv ≥ X (a)

p (z)v for all z 2 Zng is a
nonzero simple module.

Since the central characters X (a)
p are assumed to be distinct, it follows from the proof

of Proposition 3.1 that
T(a;ô) ≥

MX
p�ô

T(a;ô)X (a)
p

.

To complete the proof of the Theorem 3.4, it suffices to show that each summand
T(a;ô)X (a)

p
is a simple Un-module or equivalently, by Lemma 1.16, that there exists a

weight space of this module which is a simple U0
n-module. We now develop some pre-

liminary results aimed at selecting a convenient weight space with which to work.
The set of weights of T(a;ô), and hence of T(a;ô)X (a)

p
, is given by

Φ(a;ô) ≥ ï(a) +
² nX

i≥1
hièi j hi 2 Z,

nX
i≥1

hi ≥ 0
¦

.

Let Zn
0 ≥ fh ≥ (h1, . . . , hn) j hi 2 Z,

Pn
i≥1 hi ≥ 0g. For any h 2 Zn

0 and each
m 2 I (ô), we define a map ç[a+h;m]: Γ ! C such that ç[a+h;m] #Zr is the central character
of the simple Gr-module of highest weight

Λa+h,m
r ≥

� rX
i≥1

(ai + hi) � Rr�1(m)
�
è1 +

r�1X
i≥1

mi,r�1èi+1.

PROPOSITION 3.5. Assume that a 2 Cn is an n-tuple of noninteger complex scalars
such that the central characters X (a)

p are distinct for all p � ô. Let h 2 Zn
0 with the

real part Re(ai + hi) of ai + hi being greater than ô1 for all i ≥ 1, . . . , n � 1. Then for
m, m0 2 I (ô) with m Â≥ m0, ç[a+h;m] Â≥ ç[a+h;m0].

PROOF. Let m, m0 2 I (ô) with m Â≥ m0. There exists 1 � r � n � 1 such that
mr Â≥ m0

r. If r ≥ n� 1 then we have by assumption that

ç[a+h;m] #Zn
≥ X (a)

mn�1
Â≥ X (a)

m0

n�1
≥ ç[a+h;m0] #Zn

.

On the other hand, if r Ú n� 1 then for any j ≥ 1, . . . , r � 1

Re
� rX

i≥1
(ai + hi) � Rr�1(m) � 1

�
Ù ô1 � 1 Ù m0

j,r�1 � j � 1.

This implies that Λ(a+h;m)
r is not linked to Λ(a+h;m0)

r and hence by the Harish-Chandra The-
orem ç[a+h;m] #Zr

Â≥ ç[a+h;m0] #Zr
.
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Fix p � ô and a pattern m 2 I (ô) such that mn�1 ≥ p. Then by Proposition 2.19, we
know that P(t)

m T(t;ô)ï(t) is a 1-dimensional C(t) vector space. Certainly, it is possible to
select a vector v[t;m] 2 P(t)

m T(t;ô)ï(t) such that when expanded in terms of the basis Bï(t)

the coefficients are polynomials in t and (sn �
Pn

i≥1 ai) is not a common factor of these
polynomials. By Lemma 1.19, there exists a vector h 2 Zn

0 such that Re(ai + hi) Ù ô1 for
all i ≥ 1, . . . , n� 1 and at least one of the Bï(t) coefficients of v[t;m] evaluated at t ≥ a + h
is nonzero. In other words, v[a+h;m] is a nonzero vector. Also since zv[t;m] ≥ ç[t;m](z)v[t;m]

for all z 2 Γ, it follows that zv[a+h;m] ≥ ç[a+h;m](z)v[a+h;m] for all z 2 Γ. The
Pn

i≥1(ai +hi)èi

weight space of T(a;ô) is the weight space on which we will focus.

REMARK 3.6. We note that for any h 2 Zn
0, M (a + h; N) ' M (a; N) and hence

T(a + h;ô) ' T(a;ô). Therefore, in order to simplify our notation and without loss of
generality, we assume that the vector h, selected above, is 0. In other words, we are
assuming that Re(ai) Ù ô1 for all i ≥ 1, . . . , n � 1, v[a;m] is a nonzero vector in the
ï(a) ≥

Pn
i≥1 aièi weight space of T(a;ô) and zv[a;m] ≥ ç[a;m](z)v[a;m] for all z 2 Γ.

Recall that V(t; p)ï(t) is a simple U0
n(t)-module having a linear basis fê([t; m]) j m 2

J (p)g. It follows that for any distinct patterns m0, m00 2 J (p) there exists an element
um0m00 (t) 2 U0

n(t) such that

um0m00(t)ê([t; m0 ]) ≥ Qm0m00 (t)ê([t; m00])

where Qm0m00 (t) is a nonzero rational function in t. We claim a little more.

PROPOSITION 3.7. There exist a choice of um0m00 (t) 2 U0
n(t) such that the correspond-

ing rational function Qm0m00 (t) evaluated at t ≥ a is well defined and nonzero.

PROOF. We say that two patterns m(1), m(2) 2 J (p) are adjacent provided they are
equal in all entries but two, these two are both on the row indexed by r, and there the
difference is that the p-th coordinate is one greater in m(2) than in m(1) while the q-th
coordinate is one less in m(2) than in m(1). Briefly, using the notation introduced in Sec-
tion 1, there exists an index r ≥ 1, . . . , n � 1 and indices 1 � p Â≥ q � r such that
[t; m(2)] ≥ [t; m(1)] + épr � éqr. Since for any patterns m0, m00 2 J (p) there exists a se-
quence of adjacent patterns connecting them, without loss of generality, we may assume
that m0, m00 are adjacent. Therefore we assume that, [t; m00] ≥ [t; m0] + épr �éqr for some
choice of indices r, p, q.

The element um0m00 (t) that we want will be constructed as the product of two elements
of U0

n(t). The first factor is er,r+1er+1,r. The coefficient of the basis vector ê([t; m00]) in
the expansion of the element er,r+1er+1,rê([t; m0]) is equal to the product of the coefficient
of ê([t; m0] � éqr) in the expansion of er+1,rê([t; m0]) and the coefficient of ê([t; m00]) ≥
ê([t; m0] + épr � éqr) in the expansion of er,r+1ê([t; m0]� éqr). We claim that each of these
rational functions is well defined and nonzero when evaluated at t ≥ a. By definition of
the action of er+1,r on the basis element ê([t; m0]) the coefficient of ê([t; m0]�éqr) is given
by Qr�1

k≥1(lk,r�1 � lq,r)Q
k Â≥j(lk,r � lq,r)
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where li,j is equal to the (i, j) component of the pattern [t; m0] minus i. As noted earlier
this is a nonzero rational function in the variables ti. We further claim that since each
ai is assumed to be noninteger with Re(ai) Ù ô1 for i ≥ 1, . . . , n � 1 evaluating this
function at t ≥ a also yields a nonzero value. This requires an evaluation of each factor
lk,r�1 � lqr and lk,r � lqr under substitution of t ≥ a. Rather than an exhaustive treatment
of each possible case we will illustrate this by considering two typical examples and
leave the rest to the reader. First assume that q ½ 2 and consider the term l1r � lqr ≥
(sr�Rr�1(m0)�1)�(m0

q�1,r�1�q) which occurs in the denominator. Substituting ti ≥ ai

and using the assumption that Re(ai) Ù ô1 we have

Re
�
(l1r � lqr) jt≥a

�
≥ Re

� rX
i≥1

ai � Rr�1(m0) � 1�m0
q�1,r�1 + q

�

Ù rô1 � (r � 1)ô1 � 1� ô1 + q ≥ q� 1 Ù 0

i.e. (l1r � lqr) jt≥a Â≥ 0. As a second example assume that q ≥ 1 and consider the factor
l1,r�1 � l1,r ≥

�
sr�1 � Rr�2(m0) � 1

�
� (sr � Rr�1(m0) � 1) ≥

�
�tr � Rr�2(m0) +

Rr�1(m0)
�

which occurs in the numerator. In this case since the scalars ai are assumed
to be noninteger it immediately follows that (l1,r�1 � l1,r) jt≥a Â≥ 0. A similar analysis of
the coefficient of ê([t; m00]) occurring in the expansion of the element er,r+1ê([t; m0]�éqr)
establishes that it is a nontrivial rational function which is well defined and nonzero when
evaluated at t ≥ a. Combining these two statements yields our claim.

The second factor in the element um0m00 (t) is a refinement of the element P(t)
m introduced

in Section 2 with m ≥ m00 . Since Re(ai) Ù ô1 for i ≥ 1, . . . , n � 1, by Proposition 3.5
we know that the maps ç[a;m] are distinct for all m 2 I (ô). Therefore for any pattern
m Â≥ m00 there exists an element zm 2 [n

r≥1Zr such that ç[a;m](zm) Â≥ ç[a;m00](zm) and
hence a fortiori ç[t;m](zm) Â≥ ç[t;m00](zm). Using these elements we define

P(t)
m00 ≥

Y
mÂ≥m00

�
zm � ç[t;m](zm)

�
.

As in Section 2, we note that for any pattern m(1) 2 I (ô) with m(1) Â≥ m00 we have

P(t)
m00ê([t; m(1)]) ≥ 0

and
P(t)

m00 ê([t; m00]) ≥
Y

mÂ≥m00

�
ç[t;m00](zm) � ç[t;m](zm)

�
ê([t; m00]) Â≥ 0.

Further by our choice of the elements zm we also have that P(t)
m00ê([t; m(1)]) jt≥a is nonzero

if and only if m(1) ≥ m00.
The element um0m00 (t) ≥ P(t)

m00er,r+1er+1,r then has the required properties.
We are now in position to complete the proof of the Main Theorem.

PROOF OF THEOREM 3.4. Fix m 2 J (p) and select a vector v[t;m] 2 P(t)
m0T(t;ô)ï(t)

such that 0 Â≥ v[a;m] 2 P(a)
m0 T(a;ô)ï(a) . Let

Φ: V(t; p) !
M X

m02J (p)
P(t)

m0T(t;ô)ï(t)
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be the U0
n(t)-module isomorphism determined by setting Φ

�
ê([t; m])

�
≥ v[t;m].

For each m0 2 J (p) with m0 Â≥ m, we define v[t;m0] ≥ umm0(t)v[t;m]. We note that

(3. 8)

um0m(t)umm0 (t)v[t;m] ≥ um0m(t)umm0 (t)Φ
�
ê([t; m])

�
≥ Φ

�
um0m(t)umm0 (t)ê([t; m])

�
≥ Qm0m(t)Qmm0 (t)v[t;m].

Since each of the terms on the right hand side is well defined and nonzero when
we substitute t ≥ a we have that um0m(a)umm0 (a)v([a; m]) Â≥ 0 and therefore v[a;m0] ≥
umm0(a)v[a;m] Â≥ 0. Clearly v[t;m0] 2 P(t)

m0T(t;ô)ï(t) and hence v[a;m0] 2 P(a)
m0 T(a;ô)ï(a) .

By Proposition 3.5, the maps ç[a;m0] are distinct for distinct patterns m0 2 J (p) and
hence the ï(a) weight space of T(a;ô)X (a)

p
is a direct sum of inequivalent Γ-submodules

P(a)
m0 T(a;ô)ï(a) . In order to prove that this subspace is an simple U0

n-module, it suffices
to show that for each m0 2 J (p) with m0 Â≥ m we have v[a;m0] 2 U0

nv[a;m] and v[a;m] 2
U0

nv[a;m0]. The first result follows from the definition of v[a;m0] ≥ umm0(a)v[a,;m] and the sec-
ond follows from (3.8), i.e. um0m(a)v[a;m0] ≥ um0m(a)umm0(a)v([a; m]) which is a nonzero
multiple of v[a;m].

4. An indecomposable submodule of a tensor product. To the best of our knowl-
edge, there is no known nonsimple indecomposable torsion free module for the sim-
ple finite symplectic algebras sp(2n,C). In fact, a slight modification of Chen’s work
[C], shows that no such modules of degree 2 exist for sp(2n,C). However, nonsim-
ple indecomposable torsion free modules do exist for s‡(n,C). In this section, such an
example is presented. It arises in T(a; N) when the central characters of Ch(a; N) are
not distinct. This then justifies the hypothesis of our Main Theorem. Consider the sim-
ple G4-module V(1, 1, 0, 0) having highest weight è1 + è2. Set K ≥ 1 and N ≥ 0,
and recall (1.6). Then V(1, 1, 0, 0) can be realized as the 6 dimensional submodule of
M

�
(1, 0, 0, 0); 0

�

M

�
(1, 0, 0, 0); 0

�
as given by:

V(1, 1, 0, 0) ≥ spanCfxi 
 xj � xj 
 xi j 1 � i Ú j � 4g

under the usual action on a tensor product module. Fix a 4-tuple of complex scalars
a ≥ (a1, a2, a3, a4) such that a1, a2, a3, a4, a1 + a2, a1 + a2 + a3 are nonintegers and a1 +
a2 + a3 + a4 ≥ 0. Recall that M (a; 2) denotes the pointed torsion free module with basis
given by

fxa1+h1
1 xa2+h2

2 xa3+h3
3 xa4+h4

4 j hi 2 Z with h1 + h2 + h3 + h4 ≥ �2g.

The tensor product module T
�
a; (1, 1, 0, 0)

�
≥ M (a; 2) 
 V(1, 1, 0, 0) is torsion free of

degree 6. By Lemma 1.16, the composition series for T
�
a; (1, 1, 0, 0)

�
as a U4-module is

determined by the composition series for any weight space as a U0
4-module.

The ï(a) ≥
P4

i≥1 aièi weight space T
�
a; (1, 1, 0, 0)

�
ï(a) of T

�
a; (1, 1, 0, 0)

�
has a linear

basis given by

wij ≥
xa1

1 xa2
2 xa3

3 xa4
4

xixj

 (xi 
 xj � xj 
 xi)
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where 1 � i Ú j � 4 and the ratio expression gives us a short hand way of subtracting 1
from exponents. For 1 � i � 6, define vi by

2
6666666664

v1

v2

v3

v4

v5

v6

3
7777777775
≥

2
6666666664

1 �1 1 0 0 0
a1 + a2 a3 �a3 �a1 � a2 � a3 a1 + a2 + a3 0

0 a1 a2 �a1 �a2 a1 + a2

0 0 0 a1 a2 a3

0 0 0 0 a1 + a2 a3

0 0 0 0 0 a1

3
7777777775

2
6666666664

w12

w13

w23

w14

w24

w34

3
7777777775

.

The determinant of the coefficient matrix is a2
1(a1 + a2)2(a1 + a2 + a3) Â≥ 0. Thus, B ≥

fvi j i ≥ 1, . . . , 6g forms an alternate basis for this ï(a) weight space.
Straightforward calculations using the generators of U0

4

fei1i2ei2i3 Ð Ð Ð eiki1 j 1 � ij � 4; i1, i2, . . . , ik distinctg

shows that the weight space T
�
a; (1, 1, 0, 0)

�
ï(a) is a cyclic module generated by v6 having

proper U0
4-submodules:

V1 ≥ spanCfv2, v3g, V2 ≥ spanCfv1, v2, v3g, V3 ≥ spanCfv1, v2, v3, v4g.

(These calculations are easily done using Maple.)

T
�
a; (1, 1, 0, 0)

�
ï(a) Ù V3 Ù V2 Ù V1 Ù 0

is a composition series. We also note that Tï(a)ÛV3 is equivalent to V1 under the map
defined by sending the vectors v5 + V3, v6 + V3 to the vectors v2, v3 respectively. Finally
V3ÛV2 and V2ÛV1 are pointed torsion free modules with the first module isomorphic to
M (a; 0) and the second quotient module isomorphic to M

�
(a1 � 1, a2 � 1, a3 � 1, a4 �

1); 0
�
.
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