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Abstract

Suppose that G is a connected reductive group over a finite extension F/Q, and that C is a field of
characteristic p. We prove that the group G(F) admits an irreducible admissible supercuspidal, or
equivalently supersingular, representation over C.
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1. Introduction

Suppose that F is a nonarchimedean field of residue characteristic p and that
G is a connected reductive algebraic group over F. There has been a growing
interest in understanding the smooth representation theory of the p-adic group
G := G(F) over a field C of characteristic p, going back to the work of Barthel-
Livné [BL94] and Breuil [Bre03] in the case of G = GL,. The latter work,
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in particular, demonstrated the relevance of the mod p representation theory of
p-adic reductive groups to the p-adic Langlands program.

The results of [AHHV17] (when C is algebraically closed) and [HV19]
(for a general C of characteristic p) give a classification of irreducible
admissible representations in terms of supercuspidal C-representations of Levi
subgroups of G. Here, an irreducible admissible smooth representation 7 is
said to be supercuspidal if it does not occur as subquotient of any parabolic
induction Ind§ o, where P is a proper parabolic subgroup of G and o an
irreducible admissible representation of the Levi quotient of P. Unfortunately,
so far, the supercuspidal representations themselves remain mostly mysterious,
outside anisotropic groups, GL,(Q,) [BL94, Bre03], and some related cases
[Abd14, Chel3, Koz16, KX15]. If F/Q, is a nontrivial unramified extension,
then irreducible supercuspidal representations of GL,(F) were first constructed
by Paskanas [Pas04]; however, it seems hopelessly complicated to classify
them [BP12, Hul0]. One additional challenge in constructing supercuspidal
representations is that irreducible smooth representations need not be admissible
in general (unlike what happens over C), as was shown recently by Daniel
Le [Le].

There are two ways to characterize supercuspidality in terms of Hecke actions.
The first description assumes C is algebraically closed and uses weights and
Hecke eigenvalues for any fixed choice K of special parahoric subgroup (a weight
is then an irreducible representation of K). It was shown to be equivalent
to supercuspidality in [AHHV17]. The second description uses the center of
the pro-p Iwahori-Hecke algebra. The equivalence between the second Hecke
description and supercuspidality was shown in [OV18] (when C is algebraically
closed) and [HV19] (for a general C of characteristic p). In either descriptions,
supercuspidality is characterized by the vanishing of certain Hecke operators,
which is why supercuspidal representations are also called supersingular.

Our main theorem is the following.

THEOREM A. Suppose F is of characteristic 0, G is any connected reductive
algebraic group over F, and C any field of characteristic p. Then G
admits an irreducible admissible supersingular, or equivalently supercuspidal,
representation over C.

This theorem is new outside the low-rank cases mentioned above. It provides
an affirmative answer to [AHHYV, Question 3] when char F = 0 and carries
out the announcement contained in [AHHV17, Section II1.26]. Note also that
the analogous theorem for supercuspidal representations over C was proved by
Beuzart-Plessis [BP16].
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We now briefly explain our argument, which uses several completely different
ideas. First, in Section 3, we reduce to the cases where C is finite and G is
absolutely simple adjoint. If G is, moreover, anisotropic, then G is compact
and any irreducible smooth representation of G is finite-dimensional (hence
admissible) and supercuspidal. If G is isotropic, we distinguish three cases.

For most groups G, we show in Section 4 that there exists a discrete series
representation 7w of G over C that admits invariants under an Iwahori subgroup B
and that has moreover the following property: the module 7 of the Iwahori—
Hecke algebra H(G,*B) admits a Z[q'/*]-integral structure whose reduction
modulo the maximal ideal of Z[g'/?] with residue field F, is supersingular. The
Hecke modules 7 are constructed either from characters (using [Bor76]) or
reflection modules (using [Lus83] and [GS05]; the latter is needed to handle
unramified nonsplit forms of PSOg).

Suppose from now on that F' is of characteristic zero, that is, that F/Q, is a
finite extension. The p-adic version of the de George—Wallach limit multiplicity
formula ([DKV84, App. 3] plus [Kaz86, Thm. K]) implies that the representation
7 above embeds in C*(I"\G, C) for some discrete cocompact subgroup I"
of G (as char ¥ = 0). By construction, we deduce that the Hecke module
C*(I'\G/®B,F,) = C*(I'\G,F,)® of B-invariants admits a supersingular
submodule. Crucially, by cocompactness of I", we know that C*(I'\G, IF)) is
an admissible representation of G. Picking any nonzero supersingular vector
v e C®(I'\G/B,F,), the G-subrepresentation of C*(I"'\G, IF,) generated by
v admits an irreducible quotient, which is admissible (as char ¥ = 0) and
supersingular.

Unfortunately, this argument does not work for all groups G. We have the
following exceptional cases:

(i) PGL,(D), where n > 2 and D is a central division algebra over F;

(i) PU(h), where & is a split hermitian form in three variables over a ramified
quadratic extension of F or a nonsplit hermitian form in four variables over
the unramified quadratic extension of F'.

Note that for the group PGL,(D) with n > 2, the only discrete series
representations 7 having *B-invariant vectors are the unramified twists of
the Steinberg representation (by Proposition 4.1.5(1) and the classification
of Bernstein—Zelevinsky and Tadi¢), but then 7 is one-dimensional with
nonsupersingular reduction.

In the second exceptional case, where G = PU(k) for certain hermitian
forms i, we use the theory of coefficient systems and diagrams, building on
ideas of Paskiinas [PasS04]; see Section 5. Note that G is of relative rank 1, so
the adjoint Bruhat-Tits building of G is a tree, and our method works for all
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such groups. In order to carry it out, we may apply the reductions in Section 3 and
assume that G is absolutely simple and simply connected. Given a supersingular
module = for the pro-p Iwahori-Hecke algebra of G, we naturally construct
a G-equivariant coefficient system (or cosheaf) Dz on the Bruhat-Tits tree
of G. The homology of Dz admits a smooth G-action, and any irreducible
admissible quotient will be supersingular (by Proposition 3.1.3). To construct
such a quotient, we define an auxiliary coefficient system D’, which is built out of
injective envelopes of representations of certain parahoric subgroups, along with
amorphism Dz — D’. The image of the induced map on homology is admissible
and admits an irreducible quotient 77" which is itself admissible (as char F = 0)
and supersingular.

In the first exceptional case, where G = PGL,(D), we use a global method
(see Section 6). We find a totally real number field F* and a compact unitary
group G over F* such that G(F") is isomorphic to GL,(D) for a suitable
place v|p of F*. Then, fixing a level away from v and taking the limit over
all levels at v, the space S of algebraic automorphic forms of G(A%,) over Fp
affords an admissible smooth action of Q(Fj’ ). Using automorphic induction
and descent, we construct an automorphic representation 7 of G(Ap+) whose
associated Galois representation r, has the property that its reduction modulo p
is irreducible locally at v. From 7, we get a maximal ideal m in the Hecke algebra
(at good places outside p), and we claim that any irreducible subrepresentation of
the localization S, is supercuspidal.

To prove the claim, we use the pro-p Iwahori—-Hecke criterion for
supercuspidality and argue by contradiction. If one of the relevant Hecke
operators has a nonzero eigenvalue, we lift to characteristic zero by a Deligne—
Serre argument and construct an automorphic representation 7/ with Galois
representation r,,» having the same reduction as r, modulo p. Using local—global
compatibility at p for r,» and some basic p-adic Hodge theory, we show that the
nonzero Hecke eigenvalue in characteristic p implies that r; is reducible locally
at v, obtaining the desired contradiction.

For our automorphic base change and descent argument, we require results
going slightly beyond [Lab11] since our group G is typically not quasisplit at all
finite places. In the appendix, Sug Woo Shin explains the necessary modifications.

Finally, we remark that we would expect Theorem A to be true even when
char F = p. So far, this only seems to be known for the groups GL,(F') [Pas04],
outside trivial cases. We crucially use that char F = 0 in (at least) the following
ways:

(i) the existence of discrete cocompact subgroups, which fails for most groups
if char F = p [BH78, Section 3.4], [Mar91, Cor. IX.4.8(iv)],
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(i1) admissibility is preserved under passing to a quotient representation, and

(iii) the automorphic method in case of the group PGL, (D).

1.1. Notation. Fix a prime number p, and let F be a nonarchimedean local
field of residue characteristic p (we will later assume that char F' = 0, that is, that
F is a finite extension of Q,). The field F comes equipped with ring of integers
O and residue field kr of cardinality ¢, a power of p. We fix a uniformizer o,
and let valr and | - |r denote the normalized valuation and normalized absolute
value of F, respectively.

If H is an algebraic F-group, we denote by H its group of F-points H(F).

Let G be a connected reductive F-group, T a maximal F-split subtorus of G,
B a minimal F-parabolic subgroup of G containing T, and x, a special point of
the apartment of the adjoint Bruhat-Tits building defined by T. We associate to
Xo and the triple (G, T, B) the following data:

o the center Z(G) of G,

o the root system @ C X*(T),

o the set of simple roots A C @,
o the centralizer Z of T,

o the normalizer N/ of T,

o the unipotent radical U of B (hence B = ZU), and the opposite unipotent
radical U°P,

o the triples (G*, T*, B*) and (G, T*, B*), corresponding to the simply
connected covering of the derived subgroup and the adjoint group of G,

o the apartment &7 := X, (T)/X.(Z(G)°) ®z R associated with T in the adjoint
Bruhat-Tits building,

o the alcove C of o/ with vertex x, lying in the dominant Weyl chamber with
vertex xg,

o the Iwahori subgroups % and 96*° of G and G*, respectively, fixing C
pointwise,

o the pro-p-Sylow subgroup 4 of 5.
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Given a field L, we denote by L a fixed choice of algebraic closure. We fix
a field C of characteristic ¢ € {0, 2, 3,5, 7, ...}, which will serve as the field of
coefficients for the modules and representations appearing below. In our main
result, we will assume ¢ = p.

Suppose K is a compact open subgroup of G and R is a commutative ring. We
define the Hecke algebra associated with this data to be the R-algebra

Hx(G, K) := Endg R[K\G].

If R = Z, we simply write H(G, K). In our applications below, we will often
assume that K =B or K = L.

Given a module or algebra X over some ring R and a ring map R — R’, we let
Xz = X ®z R’ denote the base change.

Other notations will be introduced as necessary in subsequent sections.

2. Iwahori—-Hecke algebras

In this section, we review some basic facts concerning Iwahori—-Hecke algebras
and their (supersingular) modules. We will use these algebras extensively in our
construction of supercuspidal G-representations; see [Vigl6, Vigl4], and [Vigl7]
for references.

2.1. Definitions. Recall that we have defined the Iwahori—-Hecke ring as
H(G, ) = Endg Z['B\G].

We have an analogous ring H(G*, B%) for the simply connected group. The
natural ring homomorphism H (G*, *5*°) — H(G, B) (induced by the covering
G* — G of the derived subgroup) is injective, so we identify H (G*, ‘B*°) with
a subring of H (G, *B). We first discuss presentations for these rings.

There is a canonical isomorphism

j*€ T H(G®,B%) = H(W, S, q,),

where H := H(W, S, g,) is the Hecke ring of an affine Coxeter system (W, §)
with parameters {g, := ¢®%},cs. The d, are positive integers, which we will
abusively also refer to as the parameters of G. Thus, H(W, S, g,) is a free
Z-module with basis {7}, },cw, satisfying the braid and quadratic relations:

TwTw’ = Tww’ for w, w' e w, E(w) + Z(w/) = E(ww/)a
(TS_QS)(T';‘}_I):O fOI'SGS.
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Here, £ : W — Z, denotes the length function with respect to S. We identify
H(G*, B%) with H via j*.

In order to describe H (G, B), we require a larger affine Weyl group. We define
the extended affine Weyl group to be

W :ZN/Z(),

where Z, is the unique parahoric subgroup of Z. The group W acts on the
apartment ./ _and permutes the alcoves of &/ transitively. We let £2 denote the
subgroup of W stabilizing C. The affine Weyl group W is isomorphic to a normal
subgroup of W and permutes the alcoves simply transitively. We therefore have a
semidirect product decomposition

W=Wx Q.

The function ¢ extends to W by setting £(uw) = L(wu) = L(w) foru € 2, we W.
In particular, we see that £2 is the group of length-zero elements of w.

Let X denote the reduced root system whose extended Dynkin diagram Dyn is
equal to the Dynkin diagram of (W, S), and let Dyn’ denote the Dynkin diagram
Dyn decorated with the parameters {d,},cs. The quotient of §2 by the pointwise
stabilizer of C in £2 is isomorphic to a subgroup ¥ of Aut(W, S, d,), the group of
automorphisms of Dyn’. Thus, £2 acts on Dyn’ and consequently on H (W, S, g;),
and the isomorphism j*¢ extends to an isomorphism

j:H(G,B) > Z[21Q HW, S, q,), (2.1.1)

where ® denotes the twisted tensor product. The generalized affine Hecke ring
H = = Z[2]1® H(W, S, g,) as above is the free Z-module with basis {T}},civ»
satisfying the braid and quadratic relations:

T, Ty = Ty forw, w' € W, ((w) + (W) = Lww'), (2.1.2)
(T, —g)(T, +1) =0  forseS. (2.1.3)

Thus, we see that the Iwahori—-Hecke ring H (G, ®B) is determined by the type
of X, the parameters {d;}cs, and the action of §2 on Dyn’.

The group W forms a system of representatives for the space of double cosets
B\G/B. Under the isomorphism j, the element 7, € HforweWw corresponds
to the endomorphism sending the characteristic function of 5 to the characteristic
function of BnB, where n € N lifts w.

Finally, let P = MN denote a standard parabolic F-subgroup of G (meaning
B C P), and suppose that M contains T. Then the group M N ‘B is an Iwahori
subgroup of M, and we may form the algebra

H(M, M NB) = Endy Z[(M N B)\M].
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It is not a subalgebra of H (G, B) in general. The basis of H(M, M N ‘B) will be
denoted T/, where w is an element of the extended affine Weyl group associated
with M.

2.2. Dominant monoids. The subgroup
A:=Z]Z

of W =N /Z, is commutative and finitely generated, and its torsion subgroup is
equal to Z) /Zy, where fo denotes the maximal compact subgroup of Z. (When
the group G is F-split or semisimple and simply connected, we have Z, = Z).)
The short exact sequence

1> A—>N/Zy—> N/Z—> 1

splits, identifying the (finite) Weyl group W, := N/ Z of X with Staby (x,). We
therefore obtain semidirect product decompositions

~

AXWy=W

and
A X Wy=W,

where A := ANW.
Given a subgroup J of Z, we define

Ay i=JZy/Zy C A.

We analyze A; for various groups J presently.
Let Tj denote the maximal compact subgroup of T, and note that Ty = Zo N T.

This implies that the inclusion T <> T'Z, induces an isomorphism 7/ T, —
TZy/Zy = Ar, and, therefore, the map

X.(T) — Ay (2.2.1)
w—> A, = p(@)Zo/Zo

is a Wy-equivariant isomorphism.
Recall that we have a unique homomorphism

v:Z — A,
determined by the condition

(o, v(1)) = —valp(a(r))
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fort € T and o € @. We claim that the kernel of v is the saturation of Z (G)Z)
in Z, that is, the set of all elements z € Z such that 7" € Z(G)Z) for some
n > 1. Indeed, the kernel of v contains Z(G) and 20, and the group Z/Z (G)Z)
is commutative and finitely generated. This gives an induced map

V:Z)Z(G)Zy — . (2.2.2)

We note the following three facts: (1) the image of 7% in Z/Z (G)Z) is of finite
index (see comments following [Vigl6, (16)]); (2) the Z-span of the coroots
@V is of finite index in X, (T%); (3) v(a"(zw ")) = " for any coroot o" €
X, (T). Combining these, we see that the image of (2.2.2) has the same rank as
Z/Z (G)io, which is equal to the rank of X, (7?%). Therefore, the kernel of (2.2.2)
is exactly the torsion subgroup of Z/Z (G)Z). This gives the claim.

Since Z, is contained in the kernel of v, the group A acts by translation on
&/ via v. Therefore, Ay, is the pointwise stabilizer of C in A. Similarly, one
easily checks that Ay, is the pointwise stabilizer of C in £2. (In fact, we have
AN = Ay y; see [Viglé, Cor. 5.11].) Hence, we obtain

2/ Aery — W, (2.2.3)
and the embeddings of A and £2 into W induce
Af(Arery X A%) S W/ (Agery X W) <= 2/ Agery. (2.2.4)
An element A € A is called dominant (and A~ is called antidominant), if
Z2UNB)z' cUNB

for any z € Z which lifts A. We let A™ denote the monoid consisting of dominant
elements of A, and, similarly, for any subgroup A’ < A, we define A" := A'NA™T.
Using the isomorphism (2.2.1), we say a cocharacter u € X,(T) is dominant
if A, is, and let X,(7)* denote the monoid consisting of dominant elements of
X.(T). The group of invertible elements in the dominant monoid A" is exactly
the subgroup Ay, and the invertible elements of A** are trivial.

LEMMA 2.2.5. The subgroup Az, x A* (respectively Ar) of A is finitely
generated of finite index. The submonoid Az x AT (respectively AY) of the
dominant monoid A" is finitely generated of finite index.

Here, we say that a submonoid N of a commutative monoid M has finite index

if M = J7_, (N + x;) for some x; € M. If M is finitely generated, then d M is of
finite index in M foralld > 1.
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Proof. The groups ker v/Z(G)ZO and Z)/Zo are finite, and Equations (2.2.3)
and (2.2.4) imply that A/(Ayery X A*) is isomorphic to the finite group ¥. Thus,
we see that the commutative group Az x A* is a finitely generated, finite-
index subgroup of A. Similarly, A7 is finite-free and it is well known that it is of
finite index in A. Gordan’s lemma implies the second assertion (as in the proof of
[HV15, 7.2 Lem.]). O

2.3. Bernstein elements. Let w € W, and let w = us;---s, be a reduced
expression, withu € £2,s; € S. We set g, :== ¢, - - - ¢5,, and define

T :=T,—q;+1 and T,:=TT; --T,.

Sn

Then T, T, = q,, and the linear map defined by 7, — (—=1)*™T is an
automorphism of H.
For u € X, (T), we let O, C A denote the Wy-orbit of A,. We then define

=) E.

re0y

where FE; are the integral Bernstein elements of H corresponding to the spherical
orientation induced by A [Viglé, Cor. 5.28, Ex. 5.30]. Precisely, they are
characterized by the relations

E, = T, %f A %s antid'ominant, 23.1)
T if A is dominant,
E, E, = (‘1)\1‘1/\2‘1;11\2)1/23\@2 ifA;, 2 € A, (2.3.2)

where we take the positive square root. (If A;,2, are both dominant (or
antidominant), then E, E;, = E,;,.) The elements z, are central in H, and
when pu € X (T*), z, liesin H.

We let A denote the commutative subring of the generalized affine Hecke ring
H with Z-basis {E,},c4. When G = Z, we have H=A=7[A)], but A is not
isomorphic to Z[A] in general. The rings A, H, and the center of H are finitely
generated modules over the central subring with basis {z,,},ex, (), Which is itself
a finitely generated ring.

2.4. Supersingular modules. We now discuss supersingular Hecke modules.

Recall that C is our coefficient field of characteristic c. We define Ho :=
H ® C and ﬁc := H ® C, which are isomorphic to the Iwahori—-Hecke algebras
Hc(G*, 95*%) and Hc (G, B), respectively.
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DEFINITION 2.4.1 (see [OV18, Section 5.1(3)]). Let M be a nonzero right
Hc-module. A nonzero element v € M is called supersingular if v-zj, = 0 for all
w € X, (T)* suchthat —u ¢ X, (T)* and all sufficiently large n. The Hc-module
M is called supersingular if all its nonzero elements are supersingular. We make
a similar definition for modules over Hc, using the monoid X, (7°°)".

We remark that the definition of a supersingular module differs slightly from
that of [Vigl7, Def. 6.10]. There it was required that ¢ = p and that M - zj, = 0
for all u € X, (T)" such that —u ¢ X, (T)" and n sufficiently large.

LEMMA 2.4.2.

(i) Any simple ﬁc-module is finite-dimensional and is semisimple as an
Hc-module.

(i) Ifc 1 p|Wy|, then ﬁc does not admit any simple supersingular modules.

(i) If ¢ = p, a simple ﬁc-module is supersingular if and only if its restriction
to Hc is supersingular.

Proof. (i) The first statement follows from [Vig07, Section 5.3]. For the second
part, note that there exists a finite-index subgroup £2’ of §£2 which acts trivially
on H (for example, we may take £2' = Ay). Set H. 1= C[£2'] ®¢ Hc. Any
simple Hc-module N extends trivially to an H-module N’, and the restriction of
N’ @, ﬁc to H is a finite direct sum @uerz/rz' N" of (simple) conjugates N* of

N by elements u € £2. If M is a simple ﬁc—module and N is contained in M |p,,
then M is a quotient of N’ ® . Hc (and, thus, the restriction of M is semisimple).

(ii) It suffices to assume that C is algebraically closed. Let M denote a simple
supersingular module. Since the center of H is commutative and M is finite-
dimensional, there exists an eigenvector v € M with eigenvalues x for the action
of the center. Supersingularity then implies

O=v-zpy = x@wv (2.4.3)

for any u’' € X.(T)* such that —u’ & X, (T)™.

Choose u € X,(T)* lying in the interior of the dominant Weyl chamber, so in
particular —pu & X,.(T)*, and let w, € W, denote the longest element. We claim
that

22wy = G Wolzo+ D awzw (2.4.4)

WeX, (T)*
£0.,)>0
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for some a,, € Z. To see this, note that the product of the orbits O, - O_,, ()
consists of elements of the form A,y A_yrw, ), Where w, w' € W. If the length
of Ayr—ww.qn 15 0, then [Vigl6, Cor. 5.11] implies that w(u) — w'w.(w) is
orthogonal to every simple root. Since this element is also a sum of coroots, we
conclude that w(u) —w'w, () = 0, which implies w = w’w,, as the W-stabilizer
of w is trivial. The product formula (2.3.2) then gives Equation (2.4.4).

Now, for u' € X,(T)*, the condition —p’ & X,.(T)* is equivalent to £(A,/) > 0.
Applying x to both sides of (2.4.4) and using (2.4.3) (for varying u') gives
@, |1Wo| = 0, a contradiction.

(iii) This follows from [Vigl7, Cor. 6.13] and part (i). I

REMARK 2.4.5. The conditions in part (ii) of the above lemma are necessary:
when ¢ # p divides | Wy, there exist nonzero supersingular modules. For example,
suppose G = SL,, g is odd, and ¢ = 2. Then Hs = H¢ admits a unique character
X, which sends T to 1 foreach s € S. If welet u := (1, —1) € X, (T)*, then

Zy. = T&‘] T.‘Yz + Tsszla

where § = {sy, s,}. Thus, we have x(z,) = 0. By induction, and using the
assumption ¢ = 2, we see that the element z;, lies in the ideal of the center
generated by z,,, for every k > 1. From this, we conclude that x is supersingular.

3. On supercuspidal representations

The aim of this section is to collect various results concerning supercuspidal
representations. We first state Proposition 3.1.3, which gives a convenient
criterion for checking that a given irreducible admissible representation is
supercuspidal when char C = p. Propositions 3.2.1 and 3.3.2 allow us to make
further reductions: in order to prove that G(F) admits an irreducible admissible
supercuspidal C-representation when char F = 0 and char C = p, it suffices to
assume that C is finite and G is absolutely simple, adjoint, and isotropic.

3.1. Supercuspidality criterion. We begin with a definition.

DEFINITION 3.1.1. Let R be a subfield of C. We say that a C-representation
of G descends to R if there exists an R-representation T of G and a G-equivariant
C-linear isomorphism

(p:C®Rtl>n.

We call ¢ (and more often 7) an R-structure of m or a descent of w to R.
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We now describe the scalar extension of an irreducible admissible
C-representation 7w of G [HV19]. Given such a rr, the commutant D := End¢ ()
is a division algebra of finite dimension over C. Let E denote the center of D,
E;/C the maximal separable extension contained in E/C, and § the reduced
degree of D/E. Let L be an algebraically closed field containing E and 7 the
scalar extension of 7 from C to L.

PROPOSITION 3.1.2 [HV19, Thms. 1.1, II1.4]. The length of ny is 8[E : C] and

® -

ieHomc (Ey,L)

12

T

where each m; is indecomposable with commutant L ®i g, E, descends to a
finite extension of C, has length [E : E], and its irreducible subquotients
are pairwise isomorphic, say to p;. The p; are admissible, with commutant L,
Autc (L)-conjugate, pairwise nonisomorphic, and descend to a finite extension
of C. Any descent of p; to a finite extension C'/C, viewed as C-representation
of G, is w-isotypic of finite length.

Proof. By [HV19, Thms. 1.1, I11.4], it suffices to prove that if p; descends to a
C’-representation p; with C'/C finite, then p; is ;-isotypic of finite length. Then
(p!)z injects into 7z, and so p; injects into ¢ by [HV19, Rk. I1.2], which implies
the claim. O

In particular, any irreducible admissible C-representation 7 with commutant C
is absolutely irreducible in the sense that its base change r; is irreducible for any
field extension L/C. For example, this holds when C is algebraically closed.

Given an irreducible admissible C-representation 7, the space m*' of
H-invariants comes equipped with a right action of the pro-p Iwahori-Hecke
algebra Hc(G, ). This algebra has a similar structure to that of Hc(G, ®B). In
particular, we have analogous definitions of the Bernstein elements E; (A € A)
and the central elements z, (u € X.(T)) as well as an analogous notion of
supersingularity for right H¢ (G, 4)-modules (see Definition 2.4.1). We say an
irreducible admissible C-representation 7 is supersingular if the right Hc (G, 0)-
module 7% is supersingular.

Finally, recall that an irreducible admissible C-representation 7 of G is said to
be supercuspidal if it is not a subquotient of Indg T for any parabolic subgroup
P = MN C G and any irreducible admissible representation t of the Levi
subgroup M.

PROPOSITION 3.1.3 (Supercuspidality criterion). Assume ¢ = p. Suppose that
is an irreducible admissible C-representation of G. The following are equivalent:
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(1) m is supercuspidal;
(1) 7 is supersingular;
(iii) 7" contains a nonzero supersingular element;
(iv) every subquotient of T is supersingular;
(v) some subquotient of m* is supersingular.

Proof. We have ()< (ii)<(iii) by [HV19, Thms. I1.13, MI.17]. Since
(ii)=(iv)=>(v), it suffices to show that (v)=>(ii). Let C denote an algebraic
closure of C. Say w* has supersingular subquotient M. Then (') = (nz)*
has subquotient My, and M¢ is clearly supersingular. By Proposition 3.1.2, there
exists an irreducible admissible constituent p of ms such that the Hc(G, 4)-
module p*' shares an irreducible constituent with Mz. In particular, p* has a
supersingular subquotient, and [OV18, Thm. 3] implies p is supersingular. Then
[HV19, Lem. II1.16 2)] implies that 7 is supersingular. O

REMARK 3.1.4. When 7% # 0, the above criterion holds with ! replaced by
78 in items (iii), (iv), and (v). This follows from the fact that 7 is a direct
summand of 7% as an H(G, )-module, and the action of Hq(G, ) on 7%
factors through H¢ (G, ‘B).

We now discuss how supercuspidality behaves under extension of scalars. We
require a preliminary lemma.

LEMMA 3.1.5. Suppose that C'/C is a finite extension and that w' is an
irreducible admissible C’-representation of G. Then 7'|cicy = n®" for some
irreducible admissible C-representation w of G and some n > 1.

Proof. Let C be an algebraic closure of C. Then the finite-dimensional C- -algebra
A 1= C'®c C is of finite length over itself. The simple A-modules are given by c
with C’ acting via the various C- embeddlngs C' — C. It follows that 7 "lere) ®c
C = ' ®c A is of finite length as C-representation by Proposition 3.1.2. So
7|16y is of finite length. If 77 denotes an irreducible submodule, then ), ;v =
7'|ciG), Where {X;}, is a basis of C'/C. It follows that 7’|c(g) = 7®" for some
n < m. Moreover, 7 is admissible, as 7'|cg; 1. O

PROPOSITION 3.1.6. Let Zienote an algebraically closed field containing C. If
c # p, we assume that L = C is an algebraic closure of C.
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A C-representation m is supercuspidal if and only if some irreducible
subquotient p of wr is supercuspidal, if and only if every irreducible subquotient
p of g is supercuspidal.

Proof. 1If ¢ = p, we note that 7 is supercuspidal if and only if 7 is supersingular
by Proposition 3.1.3. This is equivalent to some/every subquotient of w7 being
supersingular [HV19, Lem. III.16 2)] or equivalently supercuspidal (again by
[HV19, Thm. 1.13]).

Now suppose that ¢ # p and L = C. Recall that parabolic induction
Ind$ is exact and commutes with scalar extensions and restrictions [HV19,
Prop. II.12(i)]. If & is not supercuspidal, then  is a subquotient of Indg T for
some proper parabolic P = M N and irreducible admissible C-representation t
of M. Then 7z is a subquotient of (Ind 7)z = Ind%(tz). In particular, each
irreducible (admissible) subquotient 7w’ of m& is a subquotient of Indg 7’ for
some irreducible (admissible) subquotient T’ of tz. Hence, none of the 7’ are
supercuspidal.

For the converse, suppose, by contradiction, that m has an irreducible
subquotient p that is not supercuspidal, that is, p is a subquotient of Indg T for
some proper parabolic P = MN and irreducible admissible C-representation
T of M. By [Vig96, 11.4.7] (as ¢ # p), respectively, by Proposition 3.1.2, we
can choose a finite extension C’/C with C’ C C such that 7, respectively, all
irreducible constituents of Indf, 7 and 7 can be defined over C’. Write t = (7')¢
for some C’-representation 7’. Say the irreducible subquotients of Ind$ ¢’ are
o1, ..., 0,. S0 by our choice of C’, we know that p = (o;)¢ for some i. As o;
is a subquotient of Indg 7/, we see that o;|c(g; is a subquotient of Indg T'lermy)-
But o;|c(g) is mw-isotypic by Proposition 3.1.2 and t’|c[s has finite length by
Lemma 3.1.5, so 7 is a subquotient of Indg t” for some irreducible (admissible)
subquotient t” of T'|cuy- O

3.2. Change of coefficient field. This section contains the proof of the
following result.

PROPOSITION 3.2.1 (Change of coefficient field).

(1) If G admits an irreducible admissible supercuspidal representation over
some finite field of characteristic p, then G admits an irreducible admissible
supercuspidal representation over any field of characteristic p.

(1) If G admits an irreducible admissible supercuspidal representation over
some field of characteristic ¢ # p, then G admits an irreducible admissible
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supercuspidal representation over any algebraic extension of the prime field
of characteristic c.

Proof. Let F. be the prime field of characteristic ¢ (so that Fy, = Q and F, = F.
if ¢ # 0).

Step 1: We show that, if ¢ # p and G admits an irreducible admissible
supercuspidal C-representation 77, then G admits one over a finite extension of F..

Indeed, by Proposition 3.1.6, we can suppose C is algebraically closed. We
claim that we may twist w by a C-character x of G so that the central character of
7 ® x takes values in F.. To see this, we first note that there exists a subgroup °G
of G such that (1) G/°G = Z' for some r > 0, (2) the restriction to Z(G) of the
map u : G — Z" has image of finite index, and (3) ker(u|z)) = Z(G) N °G is
compact. (For all of this, see [Ber84, Sections 1.12,2.3].) Let £ := im(u|z)) C
7" denote the image of u|zg,. Since C is algebraically closed, the restriction map

Hom(Z', C*) =5 Hom(g, C*)

is surjective. Let w, denote the central character of the irreducible admissible
C-representation 77, and note that @, | z()n-¢ takes values in F. (since 7 is smooth
and Z(G) N°G is compact). Choose a splitting v of the surjection u : Z(G) — £,
and let x” € Hom(£, C*) denote the character ' ov. We then let x € Hom(Z",
C*) denote any preimage of x” under res, and let x : G — C* be the inflation
of x' to G via u. Using that w,g, = Wz x and wzey|z(Gn°c = @rlz@G)nec. the
construction of x implies w,g, (2) € F, forall z € Z(G).

We may therefore assume that the central character of 7 takes values in F,.
As ¢ # p, by [Vig96, 11.4.9], the representation 7 descends to a finite extension
F!/F.. Since descent preserves irreducibility, admissibility, and supercuspidality,
we obtain an irreducible admissible supercuspidal F|-representation of G.

Step 2: We show that if G admits an irreducible admissible supercuspidal
representation over a finite extension of F,, then G admits such a representation
over F,.

Suppose C/F, is a finite field extension and 7 an irreducible admissible
C-representation of G. By Lemma 3.1.5, m|g g contains an irreducible
admissible F.-representation 7’. By adjunction, 7 is a quotient of the scalar
extension 77 of 7' from F, to C.

We now show that if 7 is supercuspidal, then 7’ is also supercuspidal.
Assume that 77’ is not supercuspidal so that it is a subquotient of Indg 7/, where
P is a proper parabolic subgroup of G and t’ is an irreducible admissible
F,-representation of the Levi subgroup M of P. Since parabolic induction is
compatible with scalar extension from F. to C, the representation m, is a
subquotient of Indg (., and, therefore, the same is true of 7r. The C-representation
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7/ of M has finite length and its irreducible subquotients are admissible by [HV19,
Thm. II1.4]. Hence, 7 is a subquotient of Ind% p for some irreducible admissible
subquotient p of t/, and we conclude that 7 is not supercuspidal.

Step 3: We show that if G admits an irreducible admissible supercuspidal
IF,-representation (respectively F.-representation, where ¢ # p), then G does
so over any field of characteristic p (respectively any algebraic extension of F,).
More generally, we show that if L/C is any field extension, assumed to be
algebraic if ¢ # p, and G admits an irreducible admissible supercuspidal
C-representation, then the same is true over L.

Let L/C be a field extension as above, and choose compatible algebraic
closures L/C. Suppose m is an irreducible admissible supercuspidal
C-representation of G, and let T be an irreducible subquotient of the scalar
extension 7, of w from C to L. By [HV19, Lem. III.1(ii)], T is admissible. The
scalar extension 7; of 7 from L to L is a subquotient of the scalar extension 77
of 7, from L to L (the latter being equal to the scalar extension of 7 from C
to L). By Propositions 3.1.2 and 3.1.6, 77 has finite length and its irreducible
subquotients are admissible and supercuspidal. Therefore, the same is true of 7.
By Proposition 3.1.6, this implies that 7 is supercuspidal. O

We now use extension of scalars to prove the following lemma, which will be
used in the proof of Proposition 3.3.9.

LEMMA 3.2.2. Let m be an irreducible admissible C-representation of G and H
a finite commutative quotient of G. Then the representation 1 @c C[H] of G, with
the natural action of G on C[H], has finite length and its irreducible subquotients
are admissible.

Proof. The scalar extension of the C-representation 7 (respectively C[H]) to
C has finite length with irreducible admissible quotients 7; (respectively x j» of
dimension 1). Therefore, (7t ®c C[H])¢ = ne Q¢ C[H] has finite length with
irreducible admissible subquotients (namely, the ; ®¢ ), implying the same for
T ®c C[H]. O

3.3. Reduction to an absolutely simple adjoint group. As is well known,
the adjoint group G* of G is F-isomorphic to a finite direct product of connected
reductive F-groups

G* Z H x [ [Resr,r(G)), (3.3.1)

https://doi.org/10.1017/fms.2019.50 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2019.50

Existence of supersingular representations 19

where H is anisotropic, the F;/F are finite separable extensions, and Resr,r(G})
are scalar restrictions from F to F of isotropic, absolutely simple, connected
adjoint F/-groups G;.

PROPOSITION 3.3.2. Assume that the field C is algebraically closed or finite
and that char F = 0. If, for each i, the group G(F!) admits an irreducible
admissible supercuspidal C-representation, then G admits an irreducible
admissible supercuspidal C-representation.

The proposition is the combination of Propositions 3.3.3, 3.3.6, 3.3.8,
and 3.3.11, corresponding to the operations of finite product, central extension,
and scalar restriction (all when C algebraically closed or finite). We also note that
if G is anisotropic, then G is compact and any irreducible smooth representation
of G is finite-dimensional (hence admissible) and supercuspidal.

3.3.1. Finite product Let G| and G, be two connected reductive F-groups, and
o and 1 irreducible admissible C-representations of G| and G,, respectively.

PROPOSITION 3.3.3. Assume that C is algebraically closed.

(1) The tensor product o Q¢ t is an irreducible admissible C-representation of
G] X GQ.

(i1) Every irreducible admissible C-representation of G| x G is of this form.
(iii) The C-representation o Q¢ T determines o and T (up to isomorphism).

(iv) The C-representation o Q¢ t is supercuspidal if and only if o and Tt are
supercuspidal.

Proof. Note first that o ®¢ T is admissible: for compact open subgroups K; of G,
and K, of G,, we have a natural isomorphism [Boul2, Section 12.2 Lem. 1]

Homy, (1x,, o) ®c Homg, (1x,, T) — Homg, . x,(1x, ®¢ lx,, o ®¢ 1),

where 1k, denotes the trivial representation of K;. Thus, the admissibility of o
and t implies the admissibility of 0 ®¢ 7.

Suppose now that C is algebraically closed.

(i) Proposition 3.1.2 implies that the commutant of ¢ is C. Irreducibility of
o Q¢ t then follows from [Boul2, Section 12.2 Cor. 1].

(ii) Let 7t be an irreducible admissible C-representation of G| X G,, and let K|,
K, be any compact open subgroups of G, G», respectively, such that 7 X1*K2 £ 0,
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If ¢ = p, the C-representation of G, given by m!*X2 is admissible (since
7 X1%K2 {5 finite-dimensional for any K{). By [HV12, Lemma 7.10], it contains an
irreducible admissible C-subrepresentation o. Set T := Homg, (0, ) # 0, with
the natural action of G,. The representation o ®¢ v embeds naturally in . As &
is irreducible, it is isomorphic to o ®¢ 7 and 7 is irreducible. As 7 is admissible,
7 is admissible as well. (This proof is due to Henniart.)

If ¢ # p, the space wX1*%2 is a simple right H-(G, x G,, K| x K;)-module
([Vig96, 1.4.4, 1.6.3]), and we have

Hce (G x Gy, Ky X K3) = He(Gy, Ky) ®c He(Ga, K>).

By [Boul2, Section 12.1 Thm. 1], the finite-dimensional simple H-(G1, K;) ®c¢
Hc(G,, Ky)-modules factor, meaning 7X1>K2 = oK . %2 for irreducible
admissible C-representations o, T of G, G,, respectively (this uses [Vig96, 1.4.4,
1.6.3] again). Thus, we obtain 7 = 0 Q¢ .

(iii) As a C-representation of G, 0 ®¢ T is o-isotypic. Similarly, as a
C-representation of G,, 0 ®c 1 is t-isotypic. The result follows.

(iv) The parabolic subgroups of G; x G, are products of parabolic subgroups
of G| and of G,. Let P, Q be parabolic subgroups of G, G,, respectively,
with Levi subgroups M, L, respectively, and let 7’ be an irreducible admissible
C-representation of the product M x L. By part (ii), the C-representation 7’
factors, say ' = o’ ®¢ 1’ for irreducible admissible C-representations o’ of M
and t’ of L. We then obtain a natural isomorphism

Indy' 0’ ®c Ind} v/ — Indyly > 7',

Since the inductions on the left-hand side have finite length, we conclude that
the irreducible subquotients of Ind$ ‘XXQGQ 7" are tensor products of the irreducible

subquotients of Ind$' o’ and of Ind(Q;2 7', which gives the result. O
We assume from now until the end of Section 3.3.1 that C is a finite field.
PROPOSITION 3.3.4. Assume that C is finite. Let w be an irreducible admissible

C-representation of G. The commutant of 7 is a finite field extension D of C and
the scalar extension mwp of w from C to D is isomorphic to

w= P om
i€Gal(D/C)

where the m; are irreducible admissible D-representations of G. Moreover, the ;
each have commutant D, are pairwise nonisomorphic, form a single Gal(D/C)-
orbit, and, viewed as C-representations, are isomorphic to 1.
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Proof. The commutant D of 7 is a division algebra of finite dimension over C.
Since the Brauer group of a finite field is trivial, D is a finite Galois extension of
C. The result now follows from [HV19, Thms. 1.1, I11.4] by taking R’ = D. (Note
also that as a C-representation, 7 is m-isotypic of length [D : C].) 0

Recall that we have fixed irreducible admissible C-representations o and t
of G| and G,, respectively. Their respective commutants D, and D, are finite
extensions of C of dimensions d, and d,, respectively. We embed them into C,
and consider the following:

o the field D generated by D, and D,, which has C-dimension lem(d,, d.),
o the field D’ := D, N D, which has C-dimension gcd(d,, d.).
The fields D, , D, are linearly disjoint over D’, and we have D, ® p D, = D and

[D":C]
D, ®¢ D, = ]_[ D. (3.3.5)

k=1

PROPOSITION 3.3.6. Assume that C is finite. The C-representation ¢ Q¢ T of
G x G, is isomorphic to

ged(dy . dr)

0QctT= @ T,
k=1

where the m, are irreducible admissible C-representations with commutant
D, which are pairwise nonisomorphic. The C-representations o and T are
supercuspidal if and only if all the 1) are supercuspidal, if and only if some m; is
supercuspidal.

Proof. By Proposition 3.3.4, we have

w= P o = B

ieGal(Dy /C) jeGal(D,/C)

where the o; (respectively t;) are irreducible admissible D-representations of
G, (respectively G,) with commutant D, which are pairwise nonisomorphic,
form a single Gal(D/C)-orbit, descend to D, (respectively D.), and their
descents, viewed as C-representations, are isomorphic to o (respectively 7). The
C-representation 0 ®¢ t of G; x G, is admissible, and its scalar extension from
C to D is equal to

(0 ®c T)p Z0p ®p Tp = &P 0 ®p ;. (3.3.7)

(i.j)€Gal(D, /C)xGal(D; / C)
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The D-representation o; ®p t; of G; x G, is admissible and has commutant
D ®p D = D ([Boul2, Section 12.2 Lem. 1]). Hence, 0; ®p 1; is absolutely
irreducible and Equation (3.3.7) implies that (o ®¢ ) p is semisimple. By [Boul2,
Section 12.7 Prop. 8], this implies that o ®¢ 7 is semisimple; its commutant is
isomorphic to D, ®¢ D, by [Boul2, Section 12.2 Lem. 1]. From Equation (3.3.5),
we see that 0 ®¢ T has length [D’ : C] = ged(d,, d,), its irreducible constituents
7, are admissible and pairwise nonisomorphic with commutant D.

Applying Proposition 3.3.3 over C and Proposition 3.1.6 (several times), we
see that o and 7 are supercuspidal if and only if some/every o; and some/every
7; are supercuspidal, if and only if some/every o; ®p 7; is supercuspidal. From
Proposition 3.1.6 again, this is also equivalent to m; being supercuspidal for
some/every k. 0

3.3.2.  Central extension Recall that we have a short exact sequence of F-groups

1> Z(G) = G5 G 1,

which induces an exact sequence between F-points
1 > Z(G) - G > G“ — H'(F, Z(G)).

The image i(G) of G is a closed cocompact normal subgroup of G* and
H'(F,Z(G)) is commutative.

Until the end of Section 3.3.2, we assume that char ¥ = 0. The group
H'(F,Z(G)) is then finite [PR94, Thm. 6.14], implying that i (G) is an open
normal subgroup of G* and the quotient G*/i(G) is finite and commutative.
Our next task will be to prove the following.

PROPOSITION 3.3.8. Suppose that char F = 0. Then G* admits an irreducible
admissible supercuspidal C-representation if and only if G admits such a
representation such that, moreover, Z(G) acts trivially.

Inflation from i (G) to G identifies representations of i (G) with representations
of G having trivial Z(G)-action; this inflation functor respects irreducibility and
admissibility. The composite functor

(inflation from i (G) to G) o (restriction from G* to i (G))

from C-representations of G* to representations of G trivial on Z(G) will be
denoted by — o i.

Suppose p is an irreducible admissible C-representation of G with trivial action
of Z(G). Then p is the inflation of a representation p of the open, normal,
finite-index subgroup i (G) of G*. The C-representation p of i (G) is irreducible
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and admissible, and, therefore, the induced representation Indl.G(gl) p of G is

admissible of finite length. Any irreducible quotient v of IndiG(;d) p is admissible (if
¢ = p, this uses the assumption char F = 0; see [Hen09, Section 4, Thm. 1]). By
adjunction, ;) contains a subrepresentation isomorphic to p and, by inflation
from i (G) to G, p is isomorphic to a subquotient of 7 o .

Conversely, suppose 7 is an irreducible admissible C-representation of G,
The restriction 7 |; ) of 7 to 7 (G) is semisimple of finite length, and its irreducible
constituents p are G*-conjugate and admissible (see [Vig96, 1.6.12]; note that
the condition that the index is invertible in C is not necessary and not used in the
proof). Hence, the C-representation 7 o i of G is semisimple of finite length, and
its irreducible constituents are the inflations p of the irreducible constituents p
of 7 |-

Proposition 3.3.8 now follows from the subsequent proposition.

PROPOSITION 3.3.9. Suppose that char F = 0 and let 7, p, and p be as above.
Then 7 is supercuspidal if and only if some p is supercuspidal, if and only if all p
are supercuspidal.

Proof. We first check first the compatibility of parabolic induction with — o i.
The parabolic F-subgroups of G and of G* are in bijection via the map i [Bor91,
22.6 Thm.]). If the parabolic F-subgroup P of G corresponds to the parabolic
F-subgroup Q of G, then i restricts to an isomorphism between their unipotent
radicals and sends a Levi subgroup M of P onto a Levi subgroup L of Q. Further,
we have an exact sequence between F-points:

1> Z(G) > M 5 L — H'(F,Z(G)).

We have G = Qi(G) and Q N i(G) = i(P) = i(M)U, where i(M) is an
open normal subgroup of L having finite commutative quotient and U is the
unipotent radical of Q. Thus, if o is a smooth C-representation of L, the Mackey
decomposition implies (Indgad Nl = Indﬁ.zgi (olian) and, by inflation from
i(G) to G, we obtain

(Ind$" 0) 0 i = IndS (o o). (3.3.10)
We may now proceed with the proof. It suffices to prove the following:
(i) if 7 is nonsupercuspidal, then all p are nonsupercuspidal,
(ii) if some p is nonsupercuspidal, then 7 is nonsupercuspidal.

To prove (i), let w be an irreducible admissible nonsupercuspidal
C-representation of G, which is isomorphic to a subquotient of Indgada
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for 0 C G™ and o an irreducible admissible C-representation of L. Therefore,
7 o i is isomorphic to a subquotient of (Indgad o) o i, and by Equation (3.3.10),
each g is isomorphic to a subquotient of Indg T for some irreducible subquotient
T of o o i (depending on p). Since T is admissible and P C G, all the p are
nonsupercuspidal.

To prove (ii), let 7w be an irreducible admissible C-representation of G such
that some irreducible constituent p of 7 o i is nonsupercuspidal. Suppose p is
isomorphic to a subquotient of Ind§ 7’ for P C G and 7’ an irreducible admissible
C-representation of M. The central subgroup Z(G) acts trivially on g, and hence
also on t’. Therefore, 7’ = 7 for some irreducible subquotient 7 of o |;), where
o is an irreducible admissible C-representation of L. The representation 5 is
isomorphic to a subquotient of IndIG, (0 oi). By Equation (3.3.10) and exactness

.. . ad . . .. .
of parabolic induction, Ind,.G(G)(p), and hence its quotient 7, is isomorphic to a

subquotient of Indfiz)((lndgad 0)lics)). This representation is isomorphic to

nd%y, (0 lian) = IndS” (Ind%,, (0lian)) = Ind5” (0 ®c CLi(M)\L]).

By Lemma 3.2.2, the C-representation ¢ @ C[i(M)\L] of L has finite length
and its irreducible subquotients v are admissible. Therefore, 7 is isomorphic to
a subquotient of Indgad v for some v and some O C G¥, and, therefore, 7 is
nonsupercuspidal. O

3.3.3.  Scalar restriction Now let F’'/F be a finite separable extension, G’ a
connected reductive F’-group, and G := Resg,r(G’) the scalar restriction of G’
from F’ to F. As topological groups, G’ := G'(F’) is equal to G := G(F). By
[BT65, 6.19. Cor.], G’ and G have the same parabolic subgroups. Hence, we have
the following.

PROPOSITION 3.3.11. G’ admits an irreducible admissible supercuspidal
C-representation if and only if G does.

4. Proof of the main theorem for most simple groups

4.1. Discrete Iwahori—-Hecke modules. Let Rep. (G, B) denote the category
of C-representations of G generated by their ‘B-invariant vectors, and let
Mod(H¢(G, B)) denote the category of right Hc (G, 8)-modules. The functor
of B-invariants

Rep (G, B) — Mod(Hc(G, B))

7'[!—)7'[‘B
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admits a left adjoint

T : Mod(Hc (G, B)) — Rep,(G, B)
M— M ®HC(G,‘B) C[%\G]

PROPOSITION 4.1.1. When ¢ # p, the functor m — 7% induces a bijection
between the isomorphism classes of irreducible C-representations w of G with
7% £ 0 and isomorphism classes of simple right Ho (G, B)-modules [Vig96,
1.4.4, 1.6.3]. When C = C, the functors are inverse equivalences of categories
(see [Ber84, Cor. 3.9(ii)]; see also [Mor99, Thms. 4.8, 4.4(iii)]).

REMARK 4.1.2. The above functors are not as well behaved when ¢ = p. In this
case, the functor of B-invariants may not preserve irreducibility. Similarly, the
left adjoint ¥ may not preserve irreducibility.

When C = C, the Bernstein ring embedding Hc(Z, Zy) SN ﬁc is the linear
map defined by sending 7} to 6, := q{l/zE,\ for A € A. Its image is equal to Ac.
Note that if A € A is antidominant and z € Z lifts A, we have g; = §3(z), where
&g denotes the modulus character of B.

We now recall some properties of the category Rep.(G,*B), including
Casselman’s criterion of square-integrability modulo center, before giving the
definition of a discrete simple right H¢(G, ®8)-module. Recall that 7 denotes
the space of U-coinvariants (that is, the unnormalized Jacquet module) of a
representation .

LEMMA 4.1.3. Suppose that 7w is an admissible C-representation of G. Then the
natural map w — 1y induces an isomorphism ¢ : 7% —> n5°. Moreover, we have

o - 0,1) = 852(1)(t - 9(v)) for » € Ar, t € T lifting A, and v € 7.

Proof. Recall that B has an Iwahori decomposition with respect to Z, U, UP.
Then [Cas, Prop. 4.1.4] implies that the map m — my induces an isomorphism
7% . T > ngo for A € A7 with max,ec |@(A)|r sufficiently small. By [Vigl6,
Prop. 4.13(1)], the operator T;-1 is invertible in Ho(G, B),son® - T,-1 = >,
To show the last statement, we may assume that A € A}“. Then, in our
terminology, [Cas, Lemma 4.1.1] says that ¢ (|B18/B|"[BtB] -v) =1 - ¢(v),
where [2B13] denotes the usual double coset operator on 7. Now, [BtB] - v =
v-Trand T-n = E, 1 = qll,/129,71. Moreover, | BtB/B| =q, = g, = §5(7).
Putting this all together, we obtain the claim. O
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REMARK 4.1.4. The lemma and its proof hold when ‘B is replaced by i and Z,
is replaced by Z, N 4L.

PROPOSITION 4.1.5. Let w be an irreducible C-representation of G with
B
= #£0.

(1) m is isomorphic to a subrepresentation of Indg o, where o is a C-character
of Z trivial on Z.

(ii) Casselman’s criterion: w is square-integrable modulo center (as defined in
[Cas, Section 2.5]) if and only if its central character is unitary and

Ix(u(@))lc < 1

Sfor all p € X, (T)" such that —pu ¢ X, (T)*, and all characters x of T
contained in 8;]/271(/.

Proof. (i) Since r is irreducible and smooth, it is admissible by [Vig96, 11.2.8],
and [Cas, 3.3.1] implies that 7y is admissible as well. By Lemma 4.1.3 and the
assumption 72 # 0, we see that 7y # 0. The claim now follows by choosing
an irreducible quotient 7; — o for which 0% # 0 and applying Frobenius
reciprocity.

(i1) This follows from [Cas, Thm. 6.5.1]. O

DEFINITION 4.1.6. We say a simple right Hc(G, ®8)-module is discrete if it is
isomorphic to w® for an irreducible admissible square-integrable modulo center
C-representation 7w of G. We say a semisimple right H¢ (G, 28)-module is discrete
if its simple subquotients are discrete.

PROPOSITION 4.1.7. A simple right Hc(G, B)-module M is discrete if and only
if any C-character x of Ac contained in M satisfies the following condition: the
restriction of x to Az is a unitary character, and

Ix (@ )lc < 1 (4.1.8)

forany p € X, (T)" such that —u & X, (T)*.

Proof. Note that M = 7 for an irreducible (admissible) C-representation 7
of G. Then 7 has unitary central character if and only if A, acts by a unitary
character on M. As any irreducible Ac-module is a character, by Casselman’s
criterion (Proposition 4.1.5) and Lemma 4.1.3, M is discrete if and only if
condition (4.1.8) holds. O
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REMARK 4.1.9. Some authors view 7™ as a left Hc(G, B)-module. One may
pass between left and right modules by using the antiautomorphism 7, — T,-1;
that is, we may define

T, -v=uv-T,

for w € W, v € 7. The space 7, viewed as either a left or right Hc(G, B)-
module, is then called discrete if 7 is square-integrable modulo center. For left
modules, the proposition above holds with ‘dominant’ replaced by ‘antidominant’
and ‘6’ replaced by 9+ (for the definition of 6+, see the paragraph preceding
Proposition 8 in [Vig05]).

LEMMA 4.1.10. For a character x : Ac — C such that x|4,, is unitary, the
Jfollowing conditions are equivalent:

@ IxO;-)lc < 1forany u € X, (T)*t suchthat —pu & X(T)™,
(i) |x(@-1)|c < 1 forany » € AT such that \=' ¢ AT, and
(i) |x (@ -1)|c < 1 forany A € A" such that \~' & A*.

Proof. We first recall that the invertible elements in A* consist of Ay, O
|x (6,)|c = 1 for all invertible elements of A™.

As Ay = X, (T), we see that (iii) implies (i) and (ii). To prove that (ii)
implies (iii), we need to show that |x (6,-1)|c = 1 for A € A" implies A™! € AT,
By Lemma 2.2.5, pick n > 1 such that A" € Az x A**. Then A"Ay € A7 for
some Ay € Az As |X(9ﬂkal)|c = 1, we deduce from (ii) that A"Aq € AT N
(A*T)~!, which is contained in A* N (A")~!. Therefore, A" € AT N (AT)~L.
From the definition of dominance, it follows that . € A* N (AF)~!.

The proof that (i) implies (iii) is similar but easier. O

PROPOSITION 4.1.11. A simple right Hc(G, 28)-module M is discrete if and only
if Az acts on M by a unitary character and if its restriction to Hc(G*, 8%) is
discrete.

Proof. This follows from Proposition 4.1.7 and Lemma 4.1.10. O

4.2. Characters. In this section, we continue to assume that C is a field of
characteristic ¢, and suppose further that G is absolutely simple and isotropic. We
determine the characters H = H (G*, 2%6*) — C which extend to H=H (G,*5).
This is an exercise, which is already in the literature when C = C (see [Bor76]).
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For distinct reflections s, ¢ € S, the order n,, of st is finite, except if the type
of X' is A;. In the finite case, the braid relations (2.1.2) imply

(,T) =(TT)"  ifn,, =2r, (4.2.1)
(,T) T, = (I,T,)'T; ifng, =2r + 1. (4.2.2)
The T, for s € S and thegelations (2.1.3), (4.2.1), and (4.2.2) give a presentation

of H. A presentation of H is given by the 7, T, for u € £2, s € S and the relations
(2.1.3), (4.2.1), (4.2.2) and

T.T, = T.w  ifu,u €82, (4.2.3)
T.T, =TT, ifuef,ses, 4.2.4)

where u(s) denotes the action of £2 on S.
We have a disjoint decomposition

S = |i|Si’
i=l

where S; is the intersection of S with a conjugacy class of W. The S; are precisely
the connected components of Dyn when all multiple edges are removed (see
[Bou02, V1.4.3 Th. 4] and [Bor76, 3.3]). Thus, we have

1 A¢ (€ > 2),D, (€ > 4), Eg, E7, or Eg;
m = 12 whenthe typeof ¥ = { A|, B, (£ > 3),F4, or Gy;
3 C, (£ >=2).

When m > 1, we fix a labeling of the S; such that |S;| > |S,|, and when the
type of X is C, (£ > 2), we let S, = {s,} and S; = {s3} denote the endpoints
of Dyn. (Note that there are two possible labelings in types A; and C, (£ > 2).)
The parameters d; are equal on each component S;; we denote this common value

by dl' .

DEFINITION 4.2.5. The unique character x : H — C with x(T;) = g
(respectively x (T;) = —1) for all s € S is called the trivial (respectively special)
C-character.

LEMMA 4.2.6. Suppose {T;};cs — C is an arbitrary map.

(i) When ¢ # p, the above map extends to a character of H if and only if it is
constant on each S; and takes the value —1 or q% on each T,, s € S;. There
are 2" characters if ¢“ + 1 # 0 in C for each i.
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(i) When ¢ = p, the above map extends to a character of H if and only if its
values are —1 or 0 on each T,,s € S. There are 25! characters. Such a
character is supersingular if and only if it is not special or trivial.

Proof. (1) This follows from the presentation of H and the fact that the 7,, are
invertible (so that the map must be constant on conjugacy classes).

(i1) This follows from [Vigl7, Prop. 2.2]. The claim about supersingularity
follows from [Vigl7, Thm. 6.15]. O]

We wish to determine which characters of H extend to H. Since the elements
T, for u € £2 are invertible in H , the relations (4.2.4) imply that a character
x : H — C extends to a character of H if and only if x (Ty) = x(Ty) for all
s € Sand u € £2. For example, if the image ¥ of £2 in Aut(W, S, d;) is trivial,
then any character of H extends to H. The extensions are not unique in general.
By their very definition, the trivial and special characters always extend, and we
also refer to their extensions as trivial and special characters.

Let x : H — C denote a character, and suppose ¢ # p. By Lemma 4.2.6(i),
the value of x on T, for s € §; is constant for each 1 < i < m. We define x; :=
x(T;) € C for s € S;, and identify the character x with the m-tuple (x;)1<i<m-

LEMMA 4.2.7. Assume ¢ # p. Let x : H — C denote a character of H,
associated with the m-tuple (x;)1<i<m- Then x extends to a character of H except
in the following cases:

o type Ay, equal parameters dy = dr, ¥ # 1, and x| # X2,
o type C, (£ = 2), equal parameters d, = ds, ¥ # 1, and x, # x3.

Proof. thgl m = 1, then x(T,;) = x(T,() forallu € £2 and s € § so that x
extends to H. We may therefore assume m > 1. We proceed type by type:

o Type Ay with equal parameters di = d,. The group Aut(W, S, d;) = Z/27Z
permutes s; and s,. If ¥ = 1 or x; = x», then x extends to H, while if ¥ # 1
and x; # x», the character y cannot extend.

o Type B, (£ > 3). In this case, Aut(W, S, d;) = 7 /27 stabilizes the sets Sy and
S, so that x(7) = x(Ty) forallu € §2 and s € S. Thus, x extends to H.

o Type C; (£ > 2) with equal parameters d, = ds. The group Aut(W, S, d;) =

Z/27 permutes s, and s;. If ¥ = 1 or if x, = 3, then x extends to H, while
if ¥ # 1 and x, # x3, the character x cannot extend.
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o Type A, with unequal parameters di # d; Type Fi; Type G,; Type C,
(€ > 2) with unequal parameters dy # d3. In thesgv cases, Aut(W, S, d,) (and
consequently ¥) is trivial, and, thus, x extends to H. |

Before stating the next result, we require a definition.

DEFINITION 4.2.8. Let R C C be a subring of C. We say a right Hc-module M
is R-integral if there exists an Hg-submodule M° C M such that the natural map

(C®RMO—>M

is an isomorphism of ﬁ@—moqllles. We call M° an R-integral structure of M. If p
is a maximal ideal of R, the Hg/,-module R/p ®r M° is called reduction of M°
modulo p. We make similar definitions for the algebra H¢.

The following proposition combines the above results.

PROPOSITION 4.2.9.

(1) Hc admits 2™ C-characters. They are all Z-integral, and their reductions
modulo p are supersingular except for the special and trivial characters.

(it) Suppose x : Hc — Cis a character, associated with the m-tuple (X;)1<i<m»
and suppose we are in one of the following two cases:

o type Ay, equal parameters dy = do, ¥ # 1, and x1 # X2,
o type C, (£ = 2), equal parameters d, = d;, ¥ # 1, and x, # x3-

Then the Hc-module x @) extends to a two-dimensional, Z-integral simple
(left or right) Hc-module with supersingular reduction modulo p, where
X = (X2, x1) in the Ay case and X = (X1, X3, X2) in the C, case.

(iii) Suppose x : Hc — C is a character which does not fall into either of the
two cases of the previous point. Then x extends to a Z-integral complex
character of Hc, and its reduction modulo p is supersingular if x is not
special or trivial.

Proof. The claims regarding integrality in (i) and (iii) are immediate.

(i) This follows from Lemma 4.2.6.

(i1) and (iii): Let xo : H — Z denote the underlying Z-integral structure of
x. If we are not in one of the two exceptional cases, the result follows from
Lemmas 4.2.6, 4.2.7, and 2.4.2(iii). Otherwise, the character y, of H extends
to a character x) of H' := Z[Aw,] ® H that is trivial on Ay,. The tensor
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product x; ® g Hisa right H-module that is free of rank 2 (since the subgroup
Ayery Of £2 has index |¥| =2, by (2.2.3)). If ¥’ : H' — C denotes the base change
of x, to C, then x' ®u;, ﬁc is simple and its restriction to Hc is equal to x & .
Note that the characters x and  in (ii) are neither special nor trivial since the y;
are unequal by assumption and therefore have supersingular reduction modulo p.
We conclude by Lemma 2.4.2(iii). ]

4.3. Discrete simple modules with supersingular reduction. We continue to
assume that G is absolutely simple and isotropic. Let p denote the maximal ideal
of Z[g'*] c C with residue field F,. We now discuss discrete, Z[q'/*]-integral
ﬁc—modules with supersingular reduction modulo p.

The following is the key proposition of this section.

PROPOSITION 4.3.1. Suppose the type of X is not equal to A, with equal
parameters. Then there exists a right Hc-module M¢ such that:

o Mg is simple and discrete as an ﬁ@—module,'
o Mc has a Z[q'*)-integral structure M which is furthermore free over Z[q'/*];

o M has supersingular reduction modulo p.

The proposition will follow from Propositions 4.3.2, 4.3.3, and 4.3.4. We sketch
the main ideas of the proof.

Consider first the special character x : He — C. It is Z[q'/*]-integral, its
reduction modulo p is nonsupersingular, and T(x) is equal to the Steinberg
representation of G* over C so that x is discrete. Any discrete, nonspecial
character of Hc is Z[q'/*]-integral (in fact, Z-integral) and Lemma 4.2.6 implies
that its reduction modulo p is supersingular (since the trivial character of Hg is
not discrete). Thus, we first attempt to find a discrete nonspecial character of Hg;
these have been classified by Borel in [Bor76, Secgon 5.8]. (Note that in [Bor76],
the Iwahori subgroup is the pointwise stabilizer ZoB of an alcove; recall again
that if G is F-split or semisimple and simply connected, we have Z, = Z;.)
We describe these characters in Proposition 4.3.2 and use Proposition 4.2.9 to
determine which of these characters extend to ﬁc.

When m = 1, there do not exist any discrete nonspecial characters of H¢, and
we use instead a reflection module of ﬁz[ql/z] (see Proposition 4.3.3). It is free of
rank |S| over Z[g'/?] and has supersingular reduction modulo p. When the type
is Ay, this module is nondiscrete, which is why we must omit this type. (We also
use reflection modules in Proposition 4.3.4 to handle certain groups of type B; for
which Proposition 4.3.2 does not apply.)
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We now proceed with the required propositions.

PROPOSITION 4.3.2. Suppose the type of X is B, (£ > 4), C, (£ = 2), F,4, Gy,
A, with parameters dy # d,, or B3 with parameters (d,, d,) # (1, 2). Then the
algebra H¢ admits a discrete nonspecial simple right module Mc, induced from or
extending a character of Hc, which is Z[q'/*]-integral. Moreover, the dimension
of Mc is 1, unless W # 1 and the type is

o C, with parameters (1,1,1), (2,1, 1), or (3,2, 2);
o C; with parameters (1,1, 1), (1, 2,2), or (2,3, 3);
o Cy4 with parameters (1, 2,2), or (2,3, 3);

o Cs with parameters (1, 2, 2).

In these cases, Mc extends the Hco-module (—1, —1,q%) ® (—1, g%, —1) where
d := dy = ds, and thus the dimension of Mc is 2.

Proof. When m = 1, the only discrete character of H is the special one [Bor76,
Section 5.7].

Suppose m > 1. For each choice of irreducible root system X', we list in
Tables 1 and 2 the possible parameters (dy, d;) or (dy, d,, d3) for G (from the
tables in [Tit79, Section 4]) and describe if Hc has a discrete nonspecial character
(using [Bor76, Section 5.8]).

We start with m = 2 in Table 1. For every entry marked ‘Y, the given
discrete nonspecial character extends to a character of ﬁc using the condition
of Lemma 4.2.7.

We now consider m = 3 (that is, type C,) in Table 2. In this case, the tables in
[Bor76, Section 5.8] show that H¢ always admits a discrete, nonspecial character.
Note also that Borel omitted the parameters (3, 2, 2) for type C,. In order to obtain
this missing case, we use the criterion of [Bor76, Equation 5.6(2)] to see that the
only discrete nonspecial characters of H¢ are (—1, —1, 1) and (—1, 1, —1) (in the
notation of [Bor76]). Note that the characters corresponding to parameters with
d, # d; automatically extend to ﬁc, by Lemma 4.2.7.

(We have one more remark about the tables in [Bor76, Section 5.8]: the
character (—1, —1, 1) for parameters (2, 1, 4) only works for £ > 3.)

Finally, we remark that in all cases, Propositions 4.1.11 and 4.2.9 imply that
the ITIC-module M constructed above (either as the extension of a character of
Hg, or as the induction of a character from H¢ to ﬁc) is discrete and Z[g'/?*]-
integral. O
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Table 1. m = 2.
b)) Parameters 3 discrete nonspecial
character of H¢?
A d,dyd=>1 N
(1,3) Y
2,3) Y
(1,2) Y
1,4) Y
3.4 Y
B, (£ = 3) 1,1 Y
(1,2) Y (if € > 4),N (if £ = 3)
2,1 Y
2,3) Y
F, 1,1 Y
1,2) Y
2,1 Y
G, 1,1 Y
(1,3) Y
3,1 Y
Table 2. m = 3.
X Parameters Condition that some discrete
nonspecial character of Hc extends to ﬁc
C, (£ =22 1,1, 1) L>4,or¥ =1
2,1, £>23,or¥ =1
2,3,3) L=2,L>25o0r¥ =1
2,1,3) None
(1,1,2) None
2,2,3) None
2,1,2) None
(1,2,2) £=2,L>6,or¥ =1
2,1,4) None
2,3,4) None
C, (3,2,2) v =1

We consider now the types D, (£ > 4), E¢, E;, and Eg. The tables in [Tit79,
Section 4] imply that G is F-split so that d; = 1 for all s € S, and for distinct
s,t € S, the order n;, of st is 2 or 3.
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PROPOSITION 4.3.3. _Assume that the type of X is Dy, (€ > 4), Eg, E;, or Eg. Let
M denote the right HZ[ql/Z] -module obtained as the twist of the (left) reflection
Hyyg1ny-module by the antiautomorphism T,, > (— D' T* . Then M is free of
rank | S| over @[ql/ 2], has supersingular reduction modulo p, and M is a discrete
simple right Hc-module.

Proof. The left reflection Hy,12-module is the free Z[g'/*]-module with basis
{e;}ics, with HZ[ql/Z] -module structure given by

—e; ifs =1,
T, e, = {qe ifs #¢, ng, =2,
ge, +q'Pe; ifs #t, ng, =3,
T, e = e,

where 5,7 € S,u € §2. Twisting this module by the automorphism 7, +>
(=)™ T* gives a left Hy,12;-module M’, satisfying

qge; ifs =t,
T, -e, = { —e; ifs #t, n,, =2,
—e, —q'%e, ifs #t, ng, =3,
T, e = €ur)-
Finally, we define M to be the right HZ[quz]-Nmodule obtained from M’ by applying
the antiautomorphism 7, +— T,-1. The Hc-module M is simple (even as an
H¢-module; see [Lus83, Section 3.13]).
By applying Lemma 2.4.2(iii) and Proposition 4.1.11 twice, we may assume
that G is adjoint in order to prove the required properties of M. The reduction

modulo p of M is the IF,-vector space with basis {e};cs, with the structure of a
right HF -module given by

0 ifs =t,
e T, = .

—e, ifs #t,
e - Tu = €y-1(1)-

The restriction to Hy, of this ﬁ]yp -module is the direct sum of the characters

{Xs}ses, where
0 ifs =1¢,
xs(Ty) = .
—1 ifs #£t¢.

By Lemmas 2.4.2(iii) and 4.2.6, we deduce that My, is supersingular. Further, one
checks that the right action of OAQI (u € X,(T)™) on Mc is equal to the left action
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of (— l)mﬂ)T } on (the base change to C of) the reflection module, where Trl

is defined in [Lu583 Section 4.3] (note that with respect to our normalizations,
the elements w; of op. cit. are antidominant). The discreteness of M¢ now follows
from Proposition 4.1.7 and [Lus83, Section 3.2, Thm. 4.7]. (See also [Lus83,
Section 4.23].) L]

Finally, we consider one of the omitted cases from Proposition 4.3.2, namely
type B3 with parameters (1, 2).

PROPOSITION 4.3.4. Assume that the type of X' is By with parameters (1, 2).
Then Hgz,2 admits a right module M such that M is free of rank 3 over
@[ql/ 21, has supersingular reduction modulo p, and M is a discrete simple right
Hc-module.

Proof. In this case, the group G* is an unramified nonsplit form of Sping by
the tables in [Tit79]. We will use the reflection module as defined in [GS05,
Section 7].

Denote by Zlong the subset of simple affine roots A which are long. We define
an action of Hz,12 on the free Z[g'/*]-module of rank 3 with basis {es} s, as

follows. If o € Zlong, we set

—eg ifa =B,
T, -eg = 1 qep ifa # B, ng,.5 =2,

geg +q'Pe, ifa# B, ng., =3,
and if « is the unique short root in A, we set
T, -es = q’ep.
Twisting this reflection module by the automorphism 7,, + (—1)“™ T gives a
new left Hy,12-module M’, with action given by
qep ifa =8,
Tsa . 6/3 = —éﬂ lfOl ;é ,B, nsa,sﬂ = 2,
—€g — q]/zea if ;é /37 nsa,sﬂ = 3:
if & € Ajong, and
T, -eg = —eg

if « € A is short. We extend the action of Hyg12p on M’ to ﬁz[qlﬁ] by declaring
that
Tu * €y = €y(a)-
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As the algebra ﬁZ[qI/Z] is generated by Hy,12) and the elements T, u € £2, subject
to the relations 7, = T, T, and T, T}, Tu‘l =T, foru,ve 2anda € Z, we see
that M’ is a well-defined module of ﬁz[ql/Z]. Finally, we define M to be the right
Hy,12-module obtained from M’ by applying the antiautomorphism T, = T,,-1.
One checks directly that M¢ is simple (even as an Hc-module).

By Lemma 2.4.2(iii) and Proposition 4.1.11, we are now reduced to the case
where G is simply connected. The reduction modulo p of M is the F,-vector
space with basis {eg} e, With the structure of a right Hy,-module given by

0 ifa =g,
ep Ty, = ,
—ep ifa # B,
for @ € A. Therefore, My, 1s equal to the direct sum of the characters {xs}sc >
where
0 ifa=4,
Xﬂ(Tm) = .
-1 ifa # 8.

for & € A. Lemma 4.2.6 therefore implies that My, is supersingular.
Once again, we see that the right action of 9,\;1 (w € X (T)*) on Mc¢ is

equal to the left action of (—l)mﬂ)q;i 2T}\i} on (the base change to C of) the
reflection module. Section 8.5 of [GS05] gﬂives an explicit description of Hecke
operators associated with the fundamental antidominant coweights in terms of 7,
and the 7. Using this description along with Proposition 4.1.7, we see that the

ﬁc—module M is discrete. (See also [GS05, Prop. 7.11].) L]

4.4. Admissible integral structure via discrete cocompact subgroups. Let
E be a number field with ring of integers Of, p a maximal ideal of Of with
residue field k := Of/p, and C/E a field extension.

For any extension of fields, the scalar extension functor commutes with the
$B-invariant functor and its left adjoint ¥ ([HV19, Lem. III.1(ii)]). Therefore,
if 7 is an E-structure of a C-representation 7, then t® is an E-structure of
7. Conversely, if M is an E-structure of an Hc-module N, then T(M) is an
E-structure of T(N).

DEFINITION 4.4.1. We say that an admissible C-representation w of G is
Og-integral if w contains a G-stable Og-submodule t° such that, for any compact
open subgroup K of G, the O-module (7°)X is finitely generated, and the natural
map

p:CRo, 1°—>Tm
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is an isomorphism. We call ¢ (and more often t°) an Og-integral structure of 7.
The G-equivariant map t° — k ®p, t° (and more often the k-representation
k®o, t° of G) is called the reduction of T° modulo p. We say that t° is admissible
if k ®, t° is admissible for all p.

For any commutative ring R and any discrete cocompact subgroup I" of G, we
define

C™(I'\G,R) := {f :G — R| f(ygk) = f(g) g‘l’lfda]?é/;fﬂg € G,}’

where K, is some compact open subgroup of G depending on f. Letting G act
on this space by right translation, we obtain a smooth R-representation pk. The
complex representation p{. of G has an admissible O-integral structure given by
p(’;E: the reduction of p(’;E modulo p is the admissible representation p; .

PROPOSITION 4.4.2. Assume char F = 0 and G semisimple. If 7 is a square-
integrable C-representation of G, then there exists a discrete cocompact subgroup
I" of G such that

Homg (7, p(g) # 0.

Proof. Since char F = 0, there exists a decreasing sequence (I},),cn of discrete
cocompact subgroups of G with trivial intersection such that each is normal and
of finite index in I. (See [BH78, Thm. A]. The construction there is global, and
we obtain the required decreasing sequence by passing to congruence subgroups.)

For any discrete cocompact subgroup I”, the normalized multiplicity of 7 in
pL is

M r.qe () := volr - dim¢ (Homg (7, pf)),

where vol is the volume of I'\G for a G-invariant measure induced by a fixed
Haar measure on G. By the square-integrability assumption on 7 and the limit

multiplicity formula, the sequence (mr, 4,(7))sen converges to a nonzero real
number (see [DKV84, App. 3, Prop.] and [Kaz86, Thm. K]). L]

PROPOSITION 4.4.3. Assume charF = 0. Let m be an irreducible C-
representation of G and I' a discrete cocompact subgroup of G.

) Ifo:CQgt = 7 is an E-structure of m, then the natural map
C ®g Homgg (7, pj) — Homgyg (T, pf)

is an isomorphism.
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(ii) Any irreducible subrepresentation T of pi admits an admissible Op-
integral structure T N p,_, whose reduction modulo p is contained in pj .

Proof. We recall a general result in algebra from [Boul2, Section 12.2 Lem. 1]:
let C'/ C be a field extension and A a C-algebra. For A-modules M, N, the natural
map

C' ®c Homy(M, N) — Homerg a(C' ®c M, C’' ¢ N) (4.4.4)

is injective, and bijective if C’/C is finite or the A-module M is finitely generated.

(i) Take C'/C = C/E, A = E[G], (M, N) = (z, p.). Then (4.4.4) is an
isomorphism because 7 is an irreducible E-representation of G.

(ii) For any compact open subgroup K of G, the Og-module (,ogE)K is finite
free and p{,, contains t° := 7 N p{, as Op-representations of G. Since the ring
Op is noetherian, these facts imply the Oz-submodule (7°)X of (p(’;E)K is finitely
generated. The natural linear G-equivariant isomorphism

r -~ .r
E ®OE Po, = PE
restricts to a linear G-equivariant isomorphism
E®p, t° — 1,

and, therefore, t° is an Og-integral structure of t. It remains to verify that the
injection 7° < p(’;E stays injective after reduction modulo p. (As p/ is admissible,
this will also imply that k ®, t° is admissible.) More generally, suppose that
0> M — M — M’ — 0is any exact sequence of Og-modules with M”
torsion-free. Then M" is the direct limit of its finitely generated submodules, and
finitely generated torsion-free modules are projective, as O is Dedekind. Hence,
Tor?E (M", k) = 0, as Tor functors commute with direct limits, so the sequence
stays exact after reduction modulo p. 0

The above result will be used in our construction of irreducible, admissible,
supersingular C-representations. It also has the following consequence, which
may be of independent interest.

COROLLARY 4.4.5. Assume char F = 0 and G semisimple. Then any irreducible
supercuspidal C-representation admits an admissible Og-integral structure
whose reduction modulo p is contained in pl, for some discrete cocompact
subgroup I' of G.
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Proof. When G is semisimple, any irreducible admissible supercuspidal
C-representation 7w of G descends to a number field (see [Vig96, 11.4.9]).
Since m is, in particular, square-integrable, Proposition 4.4.2 implies that &
embeds into p{ for some discrete cocompact subgroup I" of G. The claim then
follows from points (i) and (ii) of Proposition 4.4.3. O

4.5. Reduction to rank 1 and PGL,(D). We now prove that most p-adic
reductive groups admit irreducible admissible supersingular (equivalently,
supercuspidal) representations.

THEOREM 4.5.1. Assume that ¢ = p and char F = 0. Suppose G is an isotropic,
absolutely simple, connected adjoint F-group, not isomorphic to any of the
following groups:

(1) PGL, (D), where n > 2 and D is a central division algebra over F;

(i1) PU(h), where h is a split hermitian form in three variables over a ramified
quadratic extension of F or a nonsplit hermitian form in four variables over
the unramified quadratic extension of F.

Then G admits an irreducible admissible supercuspidal C-representation.

Proof. We first note by the tables in [Tit79] that the above exceptional groups are
precisely the ones where X' is of type A, with equal parameters. (In that reference,
our exceptional groups have names A,,_;, A4 form > 2,d > 2 in case (i) and
C-BCy, 2A7 in case (ii).) _

By Proposition 4.3.1, there exists a right Hzj,2)-module M which is free
over Z[g'/?], whose base change M is a discrete simple Hc-module and whose
reduction My, is supersingular. Set E := Q(g'/?) so that Z[¢'/*] C Op. Let
7w := %T(Mc) denote the irreducible square-integrable C-representation of G
corresponding to Mc; then t := T(Mg) is an E-structure of w. We know by
Proposition 4.4.2 that 7 injects into pf for some discrete cocompact subgroup I”
of G, and, therefore, T injects into pL. by Proposition 4.4.3(i). We identify 7 and
T with their images in p{ and pf, respectively. Proposition 4.4.3(ii) then ensures
that t° :=t N ,ogE is an admissible Og-integral structure of . In particular, we
have a G-equivariant map C ®¢, 1° — 7.

Define M’ := (1°)®; since E is a localization of O, the isomorphism above
implies C ®p, M’ — 7% = Mg so that M’ is an Og-integral structure of M.
Let p C Og denote the prime ideal lying over p, and let O, C C denote the
localization of Op at p. Then Mbp = O, ®o, M'is a finitely generated, torsion-
free module over the discrete valuation ring O,, which implies that it is free.
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Both Mo, and M, —are ﬁ@p -modules which are free over O,, and they
are isomorphic over C. Thus, we see that the reductions Mo, /, and My, .,
agree up to semisimplification by the Brauer—Nesbitt theorem. In particular,
Mo, = Mp,, is supersingular (since the same is true of Mo, ), = Mr,)
and, by construction, M, ,, is a submodule of (,OOF /p)% (this uses the final
claim of Proposition 4.4.3(ii)). Therefore, we can ple a nonzero supersingular
element v of (o5, /p) . The G-representation pj_ sp 1s admissible, as I" is
cocompact, and hence so is its subrepresentation (G - v) generated by v. Any
irreducible quotient of (G - v) (which exists by Zorn’s lemma) is admissible by
[Hen09, Section 4, Thm. 1], as F is of characteristic zero, and supersingular
by Proposition 3.1.3, as it contains (the nonzero image of) v. The theorem now
follows from Proposition 3.2.1. 0

The two exceptional cases will be dealt with in Sections 5 and 6. Assuming this,
we can now prove our main result.

Proof of Theorem A. Suppose that G is a connected reductive group over F'. We
want to show that G = G(F) admits an irreducible admissible supercuspidal
representation over any field C of characteristic p. By Proposition 3.2.1, we may
assume that C is finite and as large as we like. Then by Proposition 3.3.2, we may
assume that G is isotropic, absolutely simple, and connected adjoint. The result
then follows from Theorem 4.5.1, Corollary 5.5.2, and Corollary 6.6.2. O

5. Supersingular representations of rank 1 groups

In this section, we verify Theorem A when G is a connected reductive F-group
of relative semisimple rank 1. In particular, this deals with the second exceptional
case in Theorem 4.5.1.

5.1. Preliminaries. We suppose in this section that C is a finite extension of
F, which contains the |G|, th roots of unity, where |G|, denotes the prime-to-p
part of the pro-order of G.

Suppose that char F = 0. We will show that G admits irreducible, admissible,
supercuspidal C-representations. By Proposition 3.3.2, it suffices to assume that
G is an absolutely simple and adjoint group of relative rank 1. We make one
further reduction. Let G* denote the simply connected cover of G:

1—-Z72(G*) - G*—-G— 1.

By Proposition 3.3.8, we see that G* admits an irreducible, admissible,
supercuspidal representation on which Z(G*) acts trivially if and only if G does.
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Therefore, we may assume that our group G is absolutely simple, simply
connected, and has relative rank equal to 1. We will then construct irreducible,
admissible, supercuspidal representations of G on which its (finite) center acts
trivially.

5.2. Parahoric subgroups. Let % denote the adjoint Bruhat-Tits building of
G. By our assumptions on G, % is a one-dimensional contractible simplicial
complex, that is, a tree. Recall that C denotes the chamber of % corresponding to
the Iwahori subgroup ‘B, and let x, and x; denote the two vertices in the closure
of C. We let K, and K denote the pointwise stabilizers of xy and x;, respectively.
We then have 8 = K, N K.

The vertices xy and x, are representatives of the two orbits of G on the set of
vertices of %, and the edge C is a representative of the unique orbit of G on the
edges of . By [Ser03, Section 4, Thm. 6], we may therefore write the group G
as an amalgamated product:

G%Ko*% K].

Since the group G is semisimple and simply connected, the stabilizers of
vertices and edges in & are parahoric subgroups (see, for example, [Vigl6,
Section 3.7]). For i € {0, 1}, we let KfL denote the pro-p radical of K;, that is,
the largest open, normal, pro-p subgroup of K;. The quotient G; := K;/K;" is
isomorphic to the group of k-points of a connected reductive group over kr (see
[HV1S5, Section 3.7]). Likewise, the pro-p-Sylow i is the largest open, normal,
pro-p subgroup of B, and Z := B/l is isomorphic to the group of k-points of a
torus over kr. The image of *B in G; is equal to a minimal parabolic subgroup IB;,
with Levi decomposition IB; = Z,;U,. Thus, we identify the quotient Z with Z,;.

5.3. Pro-p Iwahori-Hecke algebras. We work in a slightly greater generality
than in Section 2. Let

Hce = He(G, U) = Endg C[M\G]

denote the pro-p Iwahori—-Hecke algebra of G with respect to L. We view Hc
as the convolution algebra of C-valued, compactly supported, il-bi-invariant
functions on G (see [Vigl6, Section 4] for more details). For g € G, we let
T, denote the characteristic function of {gil. The algebra H. is generated by
two operators T;,, T;,, where §, and 5, are lifts to the pro-p Iwahori-Weyl group
N/(Z N ) of affine reflections sy, s; fixing xo, x|, respectively, along with
operators T, for z € Z. (Note that this labeling is different than the labeling in
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Section 4.2.) For i € {0, 1}, we let H; denote the subalgebra of H, generated
by T;, and T, for z € Z; this is exactly the subalgebra of functions in H¢ with
support in K;, that is,

Hcei = He(K;, ) = Endg, C[MN\K;].

The algebra H.; is canonically isomorphic to the finite Hecke algebra
H-(G;, U;) (see [CE04, Section 6.1]).

Since K;" is an open normal pro-p subgroup of K;, the irreducible smooth
C-representations of K; and G; are in bijection. Further, the finite group G;
possesses a strongly split BN pair of characteristic p [Vigl6, Prop. 3.25].
Therefore, by [CE04, Thm. 6.12], the functor p +— ,0u induces a bijection
between isomorphism classes of irreducible smooth C-representations of K;
and isomorphism classes of simple right H ¢ ;-modules, all of which are one-
dimensional.

We briefly recall some facts about supersingular #.-modules (compare
Lemma 4.2.6). We refer to [Vigl7, Def. 6.10] for the precise definition (which
is analogous to Definition 2.4.1) and give instead the classification of simple
supersingular Hc-modules. Since G is simply connected, every supersingular
Hc-module is a character. The characters = of H¢ are parametrized by pairs
(x, J), where x : Z — C* is a character of the finite torus and J is a subset of

Sy = {s € {so, 51} : x(c5) # 0}

(here c; is a certain element of C[Z] which appears in the quadratic relation for T;
note also that the definition of S, is independent of the choice of lift § € N/
(Z N'4) of 5). The correspondence is given as follows (see [Vigl7, Thm. 1.6]):
for z € 7., we have E(T,) = x(z), and for s € {s¢, 51}, we have

0 ifs eJ,
E(T;) = .
x(c;) ifs ¢ J.

Since G is simple, [Vigl7, Thm. 1.6] implies that = is supersingular if and only
if

(S)(s']) # ({SQ,S]}, @)1 ({SO’SI}’ {SO’SI})'

5.4. Diagrams. Since the group G is an amalgamated product of two
parahoric subgroups, the formalism of diagrams used in [KX15] applies to
the group G. We recall that a diagram D is a quintuple (p9, o1, 0, Lo, (1)
which consists of smooth C-representations p; of K; (i € {0, 1}), a smooth
C-representation o of B, and B-equivariant morphisms ¢; : 0 — p;|». We depict
diagrams as
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Morphisms of diagrams are defined in the obvious way (that is, so that the relevant
squares commute).

Let & denote a supersingular character of H, associated with a pair (x, J).
We define a diagram Dy as follows:

o seto := x !, which we view as a character of B by inflation;

o we let pg,; denote an irreducible smooth C-representation of K; such that
,oi:{i = Ely,, as Hci-modules (by the discussion above, pz; is unique up
to isomorphism);

1

o let ¢; denote the $B-equivariant map given by o = x ' — pé‘,i — pz.ils-

Pictorially, we write

Lo

o
m
Il
|

We now wish to construct an auxiliary diagram D’ into which Dz injects. This
will be done with the use of injective envelopes. Recall that if G is a profinite
group and 7 is a smooth C-representation of G, an injective envelope consists
of a smooth injective C-representation inj;z of G along with a G-equivariant
injection j : T <> injgt which satisfies the following property: for any nonzero
C-subrepresentation " C injgt, we have j(t) Nt # 0. This data exists and is
unique up to (nonunique) isomorphism.

LEMMA 5.4.1 [Pas04, Lem. 6.13]. Let t denote a smooth C-representation of
G, and let j : T < injgT denote an injective envelope. Let J denote an injective
representation of G, and suppose we have an injection ¢ : T < J. Then ¢ extends
to an injection 5 injgT <> J such that ¢ = 5 oj.
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LEMMA 5.4.2. Suppose G has an open, normal subgroup G*. Let T denote a
smooth C-representation of G such that G* acts trivially, and let j : T — injgt
denote an injective envelope of T in the category of C-representations of G. Then
T (injgt)g+ is an injective envelope of T in the category of C-representations

ofG/G".

Proof. This is [Pas04, Lem. 6.14]; its proof does not require that t be irreducible
or that G be pro-p, as we assume that G acts trivially. OJ

We now begin constructing D’.

LEMMA 5.4.3. Leti € {0, 1}. We then have
(injg, CIGiDls = EBinj%SGB'B"\Gi‘,
&

where & runs over all C-characters of B (or, equivalently, of Z.;), and we have
fixed choices of injective envelopes.

Proof. Consider the B-representation (injg, C [G,])*. The action of B factors
through the quotient B/4l = Z, which is commutative of order coprime to p.
Therefore, we obtain a ‘B-equivariant isomorphism

(inj, CIG; )" = P & (5.4.4)
§

for nonnegative integers m, satisfying
mg = dim¢c Homg (&, inj ;. C[G;])
= dim Homg (&, (inj, C[G/)S)
= dim¢ Homg, (£, injg, C[G;])
= dim¢ Homyg, (&, (injg, C[G;])").

(The third equality follows from Lemma 5.4.2.) Since C[G;] is injective as a
representation of G;, we have isomorphisms of Z,;-representations

(injg, CIG D" = CIUNG:] = P&
&
so that mg = |B/\G;|.
The isomorphism (5.4.4) implies that we have a B-equivariant injection

@ %_GB\]B[\GH N (ianiC[Gi]ﬂ‘B-
&
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As *B is open, [Vig96, Section 1.5.9 d)] implies that the representation on the right-
hand side is injective. Lemma 5.4.1 then says that the above morphism extends to
a split injection between injective B-representations

D injy £85I > (injy, CIGi])as.
§

Since the $l-invariants of both representations agree, the above injection must be
an isomorphism. O

LEMMA 5.4.5. Set a := lem(|Bo\Gol|, |B\\G|). There exists a diagram D' of
the form

inj,, C [Gy] @< Bo\Gol ™

injg, C[G]®1PNGT

where Ky and k| are isomorphisms, and a morphism of diagrams

Pz0 € N ianOC[GO]eawllBo\Go\"
—1 . 123 R . caa
v X > D, inj§
\ x
w . . —
Pz € h N ln]KlC[Gl]QBa'I]Bl\Gl\ !

in which all arrows are injections.

Proof. We fix the following injections, which are equivariant for the relevant
groups:

o injective envelopes j: : & <> injy& for each C-character & of B;
o injective envelopes j; : C[G;]®*B\GI™" s ianl_C[(I},-]‘B"“IB“\‘G"‘71 fori € {0, 1};
o aninclusion ¢ : x ' — @, £

o aninclusion ¢; : pz; <> C[G;1®B\GI™ for i € {0, 1}.
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Leti € {0, 1}. We first construct the «;. We have a 2B-equivariant sequence of

maps
‘71

1 ci Jio.o. IBAG; |
X1 pzi = CIG PPN < inj CIG 1P

and, thus, we obtain

1 Jjiociot;

XIS (i CLG PP,
By Lemmas 5.4.3 and 5.4.2, we have @, §% = (ianiC[Gi]@"“B“\G"‘A)”. We fix
an isomorphism o; : @, & = (ianl_C[(Dr,«]6'3“‘”3"\‘31'‘71)u such that
o; 0C = ji OC; Ol. (546)

Now consider the maps of C-representations of B:

D& = (injx, CIGI™ O < (injy, CIG1* ) .
§

By Lemma 5.4.1, the above map extends to an 2B-equivariant split injection

i (P injug ™ > (inji, CIGI™ 1)
§

such that

Ki 0 <®j§9“) =a. (5.4.7)
§

Since both @D, inj§®* and (ianiC[G,«]ea“"]Bf\G"‘*l)@ are injective C-
representations of ‘B and «; induces an isomorphism between their {-invariants
(see Lemma 5.4.3), we see that k; must, in fact, be an isomorphism.

We now construct the morphism of diagrams. Set Yg, := j; o ¢; and ¥y :=
(B j&) o c. We have

(5.4.6) (547

)
Ki o Vs,

1//[(; O L;

and, therefore, we obtain the desired morphism of diagrams. O

o;ocC

5.5. Supersingular representations via homology. Recall that a G-
equivariant coefficient system D consists of C-vector spaces Dr for every
facet F C 4, along with restriction maps for every inclusion of facets. This data
is required to have a compatible G-action such that each Dr is a smooth
C-representation of the G-stabilizer of F. The functor sending D to the
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quintuple (D,,, Dy,, D¢, to, t1), where the ¢; are the natural restriction maps,
is an equivalence of categories between G-equivariant coefficient systems and
diagrams (see [KX15, Section 6.3]).

We let Dz and D' denote the G-equivariant coefficient systems on %
associated with Dz and D’, respectively. The homology of G-equivariant
coefficient systems gives rise to smooth C-representations of G, and we define

7 = im (Hy(B, Dz) %> Hy(#. D)),
where 1, denotes the map on homology induced by .

THEOREM 5.5.1. Suppose char F = 0. Then the C-representation w of G admits
an irreducible, admissible, supercuspidal quotient.

Proof. We use language and notation from [Pas04] and [KX15].

Step 1: The representation 7 is nonzero.

Fix a basis v for x ~!. Let g, denote the 0-chain with support x, satisfying
®0.0)(X0) = to(v) and let @, denote its image in Hy(A, Dz). Set & :=
Vs (@0,100)) = @0,ygor0) € T C Hy(%,D’). This is the image in Hy(#, D’) of a
D, -valued O-chain supported on x, and since the maps ko, k; are isomorphisms
and ¥ is injective, we have @ # 0 [Pas04, Lem. 5.7]. We also note that, therefore,
d)oylo(v) ?é 0.

Step 2: The representation r is admissible.

Since kg, «; are isomorphisms, [Pas04, Prop. 5.10] gives

Tl C Hy(#. D)l = Dy = P injy&®,
&

which, by Lemma 5.4.2, implies 7* < @, §%“ so that 7 is admissible.

Step 3: The H-module 7% contains Z.

The element @, ) € Ho(#, Dz) is U-invariant and stable by the action of
Hc, and the vector space it spans is isomorphic to & as an H-module (for all of
this, see the proof of [KX15, Prop. 7.3]). Since ¥, is G-equivariant, the same is
true for w € «.

Step 4: The vector @ generates 7.

Since @p ) generates Hy(#,Dz) as a G-representation and v, is
G-equivariant, @ generates 7 as a G-representation.

Step 5: We construct the quotient 7z’ and list its properties.

By the previous step, the representation 7 is generated by @. Proceeding as
in the end of the proof of Theorem 4.5.1, we see that any irreducible quotient
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of m = (G - w) is admissible (since char F = 0, and such quotients exist by
Zorn’s lemma). Let 7’ be any such quotient.

Step 6: We prove 7’ is supercuspidal.

Since @ generates 7w, its image in 7’ is nonzero. Thus, we obtain an
injection of Hc-modules & = Cao < (7')Y, and supercuspidality follows
from Proposition 3.1.3. O

COROLLARY 5.5.2. Suppose char F = 0 and G is a connected reductive
F-group of relative semisimple rank 1. Then G admits an irreducible admissible
supercuspidal C-representation.

Proof. By the reductions in Section 5.1, it suffices to assume that G is absolutely
simple and simply connected and to construct a supercuspidal C-representation
on which Z(G) acts trivially. Since the center of G is finite, it is contained in
$BNZ = Z,. Hence, taking & to be associated with (17, J), where 17 is the trivial
character of Z and J # @, {so, 51} (noting that S;, = {so, 51}), Theorem 5.5.1
produces an irreducible admissible supercuspidal C-representation 7z’ with trivial
action of the center. This gives the claim. O

REMARK 5.5.3. The construction of 7’ above shares some similarities with
the construction in Section 4.5. Therein, supercuspidal representations are
constructed as subquotients of C*(I'\G, C) = Ind,‘f 1, where I is a discrete,
cocompact subgroup of G and 1, denotes the trivial character of I". Taking I to
be torsion-free, we use the Mackey formula to obtain

(Ind?17)|,, = @D Indf| 1 = injy, CIG,1%
I'\G/K;
where a; = |I'\G/K;|. (The last isomorphism follows from the fact that Ind{Kl"} 1
is injective, by [Vig96, Section 1.5.9 b)], and (Indj) ¥ = C[G;]; we may then
proceed as in the proof of Lemma 5.4.3.) The construction of Theorem 5.5.1
produces supercuspidal representations as subquotients of Hy(%, D’), for which

we have
Hy(%, D)k, = injg, C[G;]%,

where a; = a - |B;\G;|! (see [Pas04, Prop. 5.10]).
6. Supersingular representations of PGL,, (D)

In this section, we verify Theorem A when G = PGL,(D), where n > 2
and D is a central division algebra over F. In particular, this deals with the first
exceptional case in Theorem 4.5.1.
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6.1. Notation and conventions. Throughout Section 6, we let @p denote a
fixed algebraic closure of Q,, with ring of integers Z, and residue field F,. We
normalize the valuation val of @ ,» such that val(p) = 1.

Let D denote a central division algebra over F of dimension d*. Let B = ZU
denote the upper-triangular Borel subgroup of GL,(D) with diagonal minimal
Levi subgroup Z = (D*)" and unipotent radical U. Let T = (F*)" denote the
diagonal maximal split torus, N its normalizer in GL, (D), and U the lower-
triangular unipotent matrices.

Let Op denote the ring of integers of D, mp the maximal ideal of Op, and kp
the residue field, so [kp : kr] = d. Let D(1) := 1 4+ mp, so D(1) << D*. Let
valp : D* — 7Z denote the normalized valuation of D. Let /(1) denote the pro-p
Iwahori subgroup

I(1) :={g € GL,(Op) : g € GL,(kp) is upper-triangular unipotent}.

For any field K, let I'x denote the absolute Galois group for a choice of
separable closure. If K’'/K is a finite separable extension, then Ik is a subgroup
of I'k, up to conjugacy; hence, the restriction of a I'x-representation to Ik is well
defined up to isomorphism.

If K /Q, is finite, we let Ix denote the inertia subgroup of I'y and kx the residue
fieldof K.If p : I'x — GL, (@p) isde Rhamand 7 : K — @p is continuous, we
let HT, (p) denote multiset of T-Hodge—Tate weights. We normalize Hodge—Tate
weights so that the cyclotomic character ¢ has T-Hodge—Tate weight —1 for any t.
We let WD(p) denote the associated Weil-Deligne representation of Wy over @p
(defined by Fontaine, see [CDT99, Appendix B.1]).

We normalize local class field theory so that uniformizers correspond to
geometric Frobenius elements under the local Artin map. Let recr denote the
local Langlands correspondence from isomorphism classes of irreducible smooth
representations of GL,(F) over C to isomorphism classes of n-dimensional
Frobenius semisimple Weil-Deligne representations of Wy over C (see [HTO01]).

If L is a global field, we let | - |, denote the normalized absolute value of A; .

6.2. On the Jacquet-Langlands correspondence. We recall some basic facts
about the representation theory of GL,(D) and the local Jacquet-Langlands
correspondence. All representations in this section will be smooth and over C.

For a finite-dimensional central simple algebra A, let Nrd : A* — Z(A)* (or
Nrd, for clarity) denote the reduced norm. Let v denote the smooth character
| Nrd | of GL,,(D) for any m. If ; are smooth representations of GL,, (D), let
m; X --- X 7, denote the normalized parabolic induction of 7; ® --- ® 7, to
GLy-,, (D). In particular, these notions also apply to general linear groups over F'
(by setting D = F).
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We will say that a representation is essentially unitarizable if some twist of it
is unitarizable.

The Jacquet-Langlands correspondence [DKV84] is a canonical bijection
JL between irreducible essentially square-integrable representations of GL, (D)
and irreducible essentially square-integrable representations of GL,;(F) that is
compatible with character twists and preserves central characters. (For short, we
say ‘square-integrable’ instead of ‘square-integrable modulo center’.)

On the other hand, Badulescu [Bad08] defined a map |LJg., (p)| in the other
direction, from irreducible essentially unitarizable representations of GL,,;(F)
to irreducible essentially unitarizable representations of GL, (D) or zero, which,
in general, is neither injective nor surjective. (More precisely, [Bad08] only
considers unitarizable representations, but we can extend it by twisting.) In
the split case, |LJgL, (s | is the identity. It follows from [Bad08, Thm. 2.2 and
Thm. 2.7(a)] that |[LJg,p)|(JL(;r)) = & for any essentially square-integrable
representation 7w of GL, (D).

If p is a supercuspidal representation of GL,,(F) and £ > 1, then Z“(p, £)
is, by definition, the unique irreducible quotient of pv1=9/2 x pVB=H/2 x ... x
pv D72 Tt is an essentially square-integrable representation of GL,,,(F). All
essentially square-integrable representations of GL,(F) arise in this way, for
some decomposition n = m¥.

If p’ is a supercuspidal representation of GL,,(D), we can write JL(p') =
Z"(p,s) for some supercuspidal representation p and integer s > 1. Then
Z“(p’, £) is, by definition, the unique irreducible quotient of p'v*1=9/2 x
VB2 5o x p'vs@=D/2 Tt is an essentially square-integrable representation
of GL,,(D). All essentially square-integrable representations of GL, (D) arise
in this way, for some decomposition n = m¢{ (a result of Tadi¢; see [Bad08,
Section 2.4]). Moreover, JL(Z"(p’, £)) = Z"(p, £s) [Bad08, Section 3.1].

If 7 is a smooth representation of GL,(D), let my denote its (unnormalized)
Jacquet module. The following lemma was proved earlier; see Remark 4.1.4.

LEMMA 6.2.1. Suppose that 7 is an admissible representation of GL, (D) over C.
Then the natural map py : m — 7y induces an isomorphism w'V — (7,)?M O,

The following results will be needed in Section 6.3.

LEMMA 6.2.2. Suppose that II is an irreducible generic smooth representation
of GL,.4(F) over C that is essentially unitarizable and such that the representation
7 := |LIgL,py|(IT) of GL, (D) is nonzero. If 1!V # 0, then there exist irreducible
representations py, . .., p, of D*/D(1) such that i is a subquotient of p| X - - - X
o, and recy (IT) |, = @;_, recy JL(0))) -

https://doi.org/10.1017/fms.2019.50 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2019.50

Existence of supersingular representations 51

Proof. After a twist, we may assume that 7 is unitarizable. As [T is, moreover,
generic, we know that IT = o v*' X - - X 0,v* for some square-integrable o; of
GL,, (F) and real numbers o; € (—3, 1) satisfying o+, =0and 6; = 6,41
if o; # 0 (see, for example, [HT01, Lemma 1.3.8]). Since |LIgL, p)|(IT) # O by
assumption, it follows that d | n; for all i and w = [LlgL,(p)|(IT) = o[v* X - --
x o, v*, where o/ is the square-integrable representation of GL,, ,;(D) such that
JL(o/) = o; (see [Bad08, Section 3.5]). Let n! :=n;/d.

From 7/ # 0 and Lemma 6.2.1, it follows that the supercuspidal support
of m is a tame representation of Z (up to conjugacy), so each o/ is of the
form Z"(p/, n;), where p; is an irreducible representation of D*/D(1). We
write JL(p/) = Z"(p;, e;) with p; irreducible supercuspidal, so o; = Z*(p;,
e;n;). In particular, w is a subquotient of the normalized induction of
& 1<i<ro<j<n -1 pyveite(@i=0/2=) " On the other hand, IT is a subquotient of

the normalized induction of &),; <, o o1 £V 271 As recy (IT)|w,
only depends on the supercuspidal support of I1 (see the paragraph before
Thm. VIL.2.20 in [HT01]), we obtain

~ aitein]—1)/2—j
rec/(Mlw, = P 1" recr(p)lw, -
1<i<r,0< j<ein}—1

Similarly, recr(JL(0/))|w, = @Zi:_()l . ;f"_l)/z_krecF(p,-)|WF. Denoting by
0}, ..., pl the representations p;v*+¢(=D/2=)) in any order, a straightforward
computation confirms that @);_, recr (JL(0))w, = recy(IT)|w,. ]

We now recall a result of Bushnell-Henniart concerning explicit functorial
transfers of irreducible representations of D*/D(1). An admissible tame pair
(E/F, ¢) consists of an unramified extension of degree f dividing d and a tamely
ramified smooth character ¢ : E* — C* such that all Gal(E/ F)-conjugates of ¢
are distinct. In that case, after choosing an F-embedding of E into D (which is
unique up to conjugation by D), B := Zp(E) is a central simple E-algebra of
dimension e?, where e := d/f. Define a smooth character A : B*(1+mp) — C*
by declaring it to be ¢ o Nrdz on B* and trivial on 1 + mp. Then 7p(¢) =
Indf;: (14mp) A 1s an irreducible representation of D* /D(1) (of dimension f).
PROPOSITION 6.2.3.

(1) Anyirreducible representation of D* [ D(1) is isomorphic to wp({) for some
admissible tame pair (E/F, {).

(i) The element w € F acts as the scalar { (@ )® on mwp(L).
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(i) If (E/F, ¢) is an admissible tame pair, then

recy (IL(p(£))) = Sp, (nd¥’ (2 ~¢)),

where ng is the unramified quadratic character of E*.

We recall that the special Weil-Deligne representation Sp,(c), for o an

~

irreducible representation of W, is indecomposable and satisfies Sp,(0)|w, =

ol

k=091 " IF
Proof. For (i), see [BH11, Section 1.5]. Part (ii) follows from the definition.
Part (iii) is the main result of [BH11]. I

6.3. On lifting nonsupersingular Hecke modules. Let H := H(GL,(D),
I(1)) be the corresponding pro-p Iwahori—-Hecke algebra over Z [Vigl6], and
for a commutative ring R, let Hy := H ® R. Similarly, we define H, := H(Z,
ZNI(1))and Hz z := H; ® R. Note that the pro-p Iwahori subgroup Z N (1)
is normal in Z. All Hecke modules we will consider are right modules. A finite-
dimensional ”H@ -module is said to be integral if it arises by base change from a

’HZ -module that is finite-free over Z
Let W) :=N/ZNnI(), A(1) := Z/Z N I(1), and define monoids

= {diag(d;,...,8,) € Z :valp(6;) = --- = valp(5,)}

and A(Dt :=ZT/ZNI(1).

We recall that H has an Iwahori-Matsumoto basis 7, for w € W(l) and
a Bernstein basis E, for w € W(1), which, in fact, depends on a choice of
spherical orientation. We choose our spherical orientation such that £, = T,
for w € A(1)*. (This is possible by [Vigl6, Ex. 5.30]. It is the opposite of our
convention in Section 2.3.) Similarly, /7 has basis T/ for w € A(1).

For w € W(1), we have integers g, € g%-°, as recalled in Section 2.3. (Note
that our base alcove C is the one fixed pointwise by 1 (1).)

LEMMA 6.3.1. For z = diag(éy,...,8,) € Z with §; € D>, we have

g. = g i< Mo ) —valp (6]

Proof. As the Iwahori—-Hecke algebra has equal parameters g9, we deduce that
q. = q*“®, where ¢ is the length function relative to the alcove C. By using
the action of the finite Weyl group N'/Z and the first length formula in [Vig16,
Cor. 5.11], we may assume that z € Z*. By [Vigl6, Section 3.9], we then
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haveq. = (I(1)zI (1) : I(1)) =T (1) : IQ)NzI(Dz™Y) = (Uy : zUpz "), where
Uy := U N I(1). Hence, g, = g Xi=<i"ap@G)=valo@) "ag required. O

Let Wy, = S, denote the Weyl group of 7. Recall from [Vigl7, Sections 5,
1.3] that Ay(Ar) is the free module with basis E ) for u € Ar := X,(T) and
that the central subalgebra Z; := Ay(A7)"° of H has a basis consisting of the
sums ZM E, (z) with u running over the Wy-orbits in X,.(T). For I C {1, ..., n},
let E; := E,, @), where u; € X, (T) = Z" is defined by u,; = 1ifi € [ and
wr; = 0otherwise. For 1 <i < n,let Z := Zl,\l\:i E;. By induction and [Vig16,
Cor. 5.28], we see that the algebra Z7 is generated by 2, ..., 2,1, Z*'.

The following lemma follows from [Vigl7, Prop. 6.9].

LEMMA 6.3.2. A finite-dimensional Hﬁp -module M is supersingular if and only
if the action of % on M is nilpotent forall 1 <i <n — 1.

LEMMA 6.3.3. There exists a unique injective algebra homomorphism 6 :
Hyg, — Hg, such that O(T?) =T, forall w € A(1)". We have

E; = " @ =g (T2 ). (6.3.4)

Proof. The first assertion follows from [OV18, Section 2.5.2, Rk. 2.20]. We claim
that for any u € X, (T),

2 o~
E;L(zzr) = qd Zr<s:ur<us(//~s ur)g(T;f(m))’ (635)

which implies (6.3.4) by taking u = u;.

Note that X, (T)* = {u € X.(T) : wy = -+ = w,}. If p e X (T)7,
then u(w) € Z* and hence E,,) = T, and formula (6.3.5) holds. In
general, choose ' € X,(T)* such that u + ' € X,(T)". Then formula (6.3.5)
follows easily from the following three assertions: (1) T/, T ) = T.fi)00)
) EuenEpvm) = @ueqw @)@ Enwiwe) in the notation of [Vigl6,
Section 4.4], where we take the positive square root; and (3) Lemma 6.3.1.
Assertion (1) is clear and assertion (2) is [Vigl6, Cor. 5.28]. I

The following simple and presumably well-known lemma will be used below.
LEMMA 6.3.6. Suppose that p : Wr — GL, (@p) is a smooth representation.
Then for any y € Wy, the valuations of the eigenvalues of p(y) depend only on
the image of y in W /I = Z.

Proof. Fix a geometric Frobenius element Frobr € Wg, and let v; < --- < v,
denote the valuations of the eigenvalues of p(Frobr). We need to show that
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the eigenvalues of p(Frob’. g) have valuations rv; < --- < rv, for any g € I.
As p(Ir) is finite and normalized by p(Froby), we see that p(Froby)" and
p(Ir) commute for some £ > 1, so p(Ir) preserves the generalized eigenspaces
of ,o(Frobf,’). Hence, the valuations of the eigenvalues of ,o(Frobf; g) are
independent of g € I, and the claim follows by passing to £th powers. O

We now fix an isomorphism: : Q, — C.

PROPOSITION 6.3.7. Suppose that Il is an irreducible generic smooth
representation of GL,,(F) over C that is essentially unitarizable and such
that the representation mw := |Llg,p)|(IT) of GL, (D) is nonzero. Suppose that
17 Y@M is a nonzero integral Hg,-module with nonsupersingular reduction,
and let vi < --- < v,y denote the valuations of the eigenvalues of a geometric
Frobenius on 1~ (recy(IT)). Then there exists 1 < j < n — 1 such that

2
Z v = M val(g).

Proof. Step 1: We compute the action of 27, ..., Z, on the Hecke module
1~! (™M) and show, in particular, that it is scalar.

Note by Lemma 6.2.2 that 7/ is a subquotient of (p| x --- x p/ )@
for some irreducible representations p; of D*/D(l), and p; x --- x p, =
Indj™? (pjv?"=D2 ® ... ® p,v=4®~/%) (unnormalized induction). By [OV1S,

Prop. 4.4], we have

_1('0; X% ) 1)) _1(,0 P02 o ®pr/lv—d(n—l)/2)2ﬂ1(l) ®HZ,@,,5H@”’
" (6.3.8)
where we used the homomorphism 6 of Lemma 6.3.3.

By Proposition 6.2.3(i), we can write p; = mp(¢;) for some admissible tame
pair (F;/F,¢). Welet f; ;= [F; : Fland e¢; :=d/f;. Let {/ := 1~(&;). From
Equations (6.3.4) and (6.3.8) and Proposition 6.2.3(ii), we deduce that Z; acts on
171! M) as the scalar

)\j = Z (qﬁ(zieli(/'erl))qu((nH)j/ZZ[E, i) Hgi/(w)e,-)

||=j iel

_ q_aﬂ(g) Z <qd2<n—1)j/2 l‘[;l((w)—ei) (6.3.9)

||=j iel

Step 2: We complete the proof. By assumption, the Hecke module z ~! (/) is
integral, so A, € Z, foralli and A, € Z;. Moreover, as the reduction of 1! (7 7™")
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is nonsupersingular, we deduce by Lemma 6.3.2 that A,,_; € i: for some 1 <
j<n-—1

From now on, assume for convenience that the ¢/ are ordered such that the
sequence val(¢/(zr) ™) is nonincreasing. Consider the polynomial

[Ta—q" "l @) x).
i=1

By (6.3. 9) its Newton polygon is defined by the points (i, val(};) + d2( ) val(q))
for 0 < i < n. From A,_; € Zp, Ai € Zp, and the convexity of the quadratic

function x(x — 1)/2, we deduce that (n — j, d*(",’) val(q)) is a vertex of the
Newton polygon. It follows for the sum of the largest j root valuations that

J .
Zval(qd 0=D2¢ ] (gr)=er)y = dz((;) - (" ; J)) val(g).  (6.3.10)

Again by convexity, we obtain the root valuation bounds

d*(n — jyval(g) Vi<, (6.3.11)

d*(n—j—1val(g) Vi>j. (6.3.12)

val(g” " Vg (@) )
val(q” Vg (@) )

AN\

From Lemma 6.2.2 and Proposition 6.2.3(iii), we see that

n

ei—1
~ w i(fi—1 (ei=1)/2~k
recy(IT)|w, = @@Indwz FA ) 1Rl V=

i=1 k=0

If Frobr denotes a geometric Frobenius of W, then Froblf;” is a geometric
Frobenius of Wg. We see that all eigenvalues of Frobr on IndWF (nel Ui~ l)g“i’)
have valuation (1/f;) val(¢/ (Frobf‘)) = (1/f;) val(¢/(w)). Hence, forz j and
0 < k < ¢ — 1, all eigenvalues of Froby on IndWF (ne’(f’ U{ )| - (“_l)/z ~* have

valuation
] ) valo) < Lvac @) =1\ a
ZVa(é“(w))—(T— )Va(q)\gva(;(w))-i-( 5 >Va(61)
n—1 .
< d(T —(n— J)) val(q)
d dQ2j —
+ S val(g) = (’T”) val(q).
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where we used (6.3.11) and that ¢; — 1 < d. Similarly, fori > jand 0 < k <
e; — 1, we find that the eigenvalues of Frobs on Ind,," (ne’ Uimlen|.Se=biz= * have

valuation greater than @ val(g). Therefore, from (6.3.10), we deduce that

J -1

Jjd J
EDD Z f (— val(¢/(w)) — (Tl —~ k) Val(q)> = > val(g/(@)*)
i=1

i=1 k=0 i=1

6.4. A reducibility lemma. Let F, denote the maximal absolutely unramified
intermediate field of F/Q,. The following lemma generalizes [EGH13,
Prop. 4.5.2], which dealt with regular crystalline Galois representations.

LEMMA 6.4.1. Suppose that p : IFr — GL,l(@p) is a de Rham Galois
representation. Let vy < --- < v, denote the valuations of the eigenvalues
of a geometric Frobenius element acting on WD(p), and for each embedding
T:F —> @ let hyy < --+ < hy, denote the r—Hodge—Tate weights of p. Then

le (v = [F Rl Z 5T, heiforany0 < j < n.
Suppose that h.; < hr nfor some T and that for some 1 j <n—1, wehave
u=[F: Ry, > eirog, hei- Then p is reduczble

Proof. We first choose E/Q, a sufficiently large finite subextension of @p /Q,
so that, in particular, p can be defined over E and all embeddings t have image
contained in E. Choose F’/F a finite Galois extension over which p becomes
semistable. Let D := Dy(p|r, ) be the covariantly associated free Fj ®q, E
module, equipped with actions of ¢, N, Gal(F'/F), where F; denotes the
maximal absolutely unramified intermediate field of F’/Q,. As usual, we write
D= @a:Fé%E D, . Fix any embedding oy : F; — E and let f" :=[F;: Q,]. Note
that /" acts linearly on D and stabilizes each D,.

By construction of WD(p) and Lemma 6.3.6, the eigenvalues of ¢/ on Dy,
have valuations rv; < - -+ < rv,, where r := [F : Fy]. Forany 0 < j < n, choose
a ¢/ -stable E-subspace D, C D, of dimension j such that the eigenvalues
of gof/ on D</70 have valuations rv; < --- < rv;. Then D/ is also N-stable
since N¢o = ppN. Now for each o : F; — E, choose the umque E-subspace
D, C D, that agrees with our choice of D when o = oy and such that
D =@, rj—r Dq 18 @-stable. Then D" is stable under the actions of Fj ®q, E,
¢, N. As in the proof of [EGH13, Prop. 4.5.2] (see also the proof of [BS07,
Prop. 5.1]), we now compute that ty(D’) = ([E : Q,1/[Fo : Q,] Z, , v; and
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that 74 (D’) > ([E: Q,l/[F : Q,]) Z{:l > pop hei. By weak admissibility

of D, we have
J
Z >[F: F]™ Z > hes, (%))

i=1 :F—>E

proving the first claim (with equality when j =0or j = n)

Now suppose that equality holds in (x;) forsome 1 < j <n — 1. If v; = v;4,
then monotonicity of the . ; and (x;,) implies that equahty holds in both (*;_,),
(*j11) and that A, ; = h, ; for all . Thus, by modifying j, we may assume,
without loss of generality, that equality holds in (x;) and that v; < v,y (as h;; <
h. , for some t, by assumption).

Let D’ be the sum of all generalized ¢/ -eigenspaces in the E-vector space D
whose corresponding eigenvalues have valuation at most rv;. As v; < v;yi, we
see that D’ is a free Fj ®q, E-module of rank j, stable under the actions of ¢,
N, and Gal(F'/F). Equality in (x;) gives that t5(D’) = ty(D’), so p admits a
Jj-dimensional subrepresentation. O

REMARK 6.4.2. The lemma can fail when h,; = h., for all r. For example,
let F/Q, be a quadratic extension and x : I — @; a potentially unramified
character that does not extend to Ig,. Then Ind?f” x is irreducible and de Rham

with all Hodge-Tate weights equal to O (since it is potentially unramified). In
particular, V=1 = 0. Concretely, via local class field theory, we can take F' =

Qp2and yx : Q — Q tame and nontrivial on 1 ,,1(Q,2).

6.5. On base change and descent for compact unitary groups. The purpose
of this section is to discuss base change and descent results for compact unitary
groups that go slightly beyond those in [Lab11], namely allowing that the unitary
group is non-quasisplit at some finite places. The proofs will be provided by Sug
Woo Shin in Appendix A.

Suppose that F / F* is a CM extension of number fields with 7+ #Qand G a
unitary group over F* such that

(i) G, is an inner form of GL,4;
(ii) G(ﬁu*) is compact for any place u | oo of F
(ili) G is quasisplit at all finite places that are inert in F / F+.
Let ¢ denote the complex conjugation of F / Ft. Let A'(G) denote the set of

finite places of F* where G is not quasisplit. This is a finite set of places that
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split or ramify in F.Let A(G) denote the set of places of F lying over a place of
AT (G).

PROPOSITION 6.5.1. Suppose that v is a (cuspidal) automorphic representation
of G(Apy). Then there exists a partition n = n; + --- + n, and discrete
automorphic representations IT; of GL,,4(Af) satisfying IT = IIf such that
IT:=11, 8 --- B 1, is a weak base change of . More precisely, at every finite
split place v = ww* of F*, we have |LIg#,|(I1,) = m, as representations of
G(F ) = G(F*) and at infinity, the compatibility is as in [Lab11, Cor. 5.3].

PROPOSITION 6.5.2. Suppose that f/ﬁ* is unramified at all finite places and
that I is a cuspidal automorphic representation of GL,.4 (A ) such that ITY = IT¢,
Il is cohomological, and I1,, is supercuspidal for all w € A(G) (in particular,
|LIg#,)|(ITy) # 0). Then there exists a (cuspidal) automorphic representation
7 of G(Ap+) such that at every finite split place v = ww* of F*, we have
|LIg#,)|(IT,) = m, as representations OfG(F )= G(F*)

6.6. Supersingular representations of GL, (D). We now prove the existence
of supersingular (equivalently, supercuspidal) representations of GL,(D) and
PGL, (D).

THEOREM 6.6.1. Suppose that C is algebraically closed of characteristic p. For
any smooth character ¢ : F* — C*, there exists an irreducible admissible
supercuspidal C-representation of GL,(D) with central character ¢. In
particular, there exists an irreducible admissible supercuspidal C-representation
of PGL,, (D).

COROLLARY 6.6.2. If C is any field of characteristic p, then PGL, (D) admits
an irreducible admissible supercuspidal representation over C.

The proof uses Galois representations associated with automorphic
representations on certain unitary groups. We now make a few relevant definitions
in preparation for the proof.

As in Section 6.3, we fix an isomorphism 1 : @p = C. Recall that if F/F+
is a CM extension of number fields and IT is a regular algebraic cuspidal
polarizable automorphic representation of GL, (A z) (in the sense of [BLGGT14b,
Section 2.1]), we have an associated semisimple potentially semistable p-adic
Galois representation r, ,(IT) : I's — GL, (@p) that satisfies and is determined by
local-global compatibility with IT at all finite places [BLGGT14b, Thm. 2.1.1],
[BLGGT14a].
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Suppose that F+ # Q and that G is a unitary group over F* as in Section 6.5.
If = is an automorphic representation of G(Aj+), then its weak base change
IT = I1, 8 --- B I, of Proposition 6.5.1 is regular algebraic and each [I7; is
polarizable. By the Moeglin—Waldspurger classification of the discrete spectrum
and the previous paragraph, it follows that /7 has an associated semisimple
potentially semistable p-adic Galois representation r,,,(7w) = r,,(IT) : I't —
GL,, (@p) that satisfies and is determined by local-global compatibility with 7 at
all finite places of F that split over F* and are not contained in A(G). (We note
that the Chebotarev density theorem shows that the set of Frobenius elements at
places w of F that split over F* is dense in I'z.) In particular, if IT is not cuspidal,
then r,, (7) is reducible.

Proof of Theorem 6.6.1.  Step 0: We show that it suffices to prove the theorem
when C =F,,.

Given a smooth character ¢ : F* — C*, we can define ¢’ : F* — F;
by extending {|px (which is of finite order and hence takes values in F;)

arbitrarily. If Theorem 6.6.1 holds over F,,, there exists an irreducible admissible
supercuspidal Fp—representation 7 of GL, (D) with central character ¢’. Then by
Step 3 of the proof of Proposition 3.2.1, there exists an irreducible admissible
supercuspidal C-representation " of GL, (D) with central character ¢’. As C is
algebraically closed, a suitable unramified twist of 7’ has central character ¢.

We will assume from now on that C = F,. _

Step 1: We find a CM field F' with maximal totally real subfield F *#£Qanda
place v | p of F* such that

@) F/F* is unramified at all finite places;
(i1) any place of F* that divides p splits in F;
(i) Ff = F;
and a cyclic totally real extension L*/F* of degree nd in which v is inert.

By Krasner’s lemma, we can find a totally real number field H, a place u of H,
and an isomorphism H, — F. Now we apply [Hen83, Lemma 3.6] and its proof
to find finite totally real extensions L*/F*/H and a place v of F F*+ above u such
that L*/F* is cyclic of degree nd, Fv+ = H,, and v is inert in L*. (We briefly
recall the proof: pick a monic polynomial Q of degree nd over F' whose splitting
field is the unramified extension of degree nd. Then let L™ be the splitting field
of a monic polynomial P over H that is u-adically very close to Q and let F* be

the decomposition field of some place above u. We can use sign changes of P at
real places to ensure that L™ is totally real.)
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Now pick any totally imaginary quadratic extension F / F* in which any place
dividing p splits. By [CHT08, Lemma 4.1.2], we can find a finite solvable Galois
totally real extension K*/F* that is hnearly disjoint from L* /I F* such that v
spllts in K* and such that for any prime v of F F+ that ramifies in F and any~pr1me
w’ of K+ above v/, the extension K, o/ Fy F'* is isomorphic to the extension F, /F.
Then we can replace F/F* by KJ’F/K+ L* by K*L", and v by any place of
K™ lying above v to ensure that, without loss of generality, F /F F+ is unramified
at all finite places. (In particular, we can always achieve F F+ # Q in this way.)

We let w denote a place of F lying over v and fix an isomorphism of topological
fields fw 5 F. Welet L := L*F and let ¢ denote the unique complex
conjugation of L. _ _

Step 2: Letting v; 1 p denote any place of F* that is inert in L™ and splits in F,
we now find a unitary group G over F* such that

(i) G, is an inner form of GL,4;
(ii) G(I":u*) is compact for any place u | oo of F*:
(i) G(F,) = GL,(D);
(iv) G is quasisplit at all finite places not contained in {v, v,}.

Let G* denote the unique quasisplit outer form of GL,,; over F+ that splits over
F. By [Clo91, Section 2], we can find an inner form G of G* that satisfies all the
above conditions. (If nd is odd, we do not need the auxiliary place v;. If nd is
even, we use v; to ensure our local conditions can be globally realized.)

The set AT (G) (defined in Section 6.5) contains v if d > 1 and is contained in
{v, v1}. Any place of A(G) is inert in L and splits over F't, and the set A; (G) of
places of L lying above A(G) is in canonical bijection with A(G). ~

For any finite place v/ ¢ AT(G) of FT that splits as v' = w'w™ in F, we
obtain an isomorphism ¢, : G(I?j) = G(fw/) = GL,,d(fwr) that is unique
up to conjugacy. Moreover, ¢ o ¢,y and (. differ by an outer automorphism of
GLnd(fw/c). We also fix an isomorphism ¢,, : G(Fj) = G(I?u,) = GL,(D). (Itis
canonical, up to conjugacy, by condition (i).)

Step 3: We find an algebraic Hecke character x : A /L* — C* with associated
potentially crystalline p-adic Galois representation ¢ =r,,(x) : I — @: (see
[CHTO08, Lemma 4.1.3]) such that

(i) Yy = ed0;

(ii) for any place w € A, (G), the induced representation Ind Xw’ is
irreducible;
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(iii) the representation r := Ind,Cf Y has regular Hodge—Tate weights, that is, for
cachk’': F — @p, the nd integers HTKr(Ind;f Yr) are pairwise distinct;

(iv) the restriction 7| to I'z, of the reduction r = Ind?f ¥ is irreducible.

We first introduce some notation. Let A, denote the places w’ of L that divide
p. Note that, by construction, any place w’ € A;(G) U A, splits over LT, that is,
w’ # w. Let Sx := Hom (K, @p) for any topological field K of characteristic
zero and S; := Hom(k, Fp) for any field k of characteristic p.

Our strategy is to carefully choose continuous characters 6, : I, — @X for
any w' € A (G)U A, that satisfy (0,/05.)];, , =& “¥~V|;, and are potentially
crystalline when w’ € A,. We then deduce By [BLGGT14b Lemma A.2.5(1)]
that there exists a character ¢ : I, — (Q)p such that ¢ = e~®=D and | n, =
Ouwly, , forall w' € A, (G) U A,. In particular, ¥ is potentially crystalline, and
we let x be the associated algebraic Hecke character. It follows that condition (i)
holds. —

For any w’ € A;(G), we can choose a smooth character ¢, : FLab =L, —

@; such that the Gal(L,,/ F /)-conjugates of ¢, |Ox are pairwise distinct. (For

example, we can take a faithful character of k; | and inflate it to OF .) We may
assume, without loss of generality, that ¢,,¢;. = 1.

Now suppose that w’ € A,. Suppose that we are given any integers A, (k € S.)
satisfying A +A.. =nd —1forallk € S;. Let6;, : I, , — @; be any crystalline
character with HT,.(0;)) = A, forall k € §; , C §;. Without loss of generality,
by our constraint on the A,, we may assume that 0 (05 )¢ = g=d=D,

For w" € A (G)U A, define

Cw ifw e AL (G) — A,
Op = 1605¢y fw e A (G)NA;
0, ifw e A, —AL(G).
This completes the construction of a potentially crystalline character ¥ and its

associated algebraic Hecke character x. By construction, for any w’ € A, (G), the
character 1¢,, |1L y corresponds to x, |Ox under the local Artin map. Therefore,

since the Gal(L,,/ Fu,) -conjugates of gw |Ox are pairwise distinct, we deduce

that condition (ii) holds.
Finally, we will choose the integers A, (¢ € S;) so that conditions (iii) and (iv)
hold. Note that condition (iii) is equivalent to the condition

(iii") for any «’ € Sy the nd integers {A, : k € Sy, k| = k'} are pairwise distinct.
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First choose the A, for those x € §; that do not induce either of the places w,
w€ on L so that condition (iii") holds for any ' € S not inducing either of the
places w, w* on F. It remains to choose the A, for those  that induce the place w
on L (since the remaining A, are determined by the condition A, + A, = nd — 1
for all k), that is, fork € Sy,.

To choose the A, for « € S, , we note that 7| ry, = Ind,cf ; ($| r,) 18 irreducible
if and only if the Gal(L,/ ﬁw)-conjugates of | ., are pairwise distinct or,
equivalently, if the characters Eﬂ;w (0 < i < nd—1) are pairwise distinct. (Recall
that ¢ = #kp.) We have ¥|;,, = 09¢,|;,, ifd > Lor ¢|;,, =6, otherwise.
By [GHS18, Cor. 7.1.2], noting our opposite conventions concerning Hodge—Tate
weights, we have 0|, =[], Sie, w; ", where w, corresponds to the character

Or, k[, Z F; under local class field theory and b, := 3, ., .,

o € 8,, and s € Z. Then we can choose the A, for k € S, so that E|1Lw =w.

A,. Fix any

By taking s so that the a)f;fi (i=0,...,nd — 1) are pairwise distinct (taking, for
example, s = 1), condition (iv) holds. Finally, we can ensure that condition (iii")
holds for all " € Sg, while keeping Flr; unchanged by varying the A, (for
k € S;,) modulo ¢g"! — 1. This completes Step 3.

Step 4: Using automorphic induction and descent, we define an automorphic
representation 7’ of G (Ag+) with associated Galois representation r = Ind?f v.

Let IT” denote the automorphic induction of x with respect to the cyclic
extension L/F. It is an automorphic representation of GL,,(Ay) that is
parabolically induced from a cuspidal representation. (For the functoriality
of automorphic induction in cyclic extensions, we refer to [Hen12], which shows,
in particular, that it is compatible with local automorphic induction at all places.
Note that the results of [Hen12] apply to unitary representations, but by twisting,
they continue to hold for twists of unitary representations.)

We claim that I7” is cuspidal. This follows from [Hen12, Theorems 2, 3 and
Proposition 2.5], provided that the Hecke characters {x° : o € Gal(L/ F )} are
pairwise distinct. Equivalently, the Galois characters {¢/° : o € Gal(L/ F )} are
pairwise distinct, which, in turn, is equivalent to the condition that Ind,Cf Y ois
irreducible. This is a consequence of condition (iv) in Step 3, so I1” is cuspidal.

Let [T := 11" ® |det|%1d71)/2. By condition (i) in Step 3, we have xx¢ =
| - |Z(”d_]); hence, (/T')Y = IT". On the other hand, I1,, is cohomological by
[Clo90, Lemma 3.14] as it is regular by condition (iii") in Step 3. It follows
that I1T’ is regular algebraic and polarizable in the sense of [BLGGT14b,
Section 2.1], so we have an associated Galois representation r,,(/1'). By
local-global compatibility at unramified places and Chebotarev, we deduce that
rp (IT') = Ind}7 .
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For w' € A(G), the local factor IT,, is supercuspidal, as recy (/1)) is
irreducible by condition (ii) in Step 3. It follows from what we recalled in
Section 6.2 that LI g7 ) |(IT,,) # 0.

By Proposition 6.5.2, we deduce that /1" descends to a (cuspidal) automorphic
representation 7' of G(Af:) such that for all finite places v’ ¢ AT(G) of F +
that split as v' = w'w” in F, we have 7/, = [T/, as representations of G(F}) =
GL,4(F,). We deduce that r,,, () = Ind;! .

Step 5: We use the automorphic representation 7’ to define an irreducible
admissible Fp—representation o of G(F}") = GL,(D). _

Fix a maximal compact open subgroup K, of ]_[U,I , G(F, ). If U is any compact
open subgroup of K,G(A%;”) and W is any Z,[K ,]-module, we let S(U, W)
be the Z,,—module of functions f : G(F*)\G(A%ﬂ) — W such that f(gu) =
u;l f(g) forall g € G(A%,) and u € U (where u, denotes the projection of u
to K,).

Using the compactness of G at infinity, we see as in [EGH13, Lemma 7.1.6]
that there exists a Q,-algebraic representation Wy, of [],, G(f;,r ) over @p
such that h_r)nU S(U, W) contains 171’ as G(A%ﬁ)—representation. Choose a
K ,-invariant Z,-lattice W5, in Wy, and let Wy, := Wi ®z, F,.

alg
Pick a compact open subgroup U = [],,.. U, of G(A%,) such that

(i) (7)Y #0;

(ii) there exists a place v’ { poo of F+ such that U, contains no element of finite
order other than the identity;

v'foo

(iii) the group ]_[U,‘p U, is contained in K, and acts trivially on Wy,.

Note that condition (ii) implies that for any compact open subgroup U’ =
o [ Ltpeo U with U < K, we have .S(U/,W) = W® as Z,-modules for
some s > 1 depending only on U’. In particular,

SW', W) ®z, R — S(U', W ®z, R) (6.6.3)

for any Zp—algebra R (see, for example, [EGH13, Section 7.1.2]). We will apply
this with R = @p and R = FP.

Let P denote the set of places w' { p of F that split over a place v’ of F*
not contained in A*(G) and are such that U,, is a maximal compact subgroup
of G(IE;,r ). For each such w’, we conjugate the isomorphism ¢,, of Step 2 so that
Ly (Uy) = GLnd((’)g“,). Note that the set P has finite complement in the set of
places of F that split over F*+. Let T” denote the commutative polynomial Z,,—
algebra in the variables TY forw e Pand 0 <i < nd, acting on any S(U, W) as

w
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double coset operators as in [EGH13, Section 7.1.2]. Note that the ring T” acts by
scalars on (:~'7'®)V inside S(U, Wyy,) and stabilizes the Z ,-lattice S(U, )
Therefore, there exists a unique maximal ideal m of T” with residue field IF,, such
that (¢ ~'7"*)Y C S(U, Waig)m-

Applying (6.6.3) and localizing at m, we obtain that S(U, Wye)m # 0. Then
S(U, Fp)m ®Fp Wa]g = S(U, Walg)m # 0,

where the isomorphism uses condition (iii) on U. Writing U" := [],, 4, Uy and
S, F,) = lim,, S(U'U,,F,), we have S(U",F,),, # 0. This is a nonzero
admissible smooth representation of G(I?v+ ) = GL, (D), using the isomorphism
t, of Step 2. Let o be an irreducible (admissible) GL,(D)-subrepresentation
of S(U?, Fp)m, which exists by the proof of Lemma 9.9 in [Her11] or [HV12,
Lemma 7.10].

Step 6: We show that o is supersingular or, equivalently, supercuspidal.

By [OVI8, Thm. 3], it suffices to show that the Hz -module o!®
is supersingular, where I(1) denotes the pro-p Iwahori subgroup of
GL,(D) = G(I'?UJr ) defined in Section 6.3. In fact, we will even show that
Swve, Fp)m)”” =SWr-1(1), Fp)m is supersingular. Assume, by contradiction,
that this is false, so one of the operators Z; for 1 < j < n — 1 has a nonzero
eigenvalue A; on S(UV - I (1), Fp)m.

Again from (6.6.3), we know that S(U" - 1 (1), Zp) ®z, R=SWU"-I(1),R)
for R = @p and R = Fp. By applying [EGH13, Lemma 4.5.1] (a version of
the Deligne-Serre lemma) with A = TP[%], M = SWU" - I(l),Zp), n the
maximal ideal of A generated by m and Z; — X;, we deduce that there exists
a homomorphism 6 : A — Z,, such that the 6-eigenspace of S(U" - (1), @p)
is nonzero, ker(8|r») = m, and 0(Z)) € Z;. By [EGH13, Lemma 7.1.6], there
exists an automorphic representation = of G (A ) satisfying

(i) ~'7>®)Y"1M has a nontrivial #-eigenspace;
(i1) 7y 1S trivial.

It follows from (i) that : =7/ £ 0 is an integral Hg,-module whose reduction
is nonsupersingular. (A priori, we get that (: '/ (V)® is integral for some s > 1,
but then we can project to any factor. Note that any finitely generated submodule
of a finite free Z,-module is free.)

By local-global compatibility and [CHT08, Cor. 3.1.2], for any w’ € P, the
characteristic polynomial of 7(Frob,, ) equals Z:’io(—1)"(Nw’)“(“*“/zTu(j)X"d*"
modulo m, where Frob,, denotes a geometric Frobenius element at w’. The same
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is true for 7, (), as ker(0|r») = m, and hence we deduce by the Chebotarev
density theorem thatr, ,(w) = 7.

By Proposition 6.5.1, we obtain an automorphic representation T of GL,,;,(Af)
with associated Galois representation r,, , (I7) lifting 7 such that LIz ) |(I1,) =
7, for all finite places v’ of F* that split as v' = w'w’ in F. As 7 is irreducible
by construction, we know that IT is cuspidal. In particular, I, is essentially
unitarizable and generic for each finite place w’ of F.Let v < .-+ < v, denote
the valuations of the eigenvalues of a geometric Frobenius on 1! (recy(I1,)).
From Proposition 6.3.7 (applied to IT,,), we deduce that there exists 1 < j <n—1
such that

2
Z v = M val(g). (6.6.4)

Note that the infinitesimal character of I7T is the same as that of the trivial
representation. By [BLGGT14b, Thm. 2.1.1], we deduce that

HT.(r,(ID|r; ) ={0,1,...,nd — 1}

for all T : F,, — Q, and that tWD(r,,,, (IT)|r;, )™ = recy(IT, ® |det|y """%).
Together with (6.6.4), it follows that

jd 5. . .
d“j(n — d
Z v = _¥ val(q) + jd val(g"="/?) = <12 ) val(q),
i=1
where v; < -+ < v, denote the valuations of the eigenvalues of a geometric

Frobenius on WD(r, , (17)|pﬁw ). By Lemma 6.4.1, noting that val(q) = [Fy : Q,],
it follows that r,, , (IT)| Iy, is reducible, which contradicts that its reduction 7| Iy,
is irreducible by Step 3.

Step 7: We fix the central character.

Suppose that we are given a smooth character ¢ : F* — F:. As in Step 0, it is
enough to construct an irreducible admissible supercuspidal representation such
that OF acts via ¢ |ox.

Note that o has a central character x, as it is irreducible and admissible. We
claim that x, |o; = det(r| Ifw) - g"@d=D/2 ynder the local Artin map. The central
character of the GL, (D)-representation :~!7, in Step 6 lifts x, and is equal to
the central character of 1 ~'IT,,. (This equality follows from the definition of LJ in
[Bad08, Section 2.7], noting that I1, is generic and hence fully induced from an
essentially square-integrable representation.) By local-global compatibility at p
(see Step 6), the latter character equals WD(detr, , (IT)| Iy, )| 1z, On Oy, under the
local Artin map. Asr, ,(1T)| Iy, has parallel Hodge—Tate weights O, 1, ..., nd —1,

https://doi.org/10.1017/fms.2019.50 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2019.50

F. Herzig, K. Koziot and M.-F. Vignéras 66

we have detr,, (IT)|; = g—dd=D/2 \WD(detr,, (IT)] 17, )1;, and hence deduce
the claim.

It thus suffices to show that in Step 3, we can choose r such that det(r| lfw) is
any prescribed character that is extendable to Iz, . Let us fix any ¥ € S;, and

write V| 1, = wy for some s € Z. Then the condition that the Jlj’;w (i=0,1,
..., nd — 1) are pairwise distinct means
nd

-1
s#0 (mod qz ] ) V¢ | nd, £ <nd. (6.6.5)
q —_—

On the other hand, det(F|,. ) = ]_[;’iglwﬂ; = o, where k¥’ € S is the

restriction of ¥ to kg . As any character Iz, — F: restricts to a power of wg on
inertia, we can prescribe det(r|;; ) if and only if we can choose s in any residue
class modulo ¢ — 1. Since (¢"? —1)/(¢* — 1) > g + 1 forany £ | nd, £ < nd, it
follows that we can pick any s in the interval [1, g — 1], completing the proof. []

Proof of Corollary 6.6.2. Going back to Step 5 of the proof of Theorem 6.6.1, it
is clear that the representation S(U"?, F,,)m # 0 is defined over a finite field (as 7
is), and hence so is its irreducible subrepresentation o . This proves the corollary
when C is a sufficiently large finite field of characteristic p. We conclude by
Proposition 3.2.1. O
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Appendix A. Base change
SuG W00 SHIN'

In this appendix, we will prove Propositions 6.5.1 and 6.5.2.

We need a character identity for the Jacquet-Langlands correspondence. We
fix compatible Haar measures on GL,,;(F) and GL,(D) in the sense of [Kot88,
page 631]. We say that f € C°(GL, (D)) and f* € C°(GL,,(F)) are associated
or that f* is a transfer of f, if the orbital integral identity O;(f) = Os(f*)
holds for every regular semisimple elements § € GL,(D) and §* € GL,,(F)
with the same characteristic polynomial. (We use the same Haar measures on
the centralizers of § and §* in GL,(D) and GL,,(F), respectively, to compute
the orbital integrals.) A well-known fact, proven in [DKV84], is that every f €
C°(GL, (D)) admits a transfer in C>°(GL,;(F)). (This is a special case of the
Langlands—Shelstad transfer.) Let e(GL, (D)) € {£1} denote the Kottwitz sign
[Kot83]. Explicitly, e(GL, (D)) = (—1)"",

PROPOSITION A.0.1. Let w* be an irreducible unitarizable representation of
GL,4(F). For every associated pair f € C°(GL,(D)) and f* € C>°(GL,4(F)),
we have

¥ (f*) = e(GL,(D)) - tr (ILIgr, | (7)) (f).

Proof. This follows from [Bad07, Prop 3.3] and the Weyl integration formula
[DKV84, A.3.f] for GL, (D) and GL,,(F). O

We assume that the CM extension F/ F* and the unitary group G over F* are
as in Section 6.5. _

Write G* for a quasisplit inner twist of G over F* (with an isomorphism
between G* and G over an algebraic closure of F +) By convention, every trace
considered on p-adic or adelic points of G* over F (as opposed to over F +) will
mean the twisted trace relative to the action of Gal(F /F +) on Resg, + G* (with
the Whittaker normalization), unless specified otherwise.

Proof of Proposition 6.5.1. This proposition is implied by [Labl1l, Cor. 5.3]
except possibly the relation |LJg#,,|(I1,) = m,. (In fact, this assertion is implicit
in [Lab11, Cor. 5.3] where it reads ‘Aux places non ramifiées ou décomposées

! Department of Mathematics, University of California, Berkeley, 901 Evans Hall, Berkeley, CA
94720, USA and Korea Institute for Advanced Study, Dongdaemun-gu, Seoul 130-722, Republic
of Korea; email: sug.woo.shin@berkeley.edu.
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la correspondance o, +— m, est donnée par le changement de base local.’
However, when v = ww?¢, the author introduced the notion of local base change
(Section 4.10 of op. cit.) only when U is a general linear group at v (in his
notation). We need the case when U is a nontrivial inner form of a general linear
group at v.)

We elaborate on this point. Thus, we assume v = ww¢ as in the proposition.
We will omit the subscript for [LJ| when there is little danger of confusion.

Let S be a finite set of places of F+ containing all infinite places as well
as all finite places where either m or G is ramified. Denote by S¢ the subset
of finite places in S. In particular, Sy D A*(G). For an irreducible admissible
representation o of G(Af+) unramified outside S, we write BC(c5) = IT% to
mean that the local unramified base change of o, is I1, at all places u ¢ S. (The
unramified base change is defined via the Satake transform.) Using the Langlands
parametrization at archimedean places, we write BC(o) = Il to mean that the
local base change of o, is 1. _ _

For each finite place u and f, € C°(G(F,")), let f* € C*(G*(F,")) denote a
transfer. There exists ¢, € Cf"(G*(F RF+ f;)) whose base change transfer is f
by [Labl11, Lem. 4.1]. Write fs, := ]_[uesf fuand @5, 1= ]_[uesf Dy

Let I1, := IT,, ® IT,. be the v-component of [T, which is a representation of
G*(F ®p+ F}b). Let r* := I, via the isomorphism G*(F,;}) = G*(F,)). Then we
have the following character identities, where tr IT,(¢,) means the twisted trace
by abuse of notation:

trIT,(¢,) = e () = e(G(F))) - tr (JLI|Gx))) (£.)- (A.0.2)

The first equality holds by the same computation as for [Rog90, Prop. 4.13.2(a)].
The second equality is Proposition A.0.1. On the other hand, the trace formula
argument of [Lab11, Thm. 5.1] shows

3 m) o (fs) = ¢ - tr g (s,). (A.03)

with a constant ¢ and the automorphic multiplicity m(c) € Zx,, where the sum
runs over o such that BC(¢%) = IT5 and BC(0.,) = I1,,. Again the trace on the
right-hand side is the twisted trace. Since (A.0.3) holds for each f* =[], oo fu
(and f; and ¢, constructed from f, at each u as above), we choose f, to be the
characteristic function on a sufficiently small compact open subgroup of G(F,j')
atu € S¢\{v}. Then tro,(f,) = 0, so we obtain

Y _nl, o) o, (f,) = il () withn(1,,0) >0,

o
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where ¢’ is a new constant and the sum runs over ¢ such that BC(¢%) = IT5,
BC(0y) = [y, and tro,(f,) # 0 at every u € S¢\{v}. Note that 0 = 7
contributes to the sum with n(I1,, ) > 0, by choice of f, at u € S¢\{v}. By
choosing a suitable f,, we deduce that ¢’ # 0. Substituting (A.0.2), we obtain

Y n(,.0)tro,(f,) = ¢ - e(GED) -t (JLID) (f.).

o

with the sum running over the same set of o. Since the sum is not identically
zero, |LJ|(7r)) is irreducible (rather than 0). By linear independence of characters
of G(F,"), we deduce that the coefficients on the left-hand side are zero unless
oy = |LI| (7). Since n(1,, ) > 0, we must have 7, = |LJ|(;r)), noting that no
cancelation takes place in the sum as the coefficients are nonnegative. O

Proof of Proposition 6.5.2. The proposition would follow from [Labll,
Thm. 5.4], but we need some care since our G is not quasisplit. We also
need some more information at split places. Thus, we sketch the trace formula
argument. Again, we drop the subscript from |LJ|. (We say ‘some care’ for the
following reason. Contrary to the assumption on U above [Lab11, Thm. 5.4]
that U is quasisplit at all inert places, it seems the assumption ought to be that
U is quasisplit at all finite places. We believe that ‘Le second membre étant
non identiquement nul’ (in the proof of [Lab11, Thm. 5.4], between the second
and third displays) is not always true, for example, if IT, is a principal series
representation at a non-quasisplit place that splits in F; see the third paragraph of
the current proof. If it were true, we could deduce Proposition 6.5.2 directly from
[Labll, Thm. 5.4].)

The argument of [LLab11, Thm. 5.4] shows the identity (adapted to our notation)

> mo) o (f) = trI1(¢) (A.0.4)

with the functions ¢ = [], ¢, on G*(Az) and f =[], f. on G(Afz+) as in the
proof there, where the sum runs over automorphic representations o of G(Az+)
with multiplicity m (o) whose weak base change is I1. The right-hand side is
interpreted as the twisted trace by the convention mentioned earlier.

The key point to show is that the right-hand side does not always vanish. There
is a subtlety when G is not quasisplit because not every test function ¢ may be
allowed in (A.0.4). The potential problem is that a base change transfer of ¢, at u
from G*(I?u) to G*(I?u*') is not in the image of endoscopic transfer from G(F,j')
to G*(Flf). We make a choice of test functions avoiding this problem.

At 0o, one does the same as in Labesse’s proof so that tr [T (¢) # 0. At
finite places u, we recall that f, and ¢, are related as follows: writing f for a
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transfer of f, from G(I?u*) to G*(I?;), the functions f;" and ¢, are associated in
the sense of [Labl11, 4.5]. There is no problem when u ¢ A*(G) as G and G*
are isomorphic outside A™(G); more precisely, we choose ¢, on G(F Q5+ fj )
such that

tr I7,(¢.) # 0

and choose f, to be a base change transfer to G(I?;r ) (which exists by [Labl1,
Lem. 4.1], where it is called an ‘associated’ function). At each v = ww® € AT(G),
choose f, and let f,* be a transfer. Write & := I1,, via the chosen isomorphism
G*(F,) = G*(Ff). Then by Proposition A.0.1,

i (f5) = e(G(F)) - tr (JLINH) (f)-

Note that [LJ| (7)) is irreducible (that is, nonzero) since ) is supercuspidal by
assumption. If we choose f, such that tr(|LJ|(zx;))(f,) # O, then the above
identity tells us that trr)(f) # 0. Choosing ¢, to be a function associated with
. (such a ¢, exists by either [Lab11, Lem. 4.1]), we have as in (A.0.2),

wI,(p,) = (f) #0.

We have exhibited a choice of f and ¢ above such that (A.0.4) is valid with the
right-hand side nonvanishing. Therefore, there exists some 7 on the left-hand
side contributing with positive multiplicity. Let S be the set of places of F+
containing all infinite places and the finite places where G and [T are ramified.
Write St for the subset of finite places in S. As we are free to choose ¢, in the
unramified Hecke algebra at each u € S;, we may assume that 75 is unramified
with BC(r%) = IT5. The nonvanishing of tr 7w, ( f.) tells us that BC(7r,) = M.
Thus, (A.0.4) is reduced to a formula of the form (A.0.3), with 7 contributing
nontrivially to the sum. Arguing as in the proof of the preceding proposition, we
deduce that |[LJ|(7}) = 7,. O]
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