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Abstract
To enhance the performance of anti-ship missiles cooperative attack, this paper proposes a finite-time trajectory
shaping-based cooperative guidance law (TSCGL). Firstly, the cooperative guidance model is established on seg-
mented linearisation of the missile’s heading angle. Then, a trajectory shaping guidance law for a single missile
is derived by a weighted optimal energy cost function and Schwarz inequality. On this basis, a finite-time TSCGL
is proposed combined with trajectory shaping technology and finite-time theory. The desirable finite-time conver-
gence performance can ensure a simultaneous attack. Through an improved method of time-to-go estimation, it is
independent of small-angle assumption and relaxes the launching conditions of the missiles. Additionally, the pro-
posed finite-time TSCGL can achieve better damage performance through energy management. Finally, simulation
results demonstrate the effectiveness and superiority of the proposed finite-time TSCGL.

Nomenclature

ai guidance command of the i-th missile (m/s2)
aci cooperative term of the ai (m/s2)
asi basis shaping guidance term of the ai (m/s2)
A system matrix
AG adjacency matrix of graph G
B control matrix
E edge set of graph
G communication network graph
J cost function ((m/s2)2)
k design parameter of the sliding surface
L Laplace matrix of the graph G
Mi i-th missile
qi line-of-sight (LOS) angle of the i-th missile (deg)
ri relative distance of the i-th missile (m)
si sliding surface of the i-th missile (s)
tgoi time-to-go of the i-th missile (s)
t0i initial impact time of the i-th missile (s)
tfi final impact time of the i-th missile (s)
T target
u guidance command (m/s2)
u∗ optimal guidance command (m/s2)
unom

i the consensus protocol
vyi vertical component of Vmi (m/s2)
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vy0i initial vertical component of Vmi (m/s2)
vyfi final vertical component of Vmi (m/s2)
V set of vertices
Vmi speed of the i-th missile (m/s)
V1i,V2i different Lyapunov functions of the i-th missile
W weight function
X state of i-th missile
XT ,YT current position of the target
XTP,YTP predicted interception point of the target
yi altitude of the i-th missile (m)

Greek Symbol

βi design parameter of the i-th missile’s consistency protocol
ηi lead angle of the i-th missile (deg)
γi heading angle of the i-th missile (deg)
γ0i segmented linearisation point of the i-th missile’s heading angle (deg)
�γi a small value, equals to γi − γ0i (deg)
γdi desired heading angle of the i-th missile (deg)
γfi final heading angle of the i-th missile (deg)
� state transition matrix
θT heading angle of target
ε design parameter of the sliding surface

1.0 Introduction
Shaping guidance law as an efficient guidance scheme has been widely used in the research of naval
attack and defense [1–4]. The shaping guidance law can ensure a single missile attack the target with
optimal energy and achieve the desired accuracy and damage performance. Even though the shaping
guidance law is effective in most traditional scenarios, a single missile is difficult to penetrate for a
modern warship equipped with missile defense systems [5, 6]. Therefore, cooperative guidance organ-
ised by multiple missiles can ensure that more than one missile hits the target, which greatly increases
the success rate of the operation [7, 8]. Jeon, I.S. et al. [9] conducted impact time control guidance
(ITCG) law, so as to anti-ship missiles can intercept a stationary target with the prescribed impact time.
Inspired by this idea, a shaping cooperative guidance law to control impact time and angle was presented
in Refs. [10–13].

As a core factor in shaping cooperative guidance law, the estimation of the time-to-go can signifi-
cantly influence guidance performance. It can be noted that the studies mentioned above are established
on the small-angle assumption in estimation [10, 11], which limits the generalisation of the investi-
gations. Therefore, various methods are proposed to improve the accuracy of the estimation in Refs.
[14–16]. Liu, S. et al. [16] proposed an improved estimation method of time-to-go, in which the cal-
culation accuracy can be guaranteed with a large initial lead angle. Although enough efforts have been
devoted to the accuracy improvement of estimation, without energy management, constraints of energy
will limit the execution or even lead to the failure of cooperation. In view of the difficulty in energy
management, the optimal shaping cooperative guidance has been widely discussed in Refs. [17–20].
Chen, X. et al. [17] derived an optimal guidance law wherein cooperative impact time and angle con-
straints can be satisfied. Adding a compensation term to the guidance law, Liu J. et al. [18] derived a
multi-missile optimal cooperative guidance law by optimal control theory.

To ensure penetration capability, guidance laws based on consensus theory have been established
for cooperation. Multiple anti-ship missiles can perform a saturation attack on the target by exchang-
ing information. Hence, consensus-based cooperative guidance laws have been widely studied to ensure
the impact time. However, the asymptotic convergence is insufficient for a transient flight. As an exten-
sion, the finite-time shaping cooperative guidance law has become a hotspot in engineering practice
[21–23]. Sinha, A. et al. [24] proposed a leader-follower cooperative salvo guidance strategy to intercept
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stationary targets by exploiting the advantages of supertwisting sliding mode control. Based on powered
missiles, some cooperative guidance laws aim to control the axial speed in the direction of LOS to fulfill
the cooperation of impact time [22, 25, 26]. Liu, S. et al. [27] designed a finite-time convergence coop-
erative guidance law from two directions of the LOS, which can easily satisfy the impact time and angle
constraint. Although the powered missiles hold better adjustment capability, their cost increases the eco-
nomic burden for cooperation. Therefore, it is more practical to study the cooperative guidance law for
unpowered missiles without speed control [28, 29]. Shin, H.S. et al. [30] designed a finite-time guidance
law to nullify the LOS angular rate to address the terminal guidance problem of missiles intercepting tar-
gets in three-dimensional space. With the measured initial conditions, the boundary of convergence time
can be adjusted by turning parameters. Without energy engagement, however, the execution of guidance
command is limited. Hence, fast convergence with optimal energy management is still a challenge for
application.

The aforementioned guidance laws have made great progress, but the problem of optimal shaping
cooperative guidance law design remains open. (1) The estimation of the time-to-go with the small angle
assumption hinders the engineering application of the cooperative guidance law. (2) Optimal energy
control needs to be considered to ensure cooperative performance. (3) Fast convergence speed for state
variables is necessary in the guidance process.

Inspired by the above discussions, a finite-time trajectory shaping-based cooperative guidance law
(TSCGL) is proposed, which can achieve multiple missile cooperation with desired damage and
convergence performance. The main contributions are summarised as follows:

(1) The proposed finite-time TSCGL can ensure impact time and angle constraints, so as to achieve
simultaneous attack with desired damage performance. Different from most existing studies in
Ref. [31], independent of small-angle assumption, the proposed finite-time TSCGL holds higher
accuracy of impact time estimation, even in the case of a large initial leading angle.

(2) Compared with existing optimal shaping guidance law in Ref. [2], the proposed TSCGL can
guarantee optimal energy management without simplifying terminal boundary conditions. Based
on the weighted optimal energy cost function, the stability of the optimal TSCGL is derived by
the Schwarz inequality.

(3) The proposed finite-time TSCGL can achieve better convergence performance. Compared with
asymptotic cooperative guidance law in Ref. [32], the final impact time can converge within a
finite time.

The rest of the paper is organised as follows. Section 2.0 gives problem descriptions and relative
models. Section 3.0 mainly derives the optimal guidance command of the shaping guidance law and
the determination of cooperative guidance law. In Section 4.0, numerical simulations for four cases are
conducted to demonstrate the effectiveness and advantages of the cooperative shaping guidance law.
Section 5.0 gives the conclusions of this paper.

2.0 Problem formulation and model derivation
Multiple missiles-target engagement geometry in vertical plane is shown in Fig. 1. The notations Mi

and T represent the i-th missile and target. Vmi, ai, ri, yi, qi, ηi and γi denote speed, guidance command,
relative distance, altitude, line of sight (LOS) angle, lead angle and heading angle of the i-th missile,
i = 1, 2, · · · , m.

The relative motion model of the i-th missile are given as

ṙi = −Vmi cos(ηi) (1)

q̇i = Vmi sin(ηi)/ri (2)

γ̇i = ai/Vmi (3)

ηi = qi − γi (4)
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Figure 1. Multiple missiles-target engagement geometry.

The guidance command ai is constructed as

ai = asi + aci (5)

where asi and aci are the basis shaping guidance term and cooperative term.
The core of multiple missiles cooperatively attacking the target is that they can satisfy the constraints

of both time convergence and interception accuracy. In addition, in order to improve damage perfor-
mance on the target, impact angle and energy consumption should be taken into consideration. Generally,
the impact angle constraint translates into controlling the heading angle at interception [2, 4]. Thus, the
design objective of the finite-time TSCGL can be described as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

lim
t→tf

(tgoi − tgoj) → 0

lim
t→tf

ri → 0

lim
t→tf

γi → γdi

lim
t→tf

min J

(6)

where tgo is the time-to-go, γdi denotes desired heading angle and J represents cost function.

3.0 Guidance law design
Before designing the finite-time TSCGL, some preliminary assumptions need to be put forward:

Assumption 1. Anti-ship missiles and ship are viewed as mass points.

Assumption 2. Compared to missiles, the ship can be considered a stationary target.

Assumption 3. All the velocities of unpowered missiles are assumed to be fixed with adjustable
perpendicular acceleration throughout the engagement.

3.1 Derivation of shaping guidance law
The cost function is definited as

min J = 1

2

∫ tfi

t

W(τ )u2(τ )dτ (7)

where W(t) > 0, t ∈ (t0i, tfi

)
. t0i and tfi are the initial time and the final impact time of the i-th missile.

Considering that the kinematics of the i-th missile are established by

ẏi = Vmi sin γi (8)
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Linearisation at point γ0i of segment k are as follows

ẏi = Vmi sin(γ0i) + Vmi�γi cos(γ0i) = vyi (9)

where γi = γ0i + �γi. �γi is a small value and γ0i is a constant in the k segment. vyi is the vertical
component of Vmi. Derivations are derived as

ÿi = Vmi�̇γi cos(γ0i) = v̇yi (10)

γ̇i = �̇γi (11)

Then, based on Equation (3), one can be obtained as

ÿi = ai cos(γ0i) = v̇yi (12)

The linearised kinematic Equations (9) and (10) can be rewritten in the matrix form as

ẋ = Ax + Bu (13)

where

x
�= [

yi vyi

]T
, u

�= ai

A
�=
[

0 1

0 0

]
, B

�=
[

0

cos(γ0i)

] (14)

Based on the linear control theory, the solution of Equation (13) can be expressed as

x
(
tfi

)= �
(
tfi − t

)
x(t) +

∫ tfi

t

�
(
tfi − τ

)
Bu(τ ) dτ (15)

�
(
tfi − t

)= eA(tfi−t) (16)

where �(t) is the state transition matrix of the linear system as Equation (13). Expand the right side of
Equation (16) as follow

eA(tfi−t) = I + A
(
tfi − t

)+ A2

2!
(
tfi − t

)2 + · · · (17)

Calculating the right side of Equation (15) and omitting the high order terms, we can obtain

x
(
tfi

)=
[

1 tfi − t

0 1

]
x(t) +

∫ tfi

t

[
1 tfi − t

0 1

] [
0

cos(γ0i)

]
u(τ ) dτ (18)

Using shorthand notations as

f1
�= x1(t) + (

tfi − t
)

x2(t) − x1

(
tfi

)
, h1(τ )

�= −cos(γ0i)
(
tfi − t

)
f2

�= x2(t) − x2

(
tfi

)
, h2(τ )

�= − cos(γ0i)
(19)

Equation (15) can be rewritten as {
f1 = ∫ tfi

t
h1(τ )u(τ )dτ

f2 = ∫ tfi
t

h2(τ )u(τ )dτ
(20)

By introducing a new variable denoted as λ, then by Equation (20) we can obtain

f
�= f1 − λf2 =

∫ tfi

t

[h1(τ ) − λh2(τ )] u(τ )dτ (21)

Furthermore, Equation (21) can be transformed as

f =
∫ tfi

t

(h1(τ ) − λh2(τ )) W1/2(τ )W−1/2(τ )u(τ )dτ (22)
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Based on the Schwarz inequality, the following inequality can be obtained as

f 2

2
∫ tfi

t
[h1(τ ) − λh2(τ )]2W−1(τ )dτ

≤ 1

2

∫ tfi

t

W(τ )u2(τ )dτ (23)

It is obvious that the right side of Equation (23) equals the cost function defined in Equation (12). In other
words, it provides a lower bound for the minimum cost function. According to the Schwarz inequality,
the condition of inequality Equation (23) becoming the equation is that the guidance command must
be as

u(t) = K[h1(t) − λh2(t)] W−1(t) (24)

where K is a constant to be determined. Substituting Equation (24) into Equation (19), the constant K
can be obtained as

K = f1∫ tfi
t

h2
1(τ )W−1(τ )dτ − λ

∫ tfi
t

h1(τ )h2(τ )W−1(τ )dτ
(25)

To facilitate the derivation, some notations are given as follows⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1i
�= ∫ tfi

t
h2

1(τ )W−1(τ )dτ

g2i
�= ∫ tfi

t
h1(τ )h2(τ )W−1(τ )dτ

g3i
�= ∫ tfi

t
h2

2(τ )W−1(τ )dτ

(26)

Thus Equation (25) can be rewritten as

K = f1

g1i − λg2i

(27)

Substituting Equation (27) into Equation (24), the guidance command can be obtained as

u(t) = f1 [h1(t) − λh2(t)] W−1(t)

g1i − λg2i

(28)

From Equation (23), the minimum value of cost function can be expressed as

J = (f1 − λf2)
2

2(g1i − 2λg2i + λ2g3i)
(29)

Taking the derivative of J with respect to λ and imposing dJ/dλ = 0, the optimal solution of λ can be
expressed as

λ∗ = f1g2i − f2g1i

f1g3i − f2g2i

(30)

Substituting Equation (30) into Equation (28), the optimal guidance command can be obtained as

u∗(τ ) =
[
f1h1(τ )g3i − g2i(f2h1(τ ) + f1h2(τ )) + f2h2(τ )g1i

]
W−1(τ )

g1ig3i − g2
2i

(31)

Substituting Equations (14) and (19) into Equation (31), the optimal trajectory shaping guidance law is
expressed as

asi = u∗(t) = k1iyi + k2ivyi + k3i (32)
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where the guidance gains k1i, k2i and k3i are given as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1i = −tgoig3i + g2i

g1ig3i − g2
2i

W−1 (t)

k2i =
−t2

goig3i + 2g2itgoi − g1i

g1ig3i − g2
2i

W−1 (t)

k3i =
(
tgoig3i − g2i

)
yi

(
tfi

)+ (
g1i − tgoig2i

)
vyi

(
tfi

)
g1ig3i − g2

2i

W−1(t)

(33)

where tgoi =
(
tfi − t

)
is the time-to-go of the i-th missile, and g1i, g2i, g3i are defined as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
g1i =

∫ tfi
t

(
tfi − τ

)2
W−1(τ )dτ

g2i =
∫ tfi

t

(
tfi − τ

)
cos(γ0i)W−1(τ )dτ

g3i =
∫ tfi

t
cos2(γ0i)W−1(τ )dτ

(34)

From Equation (34), the analytical solution of g1i, g2i, g3i depend on the prescribed the final impact
time tfi and the weighting function W−1(t) which is a time-varying function. In order to achieve time-
cooperative guidance for multiple missiles and remove constraint of the final impact time tfi, we make
the assumption as follows

W−1 (τ ) = 1 (35)

γ0i ≡ 0 (36)

After simplification, the shaping guidance command in Equation (32) can be transformed as

asi = −6
yi

t2
goi

− 4
vyi

tgoi

+ 6
yi(tfi)

t2
goi

− 2
vyi(tfi)

tgoi

(37)

Note that these results are identical to the optimal control guidance law as studied in Ref. [2]. Combining
Equation (4) with Equation (9), the following equation can be obtained as

v̇yi = Vmiγ̇i cos γ0i (38)

The integral of Equation (38) from 0 to tfi can be expressed as∫ tfi

0

v̇yidt = Vmi cos γ0i

∫ tfi

0

γ̇idt (39)

Then, the final speed constraint vyi(tfi) can be transformed into the heading angle constraint γi(tfi) by

vyi(tfi) = vy0i + Vmi

(
γi(tfi) − γ0i

)
cos γ0i (40)

Remark 1. �γi is considered as a small value in some γ0i(k) segment (at point γ0i of segment k). Once
the absolute value of �γi is bigger than 5 degrees (|�γi| > 5◦), the linearised kinematics is switched in
next γ0i(k + 1) segment. Furthermore, their relationship is satisfied by

γ0i(k + 1) = γ0i(k) + �γi (41)

where k = 1, 2, · · · , n, �γi = ±5◦.

3.2 Derivation of cooperative shaping guidance law
In this subsection, the concept of algebraic graph theory is introduced by Ref. [27]. Suppose that com-
munication network between missiles can be expressed as G = {V , E}, where V = {1, 2, · · · , n} denotes
the set of vertices, E ⊆ V × Vdenotes the edge set of graph, the subscript i denotes the i-th missile, eij
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is the edge of graph G, and eij ⊆ E indicates that the agents i and j can receive message from each other
in an undirected graph. If there is a connection between any two missiles in the graph, then the graph
G is connected. In the directed graph, eij ⊆ E means the missile i can receive message from missilej. In
addition, AG = (aij) ∈ Rn×n is the adjacency matrix of graph G. If eij ⊆ E, then aij > 0; aij = 0, otherwise.
It is worth noting that aij = aji when the communication topology is an undirected graph. The Laplace
matrix of the graph G is defined as L = (Lij) ∈ Rn×n, which can be expressed as

Lij =

⎧⎪⎨
⎪⎩

−aij i 
= j
n∑

j=1,j 
=i

aij i = j
(42)

The final impact time of the i th missile can be defined as

tfi = tgoi + t (43)

Let Xi = tfi, a multiple missiles system is described as

Ẋi = unom
i (44)

where unom
i is the consensus protocol which should be designed with the information of the missile itself

and its neighbours.
In order to verify the finite-time stability of the system, the following Lemma is given.

Lemma 1. [33] Suppose that there exists a continuous positive function Vt, positive real numbers α, β

and 0 < γ < 1, satisfying V̇t ≤ −αV(t) − βVγ (t). Then, the system in Equation (44) is stable in a finite
time T ≤ (1/α(1 − γ )) ln

((
αV1−γ (x0) + β

)
/β
)
.

Lemma 2. [34] Suppose that there exists a continuous positive function Vt, positive real numbers c
and 0 < α < 1, satisfying V̇t ≤ −c(V(t))α. Then, the system in Equation (44) is stable in a finite time
T ≤ (1/c(1 − α))V(X0)1−α.

Lemma 3. If the undirected graph is connected. The consensus protocol unom
i shown in Equation (45)

can ensure that the state of multi-missile converges in finite time.

unom
i = sgn

(
n∑

i,j=1

aij(Xj − Xi)

) ∣∣∣∣∣
n∑

i,j=1

aij(Xj − Xi)

∣∣∣∣∣
βi

(45)

where aij are the elements of the weight coefficient matrix. And βi is a constant, 0 < βi < 1.

Lemma 4. [35] If the undirected graph is connected and 1T
NX = 0, then XTLX ≥ λ2(L)XTX, where λ2(L)

denotes the second smallest eigenvalue of Laplacian matrix L.

Lemma 5. [36] Suppose that there exists a series of x1, x2, · · · , xn ≥ 0 and 0 < p ≤ 1. Then, the

inequality
n∑

i=1

xp
i ≥

(
n∑

i=1

xi

)p

holds.

Theorem 1. Subject to the system in Equation (44), in the existence of k, ε > 0, under the action of the
guidance command in Equation (46), multiple missiles can achieve consistent convergence of the coop-
erative variable tfi in a finite time (T ≤ T1 + T2), thereby ensuring that multiple missiles simultaneously
arrive at the target.

ai = (unom
i − ksi − εsgn(si) − kc)/ka (46)

where unom
i = sgn

(
n∑

i,j=1

aij(tfj − tfi)

) ∣∣∣∣∣
n∑

i,j=1

aij(tfj − tfi)

∣∣∣∣∣
βi

, kc = 1 − cos(ηi)
(
1 + sin2(ηi)/10

)+ sin2(ηi)

cos(ηi)/5, ka = −ri sin(ηi) cos(ηi)/5V2
mi, ṡi = −ksi − εsgn(si).
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Proof.

(1) System transformation
Before proving the theorem, some preparations are made as follows.
The derivative of tfi can be presented as

ṫfi = ṫgoi + 1 (47)

From Ref. [16], in order to remove the small-angle assumption of the ηi, an improved estimation
method of tgoi is chosen as follows

tgoi = ri

(
1 + sin2(ηi)/10

)
/Vmi (48)

The derivation of tgoi is derived as

ṫgoi = ṙi

(
1 + sin2(ηi)/10

)
/Vmi + ri sin(ηi) cos(ηi)η̇i/5Vmi (49)

Substituting Equations (1–4) into Equation (49), then we can obtain

ṫgoi = − cos(ηi)
(
1 + sin2(ηi)/10

)+ sin2(ηi) cos(ηi)/5

− airi sin(ηi) cos(ηi)/5V2
mi (50)

Substituting Equation (50) into Equation (47) and using shorthand notations, Equation (47) can
be rewritten as

ṫfi = kc + kaai (51)

where {
kc = 1 − cos(ηi)

(
1 + sin2(ηi)/10

)+ sin2(ηi) cos(ηi)/5

ka = −ri sin(ηi) cos(ηi)/5V2
mi

(52)

(2) Convergence of the sliding surface
In order to achieve time-cooperative guidance for multiple missiles, considering the final impact
time constraint, a sliding surface is defined as

si = tfi − tfi(0) −
∫ t

0

unom
i dt (53)

Take the derivative of sliding surface si as

ṡi = ṫfi − unom
i (54)

Apply the reaching law by choosing

ṡi = −ksi − εsgn(si) (55)

Take the Lyapunov function V1i as

V1i = 1

2
s2

i (56)

Taking the derivative of V1i with respect to time t, and substituting Equation (55) into it, we can
get

V̇1i = siṡi = si(−ksi − εsgn(si)) ≤ −ks2
i − ε |si| ≤ 0 (57)

Based on Equation (56), the following equation is obtained

|si| =
√

2V1i (58)

Substituting Equation (58) into Equation (57), we have

V̇1i ≤ −ks2
i − ε|si| = −2kV1i −

√
2εV

1
2

1i (59)
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According to Lemma 1, the sliding surface si can converge to zero in a finite time T1, where

T1 ≤ (1/k) ln
((

2kV
1
2

1i (x0) + √
2ε
)

/
√

2ε
)

(60)

(3) Convergence of finite-time cooperative errors
When si = 0, from Equation (54), the following equation can be obtained as

ṫfi = unom
i (61)

Take the Lyapunov function V2i as

V2i = 1

4

n∑
i,j=1

aij

(
tfj − tfi

)2 = 1

2
TT

f LTf (62)

where Tf = [
tf 1, tf 2, · · · , tfn

]T is the vector consisting of the final impact time of each missile and
L is the Laplace matrix. Based on the symmetry L due to the assumption of undirected graph,
the partial derivative of V2i with respect to tfi can be presented as

∂V2i

∂tfi

= −
n∑

j=1

aij

(
tfj − tfi

)
(63)

Taking the derivative of V2i with respect to t, combining it with Equations (63), (61) and
Lemma 5, the following equation can be obtained as

dV2i

dt
=

n∑
i=1

∂V2i

∂tfi

ṫfi

= −
n∑

i=1

aij

(
tfj − tfi

) ·
(

sgn

(
n∑

j=1

aij

(
tfj − tfi

)) n∑
j=1

aij

(
tfj − tfi

))βi

(64)

= −
n∑

i=1

⎛
⎝( n∑

j=1

aij

(
tfj − tfi

))2
⎞
⎠

1+βi
2

≤ −
⎛
⎝ n∑

i=1

(
n∑

j=1

aij

(
tfj − tfi

))2
⎞
⎠

1+βi
2

when V2i 
= 0, we obtain

n∑
i=1

(
n∑

j=1

aij

(
tfj − tfi

))2

V2i

= TT
f LTLTf

1
2
TT

f LTf

(65)

According to Lemma 4, Equation (65) can be transformed as

TT
f LTLTf

1
2
TT

f LTf

≥ 2λ2(L) (66)
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Table 1. The initial conditions of missiles

Number Position (m) Initial Heading Angle (deg) Speed (m/s)
M1 (1500,4000) 30 300
M2 (0,3000) 30 300
M3 (0,100) 30 300

Figure 2. Communication topology for three missiles.

Substituting Equation (66) into Equation (64), the following inequality is obtained

dV2i

dt
≤ −

⎛
⎜⎜⎜⎜⎜⎝

n∑
i=1

(
n∑

j=1

aij

(
tfj − tfi

))2

V2i

V2i

⎞
⎟⎟⎟⎟⎟⎠

1+βi
2

≤ −(2λ2(L))
1+βi

2 V
1+βi

2
2i (67)

According to Lemma 2, the final impact time of the missiles can converge to zero in a finite time
T2, where

T2 ≤
(

1

λ2(L)
1+βi

2 (1 − βi)

)
V

1−βi
2

2i (x0) (68)

Remark 2. The sliding surface can converge to zero within a finite T1, lim
t→T1

|si| = 0, which guarantees
the establishment of the system in Equation (44). Then, the difference of final impact times can con-
verge to zero in a finite T ≤ T1 + T2, lim

t→T

∣∣tfi − tfj

∣∣= 0, which implies multiple missiles can complete a
cooperative attack. Since Equation (43), lim

t→T

∣∣tgoi − tgoj

∣∣= 0 also holds.

4.0 Simulation
In this section, simulations were conducted to demonstrate the effectiveness and advantages of the finite-
time TSCGL in Equation (48). In all simulations, the initial position of target is located at (20km, 0km).
The initial conditions of missiles are shown in Table 1. The communication topology of multiple mis-
siles is given in Fig. 2. The consistency parameter in Equation (45) is selected with βi = 0.86. The
parameters in sliding mode convergence law shown in Equation (55) are chosen as k = 0.1, ε = 0.001.
The limitation of guidance command is amax = 50m/s2. To mitigate the chattering caused by the sign
function in Equation (55), the following function is adopted as a replacement

sgmf (x) = 2

(
1

1 + e−τx
− 1

2

)
, τ > 0 (69)

where τ is chosen as 20.
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Figure 3. Simulation results of case 1: (a) Trajectory of missiles, (b) Heading angle, (c) Guidance
command, (d) Relative distance, (e) Time-to-go.

4.1 Multiple missiles cooperative attack
In this subsection, we compared with PNG algorithm to further demonstrate the superiority of the finite-
time TSCGL in Equation (46). The results are presented in Fig. 3, and the attack results are given in
Table 2.

From Fig. 3 and Table 2, both the finite-time TSCGL and PNG can attack the target. The miss-
distances of the finite-time TSCGL are less than 0.36m. The miss-distances of PNG are at least 1.05m
larger than finite-time TSCGL. Compared with PNG, finite-time TSCGL has higher attack accuracy.
The trajectories of finite-time TSCGL are more curved than that of PNG. The final heading angle errors
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Table 2. Attack results of case 1
TSCGL PNG

Number M1 M2 M3 M1 M2 M3
Miss-distance (m) 0.2682 0.3551 0.3356 1.9410 3.1914 1.4181
Final heading angle (deg) −52.91 −44.39 −37.43 −33.30 −27.80 −15.43

between the finite-time TSCGL and PNG are bigger than at least 16.59deg, which implies that finite-time
TSCGL has better damage performance. At the beginning of the guidance process, a larger guidance
command is required to adjust the posture of the missiles to be consistent. The time-to-go of the finite-
time TSCGL can converge within a short time. Compared with PNG, the finite-time TSCGL has faster
convergence speed. The final impact time of finite-time TSCGL are 72s with their errors less than 0.1s.
The final impact time of PNG are 66.68s, 70.58s, 68.58s and their differences are approximately 4s. In
conclusion, the finite-time TSCGL can achieve cooperative attack with higher attack accuracy, better
damage performance and faster convergence speed.

4.2 Compared with other methods of estimating time-to-go
In this subsection, another method of estimating tgo in Ref. [31] is provided to compare that in Equation
(48), which is expressed as

tgoi = ri

(
1 + η2

i /10
)
/Vmi (70)

The results are illustrated in Fig. 4, and the miss-distance are given in Table 3. As can be seen in Fig. 4,
multiple missiles can attack the target cooperatively. A striking difference was noted when the method
of estimating tgo was considered individually in Equation (48) and Equation (70). From Table 3, the
miss-distances of Equation (48) are less than 0.36m. The miss-distances of Equation (70) are at least
1.95m larger than Equation (48). By comparison, Equation (48) demonstrates the superiority in attack
accuracy. The time-to-go of the two methods can converge within a short time, which indicates that the
proposed finite-time TSCGL has fast convergence speed. Similarly, their final impact time are approx-
imately the same, which shows that the proposed finite-time TSCGL can achieve simultaneous attack.
Consequently, the different methods of estimating time-to-go mainly affect the attack accuracy rather
than the convergence speed and final impact time, further indicating that the proposed finite-time TSCGL
has good expandability.

4.3 Cooperative attack with Monte Carlo simulations
In order to further verify the robustness of the finite-time TSCGL in Equation (46), 300 Monte Carlo
simulations were performed with different conditions, and the bias are listed in Table 4. The initial
conditions of the missiles and the target are the same as in Table 1. The simulation results are illustrated
in Figs 5 and 6.

It can be seen from Fig. 5 that multiple missiles can cooperatively attack the target in all Monte Carlo
bias scenarios. The distributions of miss distance in Fig. 6 are less than 1.83m. In Table 5, the average
mean and standard deviation of the miss-distances are 0.87m, 0.39m. The maximum and minimum are
1.80m, 0.11m. All the statistics can meet the accuracy requirement. Consequently, finite-time TSCGL
has strong robustness.

4.4 Expansion to a target with constant speed
Inspired by the concept of predicted interception point (PIP) in Ref. [16], a target with a constant speed is
considered to verify the generality of the proposed finite-time TSCGL. The position of virtual stationary
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Figure 4. Simulation results of case 2: (a) Trajectory of missiles, (b) Heading angle, (c) Guidance
command, (d) Relative distance, (e) Leading angle, (f) Time-to-go.
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Table 3. Miss-distance of case 2
Equation (48) Equation (70)

Number M1 M2 M3 M1 M2 M3
Miss-distance (m) 0.2682 0.3551 0.3356 2.3338 2.3177 2.3187

Table 4. Bias of Monte Carlo simulations

Term Upper bound Lower bound
Speed (m/s) +5 −5
Heading angle (deg) +3 −3

Position (m)
Direction X

Direction Y
+1000 −1000
+100 −100

Table 5. Monte Carlo results of the miss-distance

Number Mean (m) Standard deviation (m) Maximum (m) Minimum (m)
M1 0.8462 0.3859 1.8058 0.0831
M2 0.8883 0.3874 1.8268 0.1451
M3 0.8627 0.3912 1.7491 0.0886

Figure 5. Trajectory of missiles.

target can be expressed as follows: {
XTP = XT + VT cos θT tgo

YTP = YT + VT sin θT tgo

(71)

where (XTP,YTP) is the PIP, (XT ,YT) is current position of the target, and θT is the heading angle of the
target.

The target moves with the heading angle of 0deg and speed of 20m/s. It can be seen from Fig. 7
that finite-time TSCGL can simultaneously attack the target with a constant speed under the PIP theory.
The miss-distance are 1.31m, 1.37m and 1.39m, which implies that finite-time TSCGL has high attack
accuracy. The time-to-go can converge within a short time, which shows that finite-time TSCGL has
fast convergence speed. Therefore, the finite-time TSCGL demonstrates good expandability.
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Figure 6. Miss-distance of case 3: (a) Missile 1, (b) Missile 2, (c) Missile 3.

5.0 Conclusion
In this paper, we proposed the finite-time TSCGL law, which can ensure that multiple missiles
cooperative attack with better damage and convergence performance. The main contributions can be
drawn as:

(1) The proposed finite-time TSCGL performs higher attack accuracy and better convergence per-
formance. It can cooperatively attack the target, wherein the miss-distances, convergence time
and final errors of impact time are less than 0.36m, 3s and 0.1s, separately. Compared to tradi-
tional PNG, the proposed finite-time TSCGL holds better damage performance with obviously
higher final heading angles.

(2) The Monte Carlo simulations show that the proposed finite-time TSCGL has strong robustness.
It can achieve simultaneous attack with fast convergence speed. The average mean and standard
deviation of the miss-distances are 0.87m and 0.39m, respectively.

(3) The finite-time TSCGL has good expandability. The estimation methods of time-to-go can be
replaced, and the proposed method in this paper shows better attack accuracy. Through the PIP
theory, it can be expanded against a target with a constant speed.

In the future, the guidance law will be promoted to the three-dimensional space and the complex
manoeuver of targets.
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Figure 7. Simulation results of case 4: (a) Trajectory of missiles, (b) Heading angle, (c) Guidance
command, (d) Relative distance, (e) Time-to-go.
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