SIMPLEXES SELF-POLAR FOR A SIMPLEX

AUGUSTINE O. KONNULLY

(Received 28 May 1969; revised 21 July 1969)
Communicated by T. E. Room

In this paper we prove the existence of simplexes self-polar for a given simplex in projective space of dimensions higher than two. And noting the reciprocity of the relationship between a simplex and any simplex self-polar for it, further, we consider a configuration in projective space associated with a pair of mutually selfpolar simplexes. Finally the results obtained are related to the simplexes determined by Hadamard matrices in space of special dimensions.

1. Polarity with regard to a simplex

In projective space of n dimensions, Π_{n}, let S be the simplex of reference with vertex-vectors $\boldsymbol{e}_{0}, \boldsymbol{e}_{1}, \cdots, \boldsymbol{e}_{n}$ and let $\boldsymbol{a}=a_{0} \boldsymbol{e}_{0}+\mathrm{a}_{1} \boldsymbol{e}_{1}+\cdots+a_{n} \boldsymbol{e}_{n}=\left(a_{0}, a_{1}, \cdots\right.$, a_{n}) be the co-ordinate vector of an arbitrary point disjoint from S. The Π_{n-1} joining the face $x_{i}=x_{j}=0$ of S to the point a meets the edge $\left\langle\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right\rangle$ in the point $a_{i} e_{i}+a_{j} e_{j}$. The harmonic conjugate of this point with regard to the vertices \boldsymbol{e}_{i} and \boldsymbol{e}_{j} is $a_{i} e_{j}-a_{j} e_{j} . S$ and a determine $\frac{1}{2} n(n+1)$ such points, all lying in the prime $\alpha \equiv \boldsymbol{a}^{* T} \boldsymbol{x}=0$, where $a_{i}^{*}=a_{i}^{-1}$ and $\boldsymbol{a}^{*}=\left(a_{0}^{*}, a_{1}^{*} \cdots a_{n}^{*}\right)$.

Definition. The point \boldsymbol{a} and the prime $\alpha \equiv \boldsymbol{a}^{* T} \boldsymbol{x}=0$ are designated pole and polar with regard to S.

2. Self-polar simplexes

Definition. A simplex will be said to be self-polar for a given simplex, if and only if each prime face of it is the polar of the opposite vertex with regard to the given simplex.

Mutually self-polar tetrahedra and mutually self-polar simplexes have been considered by S. R. Mandan [1] and Ashgar Hameed [2].

Let \boldsymbol{A} be a simplex with vertices $\boldsymbol{a}^{0}, \boldsymbol{a}^{1}, \cdots, \boldsymbol{a}^{\boldsymbol{n}}$. If each of its faces is the polar for S of the corresponding vertex, then

$$
\left(a^{i}\right)^{* a^{j}} \begin{cases}=0 & \text { if } i \neq j \\ =n+1 & \text { if } i=j\end{cases}
$$

Write also A for the matrix of which the columns are the vectors $\boldsymbol{a}^{\boldsymbol{i}}$, that is, $A=\left[a^{0}, \boldsymbol{a}^{1}, \cdots, \boldsymbol{a}^{n}\right]$. Then from the definition it follows that

Theorem 1. The simplex A is self-polar for the simplex of reference S if and only if

$$
\begin{equation*}
A^{* T} A=(n+1) I \tag{1}
\end{equation*}
$$

For $n=1$,

$$
A=\left[\begin{array}{rr}
a^{0} & a^{0} \\
a^{1} & -a^{1}
\end{array}\right]
$$

and the simplex consists of a pair of points harmonically separating the two points of reference. For $n=2$ there is no real matrix with the required property, (1) being seen to imply

$$
\sum_{i=0}^{2}\left(a_{k}^{i} \mid a_{j}^{i}\right)^{2}=0, \quad(k, j=0,1,2 ; k \neq j)
$$

which no set of real numbers can satisfy.
When $n \geqq 3$ we can find real matrices; and correspondingly there exist simplexes self-polar for a simplex. To prove this, let B be a simplex with vertices $\boldsymbol{b}^{0}, \boldsymbol{b}^{1}, \cdots, \boldsymbol{b}^{n} ; \boldsymbol{b}^{0}=(k, 1,1, \cdots, 1), \boldsymbol{b}^{1}=(1, k, 1, \cdots, 1), \cdots, \boldsymbol{b}^{n}=(1,1, \cdots$, $1, k)$. The matrix $B=\left[\boldsymbol{b}^{0}, \boldsymbol{b}^{1}, \cdots, \boldsymbol{b}^{n}\right]$ will satisfy the condition (1) provided

$$
\begin{equation*}
k+\frac{1}{k}+(n-1)=0 \tag{2}
\end{equation*}
$$

If $n \geqq 3$ there is a real value of k which satisfies this equation. If k_{n} denote one of the roots of (2) and k_{n}^{*} its reciprocal then it is clear that B_{n} and B_{n}^{*}, obtained from B on putting $k=k_{n}$ of k_{n}^{*}, are real matrices satisfying (1), and the simplex with columns of B_{n} or B_{n}^{*} for co-ordinate vectors of the vertices will be self-polar for S. When $n=3, k_{n}=k_{n}^{*}$ and $B_{n}=B_{n}^{*}$. Thus there is at least one simplex self-polar for a given simplex S, when $n>2$.

It may be now shown that if there is one simplex self-polar for a given simplex S, then there are infinitely many simplexes similarly self-polar for S. For, if B be a simplex with vertices $\boldsymbol{b}^{0}, \boldsymbol{b}^{1}, \cdots, \boldsymbol{b}^{n}, \boldsymbol{b}^{i}=\left(b_{0}^{i}, b_{1}^{i}, \cdots, b_{n}^{i}\right)$, self-polar for S, and if M be the matrix obtained from the matrix $B=\left[b^{0}, b^{1}, \cdots, b^{n}\right]$ by multiplying the rows of B by non-zero real numbers $c_{0}, c_{1}, \cdots, c_{n}$ respectively so that $M=$ $\left[\boldsymbol{m}^{0}, \boldsymbol{m}^{1}, \cdots, \boldsymbol{m}^{n}\right.$], where $\boldsymbol{m}^{i}=\left(c_{0} b_{0}^{i}, c_{1} b_{1}^{i}, \cdots, c_{n} b_{n}\right)$ then

$$
M^{* T} M=B^{* T} B=(n+1) I
$$

Hence the simplex M, that is the simplex with the columns of M for co-ordinate vectors of vertices, is self-polar for S. The numbers $c_{0}, c_{1}, \cdots, c_{n}$ being arbitrary, given any point not on any one of the faces of S, it is always possible to choose them so that \boldsymbol{m}^{i} is this point. That means, given an arbitrary point in Π_{n} (not on any one of the faces of S) there is at least one simplex self-polar for S with this point for a vertex. Thus

Theorem 2. In real projective space of 2 dimensions there is no simplex (triangle) self-polar for another simplex (triangle). But there exist infinitely many simplexes self-polar for a given simplex in space of every dimensions higher than 2.

3. Related self-polar simplexes

Let A be a simplex self-polar for S. Also A be the matrix with the coordinatevectors of the vertices of the simplex for columns. Then from condition (1), since $A^{* T}=A^{T *}$, we deduce

$$
\begin{align*}
& (n+1) I=A^{* T} A=\left(A^{*}\right)^{T}\left(A^{*}\right)^{*}=\left(A^{*}\right)^{* T} A^{*} \tag{3.1}\\
& (n+1) I=A A^{* T}=\left(A^{T *}\right)^{T} A^{T}=\left(A^{T}\right)^{* T} A^{T} \tag{3.2}
\end{align*}
$$

So also

$$
\begin{align*}
(n+1) A^{-1}=A^{T *} \Rightarrow\left(A^{-1}\right)^{*}=(n+1) A^{T} \Rightarrow & \left(A^{-1}\right)^{* T}=(n+1) A \tag{3.3}\\
& \Rightarrow\left(A^{-1}\right)^{* T} A^{-1}=(n+1) 1 .
\end{align*}
$$

Hence
Theorem 3. If the columns of A are the coordinate-vectors of the vertices of a simplex self-polar for S, so also are the columns of A^{*}, A^{T} and A^{-1}.

The coordinate-vectors of the vertices of S in relation to A as simplex of reference are the columns of A^{-1} so that the relation $\left(A^{-1}\right)^{* T} A^{-1}=(n+1) I$ means that S is self-polar for A. So

Theorem 4. If A is self-polar for S, then S is self-polar for A.

4. Simplexes in perspective

Let S be the simples of reference and $u=\left(u_{0}, u_{1}, \cdots, u_{n}\right)$ be the coordinatevector of any point disjoint from S. Any simplex T_{k} in perspective with S from the point \boldsymbol{u} has vertices given by $\boldsymbol{t}_{\boldsymbol{k}}^{0}=\left(k_{0} u_{0}, u_{1}, \cdots, u_{n}\right), \boldsymbol{t}_{\boldsymbol{n}}^{1}=\left(u_{0}, k_{1} u_{1}, u_{2}, \cdots, u_{n}\right)$, $\cdots, \boldsymbol{t}_{k}^{n}=\left(u_{0}, u_{1}, \cdots, k_{n} u_{n}\right) . T_{k}$ is self-polar for S if and only if $T_{k}=\left[\boldsymbol{t}_{k}^{0}, \boldsymbol{t}_{k}^{1}, \cdots\right.$, $\left.t_{k}^{n}\right]$ satisfies the condition (1), that is, $T_{k}^{* T} T_{k}=(\mathrm{n}+1) I$. This requires that $k_{0}=k_{1}$ $=\cdots=k_{n}=k$, where $k+1 / k+(n-1)=0$, that is, $k=k(1,1, \cdots, 1), k=k_{n}$ or k_{n}^{*}. If $n>3, k_{n}$ and k_{n}^{*} are distinct, and if $n=3$, they are equal. Thus

Theorem 5. Given any simplex S and any point u disjoint from S, there are two simplexes perspective with S from u and self-polar for S, if $n>3$.

The system $S, \boldsymbol{u}, T_{\boldsymbol{k}}, \boldsymbol{k}=k(1,1, \cdots, 1)$, determines a central collineation (homology) with centre \boldsymbol{u} and axial prime $\boldsymbol{u}^{* T} \boldsymbol{x}=0$ which maps S to T. Let \boldsymbol{u}, $a^{1}, a^{2}, \cdots, a^{n}$ be the vertices of a simplex self-polar for S so that, in particular, each point \boldsymbol{a}^{i} lies in the axial plane $\boldsymbol{u}^{* T} \boldsymbol{x}=0$ and each prime $\left(a^{i}\right)^{* T} \boldsymbol{x}=0$ passes through the centre \boldsymbol{u}. Under this homology S maps to the simplex T_{k} and polar
pairs for S to the polar pairs for T_{k}. All points \boldsymbol{a}^{i} are invariant since they lie in the axial prime and all primes $\left(a^{i}\right)^{* T} \boldsymbol{x}=0$ are invariant because they pass through the centre. Thus

Theorem 6. If two mutually self-polar simplexes S and T are in perspective from a point \boldsymbol{u}, then, if any simplex of which \boldsymbol{u} is a vertex is self-polar for S, it is selfpolar for T also.

5. A configuration

Let S be the simplex of reference and A be any simplex self-polar for S with vertices $\boldsymbol{a}^{0}, \boldsymbol{a}^{1}, \cdots, \boldsymbol{a}^{\boldsymbol{n}}, \boldsymbol{a}^{i}=\left(a_{0}^{i}, a_{1}^{i}, \cdots, a_{n}^{i}\right)$. Let $A^{j}(k)$ denote the simplex with vertices $c_{0}^{j}(k)=\left(k a_{0}^{j}, \mathrm{a}_{1}^{j}, \cdots, a_{n}^{j}\right), c_{1}^{j}(k)=\left(a_{0}^{j}, k a_{1}^{j}, a_{2}^{j}, \cdots, a_{n}^{j}\right), \cdots, c_{n}^{j}=\left(a_{0}^{j}\right.$, $\left.a_{1}^{j}, \cdots, k a_{n}^{j}\right) . A^{j}(k)$ is a simplex perspective with S from the point a^{j} which is a vertex of A. If $k=k_{n}$ or $k_{n}^{*}, A^{j}(k)$ will be also self-polar for S. Then since A is selfpolar for S and has the point a^{j} for a vertex, A will be self-polar for $A^{j}(k)$ also. Thus $S, A, A^{j}(k)$ form a set of three mutually self-polar simplexes. And $A^{j}(k)$, $(j=0,1, \cdots, n)$ form a set of $(\mathrm{n}+1)$ sim plexes each self-polar for both A and S.

Similarly let $S_{i}(k)$ denote the simplex with $c_{i}^{0}(k), c_{i}^{1}(k) \cdots c_{i}^{n}(k)$ for vertices. Then $S_{i}(k)$ will be a simplex perspective with A from the point e_{i}^{i} which is a vertex of the simplex $S . S$ and $S_{i}(k)$ are mutually self-polar. Writing down the co-ordinate vectors of the vertices of $S_{i}(k)$ in relation to A as simplex of reference and using the condition (1), it is seen that $S_{i}(k)$ is self-polar for A also, if, and only if, $k=k_{n}$ or k_{n}^{*}. Thus $S_{i}(k),(i=0,1, \cdots, n)$ are simplexes self-polar for both S and A, provided $k=k_{n}$ or k_{n}^{*}.

The $(n+1)^{2}$ points which form the vertices of the $(n+1)$ simplexes $A^{j}(k)$ are the same as the $(n+1)^{2}$ points which form the vertices of the $(n+1)$ simplexes $S_{i}(k)$. The simplex $A^{j}(k)$ has one vertex in common with each of the simplexes $S_{0}(k), S_{1}(k), \cdots, S_{n}(k)$. And the simplex $S_{i}(k)$ has one vertex in common with each of the simplexes $A^{j}(k)$.

Since when $k=k_{n}$ or k_{n}^{*} the simplexes $A^{j}(k)$ and $S_{i}(k)$ are self-polar for both S and A the polar of each point $c_{i}^{j}(k)$ is the same for both S and A. As each point $\boldsymbol{c}_{i}^{j}(k)$ is the vertex common to the two simplexes $A^{j}(k)$ and $S_{i}(k)$, so also the polar of $c_{i}^{j}(k)$ for S and A will be a prime face common to the two simplexes.

Let $p_{i}^{j}(k)$ denote the polar of $c_{i}^{j}(k)$ for S and A. The $(n+1)^{2}$ points $c_{i}^{j}(k)$ and the $(n+1)^{2}$ primes $p_{i}^{j}(k)$ now form a configuration with each point $c_{i}^{j}(k)$ lying in $2 n$ primes and each prime containing $2 n$ points. The point $c_{i}^{j}(k)$ lies in every one of the prime faces of the two simplexes $A^{j}(k)$ and $S_{i}(k)$ except the common face $p_{i}^{j}(k)$; and the prime $p_{i}^{j}(k)$ contains every vertex of the simplexes except the common vertex $c_{i}^{j}(k)$.

For each value of $k=k_{n}, k_{n}^{*}$, there is one such configuration. And the whole configuration for each value, made up of $(n+1)^{2}$ points and $(n+1)^{2}$ primes is selfpolar for both S and A.

6. In $\mathbf{2}^{m}-1$ dimensions

Consider the space Π_{n} where n is a Mersenne number, $n=2^{m}-1$. The 2^{n} points $(1, \pm 1, \cdots, \pm 1)$ in Π_{n} form a set A called a set of associated points. The simplex of reference is called the diagonal simplex of the set. We prove that the points of the set fall into the vertices of a number of simplexes each of which is self-polar for the diagonal simplex.

Let

$$
\begin{gathered}
U_{1}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right], \quad U_{2}=\left[\begin{array}{rr}
U_{1} & U_{1} \\
U_{1} & -U_{1}
\end{array}\right], \cdots \\
U_{m}=\left[\begin{array}{rr}
U_{m-1} & U_{m-1} \\
U_{m-1} & -U_{m-1}
\end{array}\right]
\end{gathered}
$$

Then U_{m} is a $2^{m} \times 2^{m}$ matrix with the coordinates of some point of the set A in each column.

It is easily verified that the simplex U_{m}, that is, the simplex with the columns of U_{m} as coordinate-vectors of vertices, is self-polar for the diagonal simplex S. (It may be observed that in each of the matrices $U_{1}, U_{2}, \cdots, U_{m}$, the elements of any column multiplied by the corresponding elements of another column give a column different from the first column of the matrix and that the sum of the elements of every column other than the first column is zero; this, if true in U_{r}, being easily seen to be true in U_{r+1}.) If the rows of U_{m} are multiplied respectively by $a_{0}, a_{1}, \cdots, a_{n}$ where a_{i} are all ± 1 or the coordinates of any one of the points of set A, we will have a simplex which is self-polar for S and has all its vertices in the set A.

The set G of all $(n+1)$-tuples $\left(a_{0}, a_{1}, \cdots, a_{n}\right)$ where $a_{0}=1, a_{i}= \pm 1$, $(i=1,2, \cdots, n)$, with the law of composition defined on it by ($a_{0}, a_{1}, \cdots, a_{n}$). $\left(b_{0}, b_{1}, \cdots, b_{n}\right)=\left(a_{0} b_{0}, a_{1} b_{1}, \cdots, a_{n} b_{n}\right)$ is a group with $(1,1, \cdots, 1)$ for unit element. And the subset H of the $(n+1)$ elements ($u_{0}, u_{1}, \cdots, u_{n}$) where u_{0}, u_{1}, \cdots u_{n} are the elements of a column of U_{m} is a subgroup of G, the product of any two elements of the set H being always an element of the set. Let H, H_{1}, \cdots, H_{k} be the distinct cosets of H in G.

Now there is a one-to-one correspondence between G and the set A of points. To H corresponds the set of points which form the vertices of the simplex U_{m}; and to each H_{i} corresponds a simplex U_{m}^{i} obtained by multiplying the rows of U_{m} respectively by the coordinates of one of the points of A. As U_{m} is self-polar for S, so each simplex U_{m}^{i} is self polar for S. And as G is partitioned into the classes H, H_{1}, \cdots, H_{k} so that each element of G belongs to one and only one of these classes so also the points of the set A are partitioned into the vertices of the simplexes $U_{m}, U_{m}^{1}, U_{m}^{2}, \cdots, U_{m}^{k}$. Thus the points of the set A fall into a number of simplexes each of which is self-polar for S. The number of these simplexes is evidently $2^{n} /(n+1)=2^{n-m}$.

If the elements of the $(j+1)$-th row of U_{m}^{i} are all multuplied by (-1), we will have a simplex self-polar for S and one among the simplexes into which the points of the set A fall. This simplex will be prespective with U_{m}^{i} from the $(j+1)$-th vertex of S, i.e. the point e_{j}. As j ranges over $0,1,2, \cdots, n$, each of the $(n+1)$ simplexes we get is prespective with U_{m}^{i} from one of the vertices of S. Thus the simplexes $U_{m}, U_{m}^{1}, \cdots, U_{m}^{k}$ are such that each one is perspective with $(n+1)$ others, the centres of perspective being the different vertices of S.

In particular, when $n=3$ the set of associated points fall into two tetrahedra

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1
\end{array}\right] \text { and }\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

which are both self-polar for the tetrahedron of reference. They are also self-polar for each other. The desmic system thus consists a set of three tetrahedra which are mutually self-polar.

My thanks are due to the referee for the present form of the paper.

References

[1] S. R. Mandan, 'Properties of Mutually Self-polar Tetrahedra', Bull. Ca. Math. Soc. 33 (1941), 147-155.
[2] Asghar Hameed, 'On Mutually Self-polar Simplexes', Bull. Ca. Math. Soc. 35 (1943), 43.
St. Albert's College, Ernakulam
Cochin, India

