```
VOL. 5 (1971), 221-225.
```


Remarks on theorems of Thompson and Freede

A.R. Amir-Moéz and C.R.Perry

Let A be a hermitian transformation on an n-dimensional unitary space E_{n}, with proper values $a_{1} \geq \ldots \geq a_{n}$. Let M be a proper subspace of E_{n}. Suppose $b_{1} \geq \ldots \geq b_{h}$ are the proper values of $A \mid M$ and $c_{1} \geq \ldots \geq c_{k}$ are the proper values of $A \mid M^{\perp}$. Let $i_{1}<\ldots<i_{r}$ and $j_{1}<\ldots<j_{r}$ be sequences of positive integers, with $i_{r} \leq k$ and $j_{r} \leq h$. Then

$$
\sum_{p=1}^{r} b_{i_{p}}+\sum_{p=1}^{r} c_{j_{p}} \leq \sum_{p=1}^{r} a_{p}+\sum_{p=1}^{r} a_{\left(i_{p}+j_{p}\right)}
$$

This is a special case of one of the Thompson-Freede theorems which is proved by use of certain invariants.

Some very interesting generalizations of an inequality of Aronszajn have been given by Thompson and Freede [4]. In this note we give a sample of expressing these theorems in terms of linear transformations and give a proof using some invariants.

1. Definitions and notations

An n-dimensional unitary space will be indicated by E_{n}. The inner product of two vectors α and β will be denoted by (α, β) . An orthonormal set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ will be indicated by $\left\{\alpha_{p}\right\}$ orthonormal.

The subspace spanned by the set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ will be denoted by $\left[\alpha_{1}, \ldots, \alpha_{k}\right]$. We write $\operatorname{dim} M=h$ if the dimension of the subspace M is h.

If A is a linear transformation on E_{n} and if M is a subspace of E_{n}, then we define a linear transformation $A \mid M$ as follows: if $\xi \in M$, let $[A \mid M] \xi=P A \xi$, where P is the orthogonal projection on M. We observe that if α and $\beta \in M$, then

$$
([A \mid M] \alpha, \beta)=(P A \alpha, \beta)=(A \alpha, \beta) .
$$

It follows that if A is hermitian, then $A \mid M$ is hermitian.
Given any sequence $i_{1} \leq \ldots \leq i_{k}$ of positive integers such that $i_{p} \geq p$, for $p=1, \ldots, k$, we define $\left(i_{1}^{\prime}, \ldots, i_{k}^{\prime}\right)$ recursively by $i_{k}^{\prime}=i_{k}$ and $i_{r}^{\prime}=\min \left(i_{r}, i_{r+1}^{\prime-1}\right)$, for $r=k-1, \ldots, 1$, [1].

2. Some preliminary theorems

Let H be a hermitian transformation on E_{n} with proper values $m_{1} \geq \ldots \geq m_{n}$. Then
(1) $m_{1}+\ldots+m_{k}=\sup _{\left\{\xi_{i}\right\} \text { orthonormal }}\left[\left(H \xi_{1}, \xi_{1}\right)+\ldots+\left(H \xi_{k}, \xi_{k}\right)\right]$. This theorem is due to Fan [2]. Further, if $i_{1} \leq \ldots \leq i_{k}$ is a sequence of positive integers such that $i_{p} \leq n$ and $i_{p} \geq p, p=1, \ldots, k$, then (2) $m_{i_{1}^{\prime}}+\ldots+m_{i_{k}^{\prime}}$

$$
=\sup _{M_{1} \subset \ldots \subset M_{k}} \inf _{\xi_{p} \epsilon M}^{\operatorname{dim} M_{p}=i_{p}}\left\{\begin{array}{l|}
\left\{\xi_{p}\right\} \\
\text { orthonormel }
\end{array} \quad\left[\left(H \xi_{1}, \xi_{1}\right)+\ldots+\left(H \xi_{k}, \xi_{k}\right)\right]\right.
$$

where M_{p} is a subspace of E_{n}, [1].
3.

THEOREM. Let A be a hermition tronsformation on E_{n} with proper
values $a_{1} \geq \ldots \geq a_{n}$. Let R_{1}, \ldots, R_{s} be proper subspaces of E_{n} such that $E_{n}=R_{1} \oplus \ldots \oplus R_{s}$ and R_{i} is orthogonal to R_{j}, for $i \neq j$. Let $\operatorname{dim} R_{q}=h_{q}, q=1, \ldots, s$. Suppose the proper values of $A \mid R_{q}$ are $b_{q 1} \geq \ldots \geq b_{q h_{q}}, q=1, \ldots, s$. Let $i_{q 1} \leq \ldots \leq i_{q r}$, $q=1, \ldots, s$, be sequences of positive integers such that $i_{q p} \leq h_{q}$ and $i_{q p} \geq p$, for $p=1, \ldots, r$ and $q=1, \ldots, s$. Then

$$
\begin{equation*}
\sum_{q=1}^{s}\left(\sum_{p=1}^{r} b_{q, i_{q p}^{\prime}}\right) \leq \sum_{j=1}^{r(s-1)} a_{j}+\sum_{p=1}^{r} a_{\left(\sum_{q=1}^{s} i_{q p}\right)}, \tag{1}
\end{equation*}
$$

Proof. By $\S 2$ (2), there exist subspaces $M_{q 1} \subset \ldots \subset M_{q r} \subset R_{q}$, $q=1, \ldots, s$, with $\operatorname{dim} M_{q p}=i_{q p}$, for $p=1, \ldots, r$ and $q=1, \ldots, s$, such that
(2)

$$
\begin{aligned}
& =\sum_{\substack{\left.\left.n_{q p}\right\} M_{q p}\right\}}}^{\inf _{p=1}^{r}} \sum_{p=1}^{r}\left(A n_{q p}, \eta_{q p}\right) \text {, }
\end{aligned}
$$

for $q=1, \ldots, s$.
Let $L_{p}=M_{1 p} \oplus \ldots \oplus M_{s p}, p=1, \ldots, r$. We observe that
$L_{1} \subset \ldots \subset L_{r} \subset E_{n}$ and $\operatorname{dim} L_{p}=\sum_{q=1}^{s} i_{q p}, p=1, \ldots, r$. Let
$\left\{\zeta_{1}, \ldots, \zeta_{r}\right\}$ be an orthonormal set in E_{n} such that $\zeta_{p} \in L_{p}$,
$p=1, \ldots, r$. Now, for each $p=1, \ldots, r$, it is clear that there exists an orthonormal set $\left\{\eta_{l p}, \ldots, \eta_{s p}\right\}$ such that $\zeta_{p} \in\left[\eta_{1 p}, \ldots, \eta_{s p}\right]$ and $\eta_{q p} \in M_{q p}, q=1, \ldots, s$. Here the set
$\left\{n_{11}, \ldots, \eta_{1 r}, n_{21}, \ldots, \eta_{2 r}, \ldots, \eta_{s 1}, \ldots, \eta_{s r}\right\}$ may not be linearly independent. But, it is clear, there exists an orthonormal set
$\left\{\eta_{11}^{\prime}, \ldots, \eta_{1 r}^{\prime}, \ldots, \eta_{s l}^{\prime}, \ldots, \eta_{s r}^{\prime}\right\}$ such that
$\left[\eta_{11}, \ldots, \eta_{1 r}, \ldots, \eta_{s 1}, \ldots, \eta_{s r}\right] \subset\left[\eta_{11}^{\prime}, \ldots, \eta_{1 r}^{\prime}, \ldots, \eta_{s 1}^{\prime}, \ldots, \eta_{s 1}^{\prime}\right]$ and $\eta_{q p}^{\prime} \in M_{q p}$, for $q=1, \ldots, s$ and $p=1, \ldots, r$. It is clear that $\left\{\zeta_{1}, \ldots, \zeta_{r}\right\}$ can be extended to an orthonormal set $\left\{\zeta_{l}, \ldots, \zeta_{s r}\right\}$ in such a way that $L=\left[\eta_{11}^{\prime}, \ldots, \eta_{1 r}^{\prime}, \ldots, \eta_{s 1}^{\prime}, \ldots, \eta_{s r}^{\prime}\right]=\left[\zeta_{1}, \ldots, \zeta_{s r}\right]$. Thus

$$
\begin{equation*}
\sum_{q=1}^{s}\left(\sum_{p=1}^{r}\left(A \eta_{q p}^{\prime}, \eta_{q p}^{\prime}\right)\right)=\operatorname{trace}(A \mid L)=\sum_{i=1}^{s r}\left(A \zeta_{i}, \zeta_{i}\right) \tag{3}
\end{equation*}
$$

By $\$ 2$ (1), it follows that

$$
\begin{equation*}
\sum_{p=1}^{r(s-1)} a_{p} \geq \sum_{i=r+1}^{s r}\left(A \zeta_{i},: \zeta_{i}\right) \tag{4}
\end{equation*}
$$

Combining (3) and (4) we obtain

$$
\begin{equation*}
\sum_{q=1}^{s}\left(\sum_{p=1}^{r}\left(A \eta_{q p}^{\prime}, \eta_{q p}^{\prime}\right)\right) \leq \sum_{i=1}^{r}\left(A \zeta_{i}, \zeta_{i}\right)+\sum_{j=1}^{r(s-1)} a_{j} \tag{5}
\end{equation*}
$$

Using (2) and (5) we obtain
(6)

$$
\begin{aligned}
& \sum_{q=1}^{s}\left(\sum_{p=1}^{r} b_{q, i_{q p}^{\prime}}\right) \\
& \leq \sum_{j=1}^{r(s-1)} a_{j}+\sup _{K_{1} \subset \ldots C K_{r}} \inf _{\delta_{p} \epsilon K_{p}} \sum_{p=1}^{r}\left(A \delta_{p}, \delta_{p}\right) . \\
& \operatorname{dim} K_{p}=\sum_{q=1}^{s} i_{q p} \quad\left\{\delta_{p}\right\} \text { orthonormal }
\end{aligned}
$$

Applying $\S 2$ (2) to the right side of (6) yields (1); thus the proof is complete.

4. Remark

We observe that the other results of Thompson and Freede can be proved in a manner similar to §3. These results may also be obtained as corollaries to $\S 3$ as was done in the Thompson and Freede paper.

References

[1] Ali R. Amir-Moéz, "Extreme properties of eigenvalues of a Hermitian transformation and singular values of the sum and product of linear transformations", Duke Math. J. 23 (1956), 463-476.
[2] Ky Fan, "On a theorem of Weyl concerning eigenvalues of linear transformations. I', Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 652-655.
[3] H.L. Hamburger and M.E. Grimshaw, Linear transformations in n-dimensional vector spaces (Cambridge University Press, Cambridge, 1951).
[4] Robert C. Thompson and Linda J. Freede, "Eigenvalues of partitioned hermitian matrices", BuZl. Austral. Math. Soc. 3 (1970), 23-37.
[5] Hermann Weyl, "Inequalities between the two kinds of eigenvalues of a linear transformation", Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 408-411.

Texas Tech University, Lubbock,
Texas, USA.

