SIMPLEXES SELF-POLAR FOR A SIMPLEX

AUGUSTINE O. KONNULLY

(Received 28 May 1969; revised 21 July 1969) Communicated by T. E. Room

In this paper we prove the existence of simplexes self-polar for a given simplex in projective space of dimensions higher than two. And noting the reciprocity of the relationship between a simplex and any simplex self-polar for it, further, we consider a configuration in projective space associated with a pair of mutually selfpolar simplexes. Finally the results obtained are related to the simplexes determined by Hadamard matrices in space of special dimensions.

1. Polarity with regard to a simplex

In projective space of *n* dimensions, Π_n , let *S* be the simplex of reference with vertex-vectors e_0 , e_1 , \cdots , e_n and let $a = a_0 e_0 + a_1 e_1 + \cdots + a_n e_n = (a_0, a_1, \cdots, a_n)$ be the co-ordinate vector of an arbitrary point disjoint from *S*. The Π_{n-1} joining the face $x_i = x_j = 0$ of *S* to the point *a* meets the edge $\langle e_i, e_j \rangle$ in the point $a_i e_i + a_j e_j$. The harmonic conjugate of this point with regard to the vertices e_i and e_j is $a_i e_j - a_j e_j$. *S* and *a* determine $\frac{1}{2}n(n+1)$ such points, all lying in the prime $\alpha \equiv a^{*T}x = 0$, where $a_i^* = a_i^{-1}$ and $a^* = (a_0^*, a_1^* \cdots a_n^*)$.

DEFINITION. The point *a* and the prime $\alpha \equiv a^{*T}x = 0$ are designated *pole* and *polar* with regard to *S*.

2. Self-polar simplexes

DEFINITION. A simplex will be said to be *self-polar* for a given simplex, if and only if each prime face of it is the polar of the opposite vertex with regard to the given simplex.

Mutually self-polar tetrahedra and mutually self-polar simplexes have been considered by S. R. Mandan [1] and Ashgar Hameed [2].

Let A be a simplex with vertices a^0, a^1, \dots, a^n . If each of its faces is the polar for S of the corresponding vertex, then

$$(a^{i})^{*T}a^{j} \begin{cases} = 0 & \text{if } i \neq j \\ = n+1 & \text{if } i = j \\ 309 \end{cases}$$

Write also A for the matrix of which the columns are the vectors a^i , that is, $A = [a^0, a^1, \dots, a^n]$. Then from the definition it follows that

THEOREM 1. The simplex A is self-polar for the simplex of reference S if and only if

(1)
$$A^{*T}A = (n+1)I.$$

For $n = 1$, $A = \begin{bmatrix} a^0 & a^0 \\ a^1 & -a^1 \end{bmatrix}$,

and the simplex consists of a pair of points harmonically separating the two points of reference. For n = 2 there is no real matrix with the required property, (1) being seen to imply

$$\sum_{k=0}^{2} (a_{k}^{i} | a_{j}^{i})^{2} = 0, \qquad (k, j = 0, 1, 2; \ k \neq j)$$

which no set of real numbers can satisfy.

When $n \ge 3$ we can find real matrices; and correspondingly there exist simplexes self-polar for a simplex. To prove this, let *B* be a simplex with vertices b^0, b^1, \dots, b^n ; $b^0 = (k, 1, 1, \dots, 1), b^1 = (1, k, 1, \dots, 1), \dots, b^n = (1, 1, \dots, 1, k)$. The matrix $B = [b^0, b^1, \dots, b^n]$ will satisfy the condition (1) provided

(2)
$$k + \frac{1}{k} + (n-1) = 0$$

If $n \ge 3$ there is a real value of k which satisfies this equation. If k_n denote one of the roots of (2) and k_n^* its reciprocal then it is clear that B_n and B_n^* , obtained from B on putting $k = k_n$ of k_n^* , are real matrices satisfying (1), and the simplex with columns of B_n or B_n^* for co-ordinate vectors of the vertices will be self-polar for S. When n = 3, $k_n = k_n^*$ and $B_n = B_n^*$. Thus there is at least one simplex self-polar for a given simplex S, when n > 2.

It may be now shown that if there is one simplex self-polar for a given simplex S, then there are infinitely many simplexes similarly self-polar for S. For, if B be a simplex with vertices b^0 , b^1 , \dots , b^n , $b^i = (b_0^i, b_1^i, \dots, b_n^i)$, self-polar for S, and if M be the matrix obtained from the matrix $B = [b^0, b^1, \dots, b^n]$ by multiplying the rows of B by non-zero real numbers c_0, c_1, \dots, c_n respectively so that $M = [m^0, m^1, \dots, m^n]$, where $m^i = (c_0 b_0^i, c_1 b_1^i, \dots, c_n b_n)$ then

$$M^{*T}M = B^{*T}B = (n+1)I$$

Hence the simplex M, that is the simplex with the columns of M for co-ordinate vectors of vertices, is self-polar for S. The numbers c_0, c_1, \dots, c_n being arbitrary, given any point not on any one of the faces of S, it is always possible to choose them so that m^i is this point. That means, given an arbitrary point in Π_n (not on any one of the faces of S) there is at least one simplex self-polar for S with this point for a vertex. Thus

THEOREM 2. In real projective space of 2 dimensions there is no simplex (triangle) self-polar for another simplex (triangle). But there exist infinitely many simplexes self-polar for a given simplex in space of every dimensions higher than 2.

3. Related self-polar simplexes

Let A be a simplex self-polar for S. Also A be the matrix with the coordinatevectors of the vertices of the simplex for columns. Then from condition (1), since $A^{*T} = A^{T*}$, we deduce

(3.1)
$$(n+1)I = A^{*T}A = (A^*)^T (A^*)^* = (A^*)^{*T}A^*$$

(3.2)
$$(n+1)I = AA^{*T} = (A^{T*})^T A^T = (A^T)^{*T} A^T.$$

So also

(3.3)
$$(n+1)A^{-1} = A^{T*} \Rightarrow (A^{-1})^* = (n+1)A^T \Rightarrow (A^{-1})^{*T} = (n+1)A$$

 $\Rightarrow (A^{-1})^{*T}A^{-1} = (n+1)I$

Hence

THEOREM 3. If the columns of A are the coordinate-vectors of the vertices of a simplex self-polar for S, so also are the columns of A^* , A^T and A^{-1} .

The coordinate-vectors of the vertices of S in relation to A as simplex of reference are the columns of A^{-1} so that the relation $(A^{-1})^{*T}A^{-1} = (n+1)I$ means that S is self-polar for A. So

THEOREM 4. If A is self-polar for S, then S is self-polar for A.

4. Simplexes in perspective

Let S be the simples of reference and $\mathbf{u} = (u_0, u_1, \dots, u_n)$ be the coordinatevector of any point disjoint from S. Any simplex T_k in perspective with S from the point \mathbf{u} has vertices given by $\mathbf{t}_k^0 = (k_0 u_0, u_1, \dots, u_n), \mathbf{t}_n^1 = (u_0, k_1 u_1, u_2, \dots, u_n),$ $\dots, \mathbf{t}_k^n = (u_0, u_1, \dots, k_n u_n)$. T_k is self-polar for S if and only if $T_k = [\mathbf{t}_k^0, \mathbf{t}_k^1, \dots, \mathbf{t}_k^n]$ satisfies the condition (1), that is, $T_k^{*T}T_k = (n+1)I$. This requires that $k_0 = k_1$ $= \dots = k_n = k$, where k + 1/k + (n-1) = 0, that is, $\mathbf{k} = k(1, 1, \dots, 1), k = k_n$ or k_n^* . If n > 3, k_n and k_n^* are distinct, and if n = 3, they are equal. Thus

THEOREM 5. Given any simplex S and any point u disjoint from S, there are two simplexes perspective with S from u and self-polar for S, if n > 3.

The system S, u, T_k , $k = k(1, 1, \dots, 1)$, determines a central collineation (homology) with centre u and axial prime $u^{*T}x = 0$ which maps S to T. Let u, a^1, a^2, \dots, a^n be the vertices of a simplex self-polar for S so that, in particular, each point a^i lies in the axial plane $u^{*T}x = 0$ and each prime $(a^i)^{*T}x = 0$ passes through the centre u. Under this homology S maps to the simplex T_k and polar Augustine O. Konnully

pairs for S to the polar pairs for T_k . All points a^i are invariant since they lie in the axial prime and all primes $(a^i)^{*T}x = 0$ are invariant because they pass through the centre. Thus

THEOREM 6. If two mutually self-polar simplexes S and T are in perspective from a point u, then, if any simplex of which u is a vertex is self-polar for S, it is self-polar for T also.

5. A configuration

Let S be the simplex of reference and A be any simplex self-polar for S with vertices $a^0, a^1, \dots, a^n, a^i = (a_0^i, a_1^i, \dots, a_n^i)$. Let $A^j(k)$ denote the simplex with vertices $c_0^j(k) = (ka_0^j, a_1^j, \dots, a_n^j)$, $c_1^j(k) = (a_0^j, ka_1^j, a_2^j, \dots, a_n^j)$, $\dots, c_n^j = (a_0^j, a_1^j, \dots, ka_n^j)$. $A^j(k)$ is a simplex perspective with S from the point a^j which is a vertex of A. If $k = k_n$ or $k_n^*, A^j(k)$ will be also self-polar for S. Then since A is self-polar for S and has the point a^j for a vertex, A will be self-polar for $A^j(k)$ also. Thus S, A, $A^j(k)$ form a set of three mutually self-polar simplexes. And $A^j(k)$, $(j = 0, 1, \dots, n)$ form a set of (n+1) sim plexes each self-polar for both A and S.

Similarly let $S_i(k)$ denote the simplex with $c_i^0(k)$, $c_i^1(k) \cdots c_i^n(k)$ for vertices. Then $S_i(k)$ will be a simplex perspective with A from the point e_i^i which is a vertex of the simplex S. S and $S_i(k)$ are mutually self-polar. Writing down the co-ordinate vectors of the vertices of $S_i(k)$ in relation to A as simplex of reference and using the condition (1), it is seen that $S_i(k)$ is self-polar for A also, if, and only if, $k = k_n$ or k_n^* . Thus $S_i(k)$, $(i = 0, 1, \dots, n)$ are simplexes self-polar for both S and A, provided $k = k_n$ or k_n^* .

The $(n+1)^2$ points which form the vertices of the (n+1) simplexes $A^j(k)$ are the same as the $(n+1)^2$ points which form the vertices of the (n+1) simplexes $S_i(k)$. The simplex $A^j(k)$ has one vertex in common with each of the simplexes $S_0(k), S_1(k), \dots, S_n(k)$. And the simplex $S_i(k)$ has one vertex in common with each of the simplexes $A^j(k)$.

Since when $k = k_n$ or k_n^* the simplexes $A^j(k)$ and $S_i(k)$ are self-polar for both S and A the polar of each point $c_i^j(k)$ is the same for both S and A. As each point $c_i^j(k)$ is the vertex common to the two simplexes $A^j(k)$ and $S_i(k)$, so also the polar of $c_i^j(k)$ for S and A will be a prime face common to the two simplexes.

Let $p_i^j(k)$ denote the polar of $c_i^j(k)$ for S and A. The $(n+1)^2$ points $c_i^j(k)$ and the $(n+1)^2$ primes $p_i^j(k)$ now form a configuration with each point $c_i^j(k)$ lying in 2n primes and each prime containing 2n points. The point $c_i^j(k)$ lies in every one of the prime faces of the two simplexes $A^j(k)$ and $S_i(k)$ except the common face $p_i^j(k)$; and the prime $p_i^j(k)$ contains every vertex of the simplexes except the common vertex $c_i^j(k)$.

For each value of $k = k_n$, k_n^* , there is one such configuration. And the whole configuration for each value, made up of $(n+1)^2$ points and $(n+1)^2$ primes is self-polar for both S and A.

6. In $2^m - 1$ dimensions

Consider the space Π_n where *n* is a Mersenne number, $n = 2^m - 1$. The 2^n points $(1, \pm 1, \dots, \pm 1)$ in Π_n form a set *A* called a *set of associated points*. The simplex of reference is called the *diagonal simplex of the set*. We prove that the points of the set fall into the vertices of a number of simplexes each of which is self-polar for the diagonal simplex.

Let

$$U_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad U_2 = \begin{bmatrix} U_1 & U_1 \\ U_1 & -U_1 \end{bmatrix}, \cdots$$
$$U_m = \begin{bmatrix} U_{m-1} & U_{m-1} \\ U_{m-1} & -U_{m-1} \end{bmatrix}.$$

Then U_m is a $2^m \times 2^m$ matrix with the coordinates of some point of the set A in each column.

It is easily verified that the simplex U_m , that is, the simplex with the columns of U_m as coordinate-vectors of vertices, is self-polar for the diagonal simplex S. (It may be observed that in each of the matrices U_1, U_2, \dots, U_m , the elements of any column multiplied by the corresponding elements of another column give a column different from the first column of the matrix and that the sum of the elements of every column other than the first column is zero; this, if true in U_r , being easily seen to be true in U_{r+1} .) If the rows of U_m are multiplied respectively by a_0, a_1, \dots, a_n where a_i are all ± 1 or the coordinates of any one of the points of set A, we will have a simplex which is self-polar for S and has all its vertices in the set A.

The set G of all (n+1)-tuples (a_0, a_1, \dots, a_n) where $a_0 = 1$, $a_i = \pm 1$, $(i = 1, 2, \dots, n)$, with the law of composition defined on it by (a_0, a_1, \dots, a_n) . $(b_0, b_1, \dots, b_n) = (a_0b_0, a_1b_1, \dots, a_nb_n)$ is a group with $(1, 1, \dots, 1)$ for unit element. And the subset H of the (n+1) elements (u_0, u_1, \dots, u_n) where u_0, u_1, \dots u_n are the elements of a column of U_m is a subgroup of G, the product of any two elements of the set H being always an element of the set. Let H, H_1, \dots, H_k be the distinct cosets of H in G.

Now there is a one-to-one correspondence between G and the set A of points. To H corresponds the set of points which form the vertices of the simplex U_m ; and to each H_i corresponds a simplex U_m^i obtained by multiplying the rows of U_m respectively by the coordinates of one of the points of A. As U_m is self-polar for S, so each simplex U_m^i is self polar for S. And as G is partitioned into the classes H, H_1, \dots, H_k so that each element of G belongs to one and only one of these classes so also the points of the set A are partitioned into the vertices of the simplexes $U_m, U_m^1, U_m^2, \dots, U_m^k$. Thus the points of the set A fall into a number of simplexes each of which is self-polar for S. The number of these simplexes is evidently $2^n/(n+1) = 2^{n-m}$.

Augustine O. Konnully

If the elements of the (j+1)-th row of U_m^i are all multiplied by (-1), we will have a simplex self-polar for S and one among the simplexes into which the points of the set A fall. This simplex will be prespective with U_m^i from the (j+1)-th vertex of S, i.e. the point e_j . As j ranges over 0, 1, 2, \cdots , n, each of the (n+1) simplexes we get is prespective with U_m^i from one of the vertices of S. Thus the simplexes $U_m, U_m^1, \cdots, U_m^k$ are such that each one is perspective with (n+1) others, the centres of perspective being the different vertices of S.

In particular, when n = 3 the set of associated points fall into two tetrahedra

which are both self-polar for the tetrahedron of reference. They are also self-polar for each other. The desmic system thus consists a set of three tetrahedra which are mutually self-polar.

My thanks are due to the referee for the present form of the paper.

References

- S. R. Mandan, 'Properties of Mutually Self-polar Tetrahedra', Bull. Ca. Math. Soc. 33 (1941), 147-155.
- [2] Asghar Hameed, 'On Mutually Self-polar Simplexes', Bull. Ca. Math. Soc. 35 (1943), 43.

St. Albert's College, Ernakulam Cochin, India