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Linear preservers on idempotents of
Fourier algebras

Ying-Fen Lin and Shiho Oi

Abstract. In this article, we give a representation of bounded complex linear operators that preserve
idempotent elements on the Fourier algebra of a locally compact group. When such an operator is,
moreover, positive or contractive, we show that the operator is induced by either a continuous group
homomorphism or a continuous group antihomomorphism. If the groups are totally disconnected,
bounded homomorphisms on the Fourier algebra can be realized by the idempotent preserving
operators.

1 Introduction

Let G be a locally compact group. The Fourier–Stieltjes B(G) and the Fourier algebras
A(G) of G were introduced by Eymard in his celebrating paper [11]. Recall that B(G)
is the linear combination of all continuous positive-definite functions on G, and
as a Banach space, B(G) is naturally isometric to the predual of W∗(G), the von
Neumann algebras generated by the universal representations ωG of G. Moreover,
it is a commutative Banach ∗-algebra with respect to pointwise multiplication and
complex conjugation. The Fourier algebra A(G) is the closed ideal of B(G) generated
by the functions with compact supports. As a Banach space, A(G) is isometric to
the predual of the group von Neumann algebra VN(G), the von Neumann algebra
generated by the left regular representations λG of G. It is well known that A(G) is
regular and semisimple, and the Fourier and the Fourier–Stieltjes algebras are both
subalgebras of Cb(G), the algebra of continuous bounded functions on G.

Takesaki and Tatsuuma in [24] showed that there is a one-to-one correspondence
between compact subgroups of G and nonzero right invariant closed self-adjoint
subalgebras of A(G). As a refinement, Bekka, Lau, and Schlichting in [2] studied
nonzero, closed, invariant ∗-subalgebras of A(G). They showed that these spaces are
the Fourier algebras A(G/K) of the quotient group G/K for some compact normal
subgroup K of G. On the other hand, Forrest [12] introduced the Fourier algebra
A(G/K) of the left coset space G/K, where K is a compact (not necessary to be
normal) subgroup of the locally compact group G. This algebra can simultaneously be
viewed as an algebra of functions on G/K and as the subalgebra of A(G) consisting
of functions in A(G) which are constants on left cosets of K. Note that A(G/K) is
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Linear preservers on idempotents of Fourier algebras 1327

regular and semisimple, the spectrum σ(A(G/K)) is G/K, and it is a norm-closed
left translation invariant ∗-subalgebra of A(G).

A long-standing question in harmonic analysis is to determine all homomor-
phisms of Fourier or Fourier–Stieltjes algebras of any locally compact groups. For any
pair of locally compact abelian groups G and H, Cohen [6] characterized all bounded
homomorphisms from the group algebra L1(G) to the measure algebra M(H). In
doing so, he made use of a profound discovery of his characterization of idempotent
measures on the groups. Cohen’s results were generalized by Host in [14], where he
discovered the general form of idempotents in the Fourier–Stieltjes algebras, and
characterized bounded homomorphisms from A(G) to B(H) when the group G has
an abelian subgroup of finite index. Further generalizations were made in [15, 16] for
any locally compact amenable group G, where completely bounded homomorphisms
from A(G) into B(H) were characterized by continuous piecewise affine maps (see
also [7]). Most general results were given by Le Pham in [20], and he determined all
contractive homomorphisms from A(G) into B(H) for any locally compact groups
G and H.

To describe idempotent elements in the Fourier–Stieltjes and the Fourier algebras,
we first recall some terminologies. Let G be a group, and let K be a subgroup of G; we
see that Ks = ss−1Ks for any s ∈ G, which means that we need not distinguish between
left and right cosets of the group G. The coset ring of G, denoted Ω(G), is the smallest
ring of subsets of G containing all cosets of subgroups of G. We denote Ωo(G) the
ring of subsets generated by open cosets of G, and similarly, Ωc

o(G) the ring of subsets
generated by compact open cosets of G. By [14], idempotents in the Fourier–Stieltjes
algebra B(G) are the indicator functions 1F of an element F of Ωo(G). Let IB(G) be
the set of all idempotent elements in B(G). We denote the closure of the span of IB(G)
by BI(G). From [17, Proposition 1.1], we have that

A(G) ∩ IB(G) = {1Y ∶ Y ∈ Ωc
o(G)},

which gives rise to idempotents in A(G), denoted by I(G). Let AI(G) be the
subalgebra of A(G) generated by I(G). Note that Ilie and Spronk [16] showed that
1F is an idempotent in B(G) with ∥1F∥B(G) = 1 if and only if F is an open coset in
G; however, there are idempotents with small norms [23] or with large norms [1].
Moreover, the existence of idempotents of arbitrarily large norm implies the existence
of homomorphisms of arbitrarily large norm (see [1] for details). Thus, idempotent
elements play an essential role in the study of homomorphisms on Fourier algebras.
It is of its own interest to study the norms of idempotent elements in Fourier–Stieltjes
and Fourier algebras, but for our purpose, we will focus solely on operators that
preserve idempotents.

In the rich literature of linear preservers, there are many works that study linear
maps T on spaces X which preserve some subsets S of X, i.e., T(S) ⊂ S. Dieudonné
in [8] studied semilinear maps on Mn(K), the algebra of n × n matrices over a field
K, which preserve the set of all singular matrices. After that, many mathematicians
considered linear maps on Mn(K) that preserve subsets of matrices with different
properties (e.g., [3, 9, 18, 22] to name a few). In [4], it is shown that every complex
linear map T on Mn(C) which preserves the set of all idempotents is either an inner
automorphism or an inner antiautomorphism. In addition, in [5], linear maps on
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Mn(C)which send potent matrices (that is, matrices A satisfy Ar = A for some integer
r ≥ 2) to potent matrices were characterized. Since then, the studies of idempotent
preserving maps have attracted considerable interest (see, e.g., [10, 13]). Recently, in
[21], the authors proved that every additive map from the rational span of Hermitian
idempotents in a von Neumann algebra into the rational span of Hermitian idempo-
tents in a C∗-algebra can be extended to a Jordan ∗-homomorphism.

In this article, we study bounded linear operators from A(G) into B(H) which
send idempotents to idempotents. We show that such an operator will give rise
to an algebraic homomorphism on AI(G). The algebra AI(G) will be our main
object of study, namely, we will characterize linear mappings defined on the Fourier
algebra A(G) or on AI(G) which preserve I(G). Moreover, we show that when
the groups are totally disconnected, idempotent preserving operators will recover
algebraic homomorphisms on the Fourier algebra.

2 Main results

Let G be a locally compact group, and let K be a closed subgroup of G. We will denote
by G/K the homogeneous space of left cosets of K. Let

B(G ∶ K) ∶= {u ∈ B(G) ∶ u(xk) = u(x) for all x ∈ G , k ∈ K},

that is, functions in B(G) which are constant on cosets of K, and

A(G ∶ K) ∶= {u ∈ B(G ∶ K) ∶ q(supp(u)) is compact in G/K}−B(G) ,

where supp(u) is the support of u in G and q is the canonical quotient map from G to
G/K. If, furthermore, K is a normal subgroup, by [12, Proposition 3.2], we have that
B(G ∶ K) and A(G ∶ K) are isometrically isomorphic to the Fourier–Stieltjes and the
Fourier algebras B(G/K) and A(G/K), respectively. Note that A(G ∶ K) ∩ A(G) ≠
{0} if and only if K is compact (see [12, Proposition 3.1] or [24, Theorem 9] and [2,
Theorem 2.1] for more details).

Let e be the identity of the group G, and we denote the connected component of e
by Ge , which is a closed normal subgroup of G; thus, G/Ge is a totally disconnected
locally compact group. The following result about the algebra AI(G) generated by
idempotents of A(G) in relation with A(G ∶ Ge)was given in [17]; for the completion,
we give a short proof in the article.

Proposition 2.1 [17, Proposition 1.1(ii)] If the connected component Ge is compact,
then AI(G) = A(G ∶ Ge), that is, AI(G) consists of all functions in A(G) that are
constant on cosets of Ge . On the other hand, if Ge is not compact, then AI(G) = {0}.

Proof Let qG ∶ G → G/Ge be the quotient map onto G/Ge . Since Ge is compact, via
u ↦ u ○ qG , we have that A(G/Ge) is isometrically isomorphic to A(G ∶ Ge), which
is a closed subalgebra of A(G). Thus, AI(G) = span{1Y ∶ Y ∈ Ωc

o(G)} ⊆ A(G ∶ Ge).
Conversely, since G/Ge is totally disconnected, we have that the span of the idempo-
tents of A(G/Ge) is dense [12, Theorem 5.3]. Moreover, A(G/Ge) is isomorphic to
A(G ∶ Ge); thus, A(G ∶ Ge) is generated by idempotents of A(G/Ge), so A(G ∶ Ge) ⊆
AI(G). ∎
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If the Fourier algebra which contains nontrivial idempotents, that is, the
connected component Ge , is compact, then by Proposition 2.1, there is an isometric
isomorphism from AI(G) onto A(G/Ge). More precisely, it induces an isometric
isomorphism φG ∶ AI(G) → A(G/Ge) as

φG( f )(qG(a)) = f (a)(2.1)

for any f ∈ AI(G) and a ∈ G, where qG ∶ G → G/Ge is the quotient map onto G/Ge .

2.1 Idempotent preserving maps with T(I(G)) ⊂ IB(H)

Let G and H be two locally compact groups. We consider a bounded complex linear
map T ∶ A(G) → B(H) which satisfies

T(I(G)) ⊂ IB(H).(2.2)

For any f ∈ span{1Y ∶ Y ∈ Ωc
o(G)}, there exist α i ∈ C and Yi ∈ Ωc

o(G) such that
f = Σn

k=1αk1Yk . Thus, we have T f = Σn
k=1αk T1Yk ∈ span{1Y ∶ Y ∈ Ωo(H)} ⊂ B(H). Let

us recall that AI(G) = span{1Y ∶ Y ∈ Ωc
o(G)} and BI(H) = span{1Y ∶ Y ∈ Ωo(H)}.

Since T is a bounded map, we obtain T(AI(G)) ⊆ BI(H) ⊂ B(H).
Our aim is to obtain a representation of such a map T on AI(G). If I(G) =

{0}, then AI(G) = {0}. Since T is complex linear, we have T = 0 on AI(G). Thus,
without loss of generality, we can assume that the Fourier algebra A(G) have nonzero
idempotent elements. Hence, the connected component Ge is always a compact
normal subgroup of G. On the other hand, we define the following map, which will
be used in the sequel.

Definition 2.1 Let G be a locally compact group. Using the axiom of choice, let S be
a set of representatives of the cosets of G/Ge , that is, G = ⊔a∈S aGe . Then we define a
map [ ⋅ ]G/Ge from G/Ge onto S by

[aGe]G/Ge = a

for any a ∈ S.

We first have the following observations concerning the operator satisfying (2.2).

Lemma 2.2 The map T preserves the disjointness of idempotents. That is, T f ⋅ T g = 0
for any f , g ∈ I(G) with f ⋅ g = 0.

Proof Let f , g ∈ I(G) such that f ⋅ g = 0. Then we have ( f + g)2 = f + g. Thus, f +
g ∈ I(G). By the assumption, T f , T g, and T( f + g) ∈ IB(H). Since we have (T( f +
g))2 = T f + T g, we get T f ⋅ T g = 0. ∎

Definition 2.2 We define Φ ∶ A(G/Ge) → B(H) by

Φ( f ) = T ○ φ−1
G ( f )

for any f ∈ A(G/Ge), where φG is given in (2.1).
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Then Φ is a bounded complex linear operator from A(G/Ge) into B(H). In order
to achieve our main result, we consider the dual map Φ∗ ∶ W∗(H) → VN(G/Ge) and
have the following lemmas.

Lemma 2.3 Let λ ∈ VN(G/Ge) and a ∈ G/Ge . Suppose that a ∈ suppλ. Then, for
every neighborhood V of a in G/Ge , there exists h ∈ I(G/Ge) such that supph ⊂ V and
⟨λ, h⟩ ≠ 0.

Proof Since G/Ge is totally disconnected, every neighborhood of the identity
contains an open compact subgroup. As a−1V is a neighborhood of the identity,
there exists an open compact subgroup Ga in G/Ge such that Ga ⊂ a−1V . Thus,
aGa ⊂ V . Since aGa is a compact open coset in G/Ge , we have that 1aGa ∈ A(G/Ge)
is an idempotent with norm 1. Since a ∈ suppλ, there is g ∈ A(G/Ge) such that supp
g ⊂ aGa and ⟨λ, g⟩ ≠ 0. Put δ = ∣⟨λ, g⟩∣. As φ−1

G (g) ∈ AI(G), there are α i ∈ C and
f i ∈ I(G) such that ∥φ−1

G (g) −∑n
i=1 α i f i∥ < δ/∥λ∥ for some n ∈ N. Since φG is an iso-

metric isomorphism, we have ∥g −∑n
i=1 α i φG( f i)∥ < δ/∥λ∥ and φG( f i) ∈ I(G/Ge).

Then we obtain

1aGa (g −
n
∑
i=1

α i φG( f i)) = g −
n
∑
i=1

α i 1aGa φG( f i),

and thus

∥g −
n
∑
i=1

α i 1aGa φG( f i)∥ ≤ ∥g −
n
∑
i=1

α i φG( f i)∥ <
δ
∥λ∥ .

Suppose that, for every 1 ≤ i ≤ n, we have ⟨λ, 1aGa φG( f i)⟩ = 0. Then

∣⟨λ, g⟩∣ = ∣⟨λ, g⟩ −
n
∑
i=1

α i⟨λ, 1aGa φG( f i)⟩∣

= ∣⟨λ,(g −
n
∑
i=1

α i 1aGa φG( f i))⟩∣

≤ ∥λ∥∥g −
n
∑
i=1

α i 1aGa φG( f i)∥

< ∥λ∥ δ
∥λ∥ = δ.

This implies that ∣⟨λ, g⟩∣ < δ, which is a contradiction. Therefore, there is an i0 ∈
{1, . . . , n} such that

⟨λ, 1aGa φG( f i0)⟩ ≠ 0.

We also have supp(1aGa φG( f i0)) ⊂ V and 1aGa φG( f i0) ∈ I(G/Ge), and the proof is
thus completed. ∎

Proposition 2.4 For any a ∈ H, there exist unique b ∈ G/Ge and α ∈ C such that
Φ∗(ωH(a)) = αλG/Ge (b).
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Proof Suppose that there are b1 , b2 ∈ G/Ge such that b1 , b2 were both in
supp(Φ∗(ωH(a))). Since Ge is a closed subgroup of G, the quotient group G/Ge
is Hausdorff. Thus, there are neighborhoods Vb1 and Vb2 of b1 and b2, respectively, in
G/Ge such that Vb1 ∩ Vb2 = ∅. By Lemma 2.3, there are h i ∈ I(G/Ge), for i = 1, 2, such
that supph i ⊂ Vb i and ⟨Φ∗(ωH(a)), h i⟩ ≠ 0. As Vb1 ∩ Vb2 = ∅, we get h1h2 = 0. Since
φG is an isomorphism, we have φ−1

G (h i) ∈ I(G), for i = 1, 2, and φ−1
G (h1) ⋅ φ−1

G (h2) =
φ−1

G (h1h2) = 0. By Lemma 2.2, we have T(φ−1
G (h1)) ⋅ T(φ−1

G (h2)) = 0. On the other
hand, we obtain

0 ≠ ⟨Φ∗(ωH(a)), h1⟩ = Φ(h1)(a) = T ○ φ−1
G (h1)(a) = T(φ−1

G (h1))(a)

and

0 ≠ ⟨Φ∗(ωH(a)), h2⟩ = Φ(h2)(a) = T ○ φ−1
G (h2)(a) = T(φ−1

G (h2))(a).

Therefore,

T(φ−1
G (h1)) ⋅ T(φ−1

G (h2)) ≠ 0;

this is a contradiction. Since supp(Φ∗(ωH(a))) ≠ ∅, there is a unique b ∈ G/Ge such
that supp(Φ∗(ωH(a))) = {b}. Consequently, by [19, Corollary 2.5.9], there is an α ∈
C such that Φ∗(ωH(a)) = αλG/Ge (b). ∎

For any a ∈ H, by Proposition 2.4, there are unique b ∈ G/Ge and α ∈ C such that
Φ∗(ωH(a)) = αλG/Ge (b); thus, we have

Φ( f )(a) = α f (b),

for any f ∈ A(G/Ge). We define ϕ ∶ H → C by α = ϕ(a). We also define ψ ∶ H →
G/Ge by b = ψ(a). Then we get

Φ( f )(a) = ϕ(a) f (ψ(a)),(2.3)

for any f ∈ A(G/Ge) and a ∈ H.
For any h ∈ I(G), since we have Φ(φG(h)) = T(h) ∈ IB(H), we obtain that

(Φ(φG(h)))2 = T(h)T(h) = T(h) = Φ(φG(h)).

On the other hand, since (φG(h))2 = φG(h2) = φG(h) in A(G/Ge), we obtain that

ϕ(a)2φG(h)(ψ(a)) = ϕ(a)φG(h)(ψ(a))(2.4)

for any h ∈ I(G) and a ∈ H.

Lemma 2.5 For any a ∈ H, there is an idempotent 1ψ(a)G0 of A(G/Ge)where ψ(a)G0
is an open compact neighborhood of ψ(a).

Proof As G/Ge is totally disconnected, there is an open compact subgroup G0 in
G/Ge . For any ψ(a) ∈ G/Ge , ψ(a)G0 is a compact open coset in G/Ge ; hence, 1ψ(a)G0

is an idempotent of A(G/Ge) with norm 1. ∎

Lemma 2.6 The map Φ ∶ A(G/Ge) → B(H) is an algebraic homomorphism.
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Proof Let a ∈ H. By Lemma 2.5, there is an idempotent 1ψ(a)G0 of A(G/Ge). Since
φG ∶ AI(G) → A(G/Ge) is surjective, there is f ∈ AI(G) such that φG( f ) = 1ψ(a)G0 .
Moreover, we have that f 2 = (φ−1

G (1ψ(a)G0))2 = φ−1
G (1ψ(a)G0) = f , and this implies

that f ∈ I(G). Thus, by (2.4), we have

ϕ(a)2 = ϕ(a)21ψ(a)G0(ψ(a)) = ϕ(a)2φG( f )(ψ(a))
= ϕ(a)φG( f )(ψ(a)) = ϕ(a)1ψ(a)G0(ψ(a)) = ϕ(a).

Since a ∈ H is arbitrary, we have

ϕ2 = ϕ(2.5)

on H. Then we get ϕ ∶ H → {0, 1}. In addition, for any f , g ∈ A(G/Ge) and a ∈ H, we
have

Φ( f g)(a) = ϕ(a)( f g)(ψ(a)) = ϕ(a)2( f g)(ψ(a))
= ϕ(a) f (ψ(a))ϕ(a)g(ψ(a)) = (Φ( f )Φ(g))(a).

Hence, Φ is an algebraic homomorphism from A(G/Ge) into B(H). ∎

Lemma 2.7 The map ψ ∶ ϕ−1(1) → G/Ge is continuous.

Proof For any a0 ∈ ϕ−1(1) ⊂ H, let U be an open neighborhood of ψ(a0) in G/Ge .
Then there is f0 ∈ A(G/Ge) such that

f0(ψ(a0)) = 1 and f0(b) = 0 for b ∈ (G/Ge)/U .

Let (aλ)λ ⊆ ϕ−1(1) be a net such that aλ → a0. As Φ( f0) ∈ B(H), Φ f0(aλ) →
Φ f0(a0) = f0(ψ(a0)) = 1. There is a λ0 such that if λ ≥ λ0, then ∣Φ f0(aλ)∣ > 1

2 . Since
Φ f0(aλ) = f0(ψ(aλ)), we have ψ(aλ) ∈ U provided λ ≥ λ0. Thus, ψ is continuous on
ϕ−1(1). ∎

Lemma 2.8 The set ϕ−1(1) is an open subset of H.

Proof Let a ∈ ϕ−1(1) be arbitrary. By Lemma 2.5, there is an idempotent 1ψ(a)G0

of A(G/Ge) where ψ(a)G0 is an open compact neighborhood of ψ(a). Since
Φ(1ψ(a)G0) ∈ B(H) ⊂ Cb(H), there exists an open neighborhood V of a in H such
that if b ∈ V , then

∣Φ(1ψ(a)G0)(a) −Φ(1ψ(a)G0)(b)∣ ≤ 1
2

.

We have

∣1 − ϕ(b)1ψ(a)G0(ψ(b))∣ = ∣Φ(1ψ(a)G0)(a) −Φ(1ψ(a)G0)(b)∣ ≤ 1
2

.

Since either ϕ(b)1ψ(a)G0(ψ(b)) = 1 or ϕ(b)1ψ(a)G0(ψ(b)) = 0, this implies that

ϕ(b)1ψ(a)G0(ψ(b)) = 1.

Hence, we have ϕ(b) = 1 for any b ∈ V . Thus, V ⊂ ϕ−1(1). It follows that ϕ−1(1) is an
open subset of H. ∎
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Theorem 2.9 Let G and H be two locally compact groups, and let T ∶ A(G) → B(H)
be a bounded complex linear operator. Suppose T satisfies that T(I(G)) ⊂ IB(H). Then
there are an open subset U of H and a continuous map ψ from U into G/Ge such that

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

f ([ψ(a)]Ge ), if a ∈ U ,
0, if a ∈ H/U ,

(2.6)

for any f ∈ AI(G) and a ∈ H.

Proof Let U = ϕ−1(1). By Lemma 2.8, U is an open subset of H. Moreover, Lemma
2.7 shows that ψ ∶ U → G/Ge is a continuous map. Applying (2.3), for any f ∈ AI(G)
and a ∈ H, we have

T f (a) = Φ(φG( f ))(a) = ϕ(a)φG( f )(ψ(a)).

Thus, we get

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

φG( f )(ψ(a)), if a ∈ U ,
0, if a ∈ H/U ,

=
⎧⎪⎪⎨⎪⎪⎩

f ([ψ(a)]Ge ), if a ∈ U ,
0, if a ∈ H/U ,

for any f ∈ AI(G) and any a ∈ H. ∎

The following example shows that the assumption in Theorem 2.9 does not imply
T(I(G)) ⊂ I(H). This observation is in line with the well-known fact that f ○ ψ may
not be in the Fourier algebra A(H) in general (see Remark 2.11).

Example 2.10 Let G = {0} be the trivial group. Then we define a bounded linear
operator T ∶ A(G) → B(Z) by T(1G) = 1Z. Then it satisfies T(I(G)) ⊂ IB(H). Note
that in this case, we have U = Z and the continuous map ψ ∶ Z→ G/Ge is ψ(n) = 0
for any n ∈ Z. On the other hand, since 1Z ∉ A(Z), we have T(I(G)) ⊈ I(H).

Remark 2.11 The converse statement of the above theorem may not hold since we
do not know if T f ∈ A(H) for any f ∈ AI(G), even T has a representation of the form
(2.6). If we only have ψ ∶ U ⊆ H → G being continuous, then f ↦ f ○ ψ maps A(G)
into �∞(H) in general. For abelian groups G and H, Cohen [6] showed that f ↦ f ○ ψ
maps A(G) into B(H) if and only if ψ is a continuous piecewise affine map from a set
in the open coset ring of H into G. This characterization was extended by Host [14]
to the case when G has an abelian subgroup of finite index and H is arbitrary, and by
[20] to general groups.

Under the additional assumptions such as positivity or contractivity on T, we
obtain algebraic structures for the open set U and algebraic properties on the map
ψ. Let us first recall positive operators on the Fourier algebra.

A bounded linear operator T ∶ AI(G) → B(H) is said to be positive if T(u) is
positive-definite whenever u ∈ AI(G) is a positive-definite function.
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Corollary 2.12 Let G and H be two locally compact groups. Let T ∶ AI(G) → B(H)
be a positive bounded complex linear operator. If T satisfies that T(I(G)) ⊂ IB(H),
then there exist an open subgroup U of H and a continuous group homomorphism or
antihomomorphism ψ from the open subgroup U of H into G/Ge such that

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

f ([ψ(a)]Ge ), if a ∈ U ,
0, if a ∈ H/U ,

for any f ∈ AI(G) and a ∈ G.

Proof Since the isometric isomorphism φG preserves positivity, u ∈ AI(G) is a
positive-definite function if and only if φG(u) is positive-definite. This implies that T
is positive if and only if Φ is positive; thus, Φ ∶ A(G/Ge) → B(H) is a positive homo-
morphism by Lemma 2.6. It follows from [20, Theorem 4.3] that there exist an open
subgroup U of H and a continuous group homomorphism or antihomomorphism ψ
from U into G/Ge such that for any f ∈ A(G/Ge), Φ f is either equal to f ○ ψ in U, or
0 otherwise. Thus, we have

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

f ([ψ(a)]Ge ), if a ∈ U ,
0, if a ∈ H/U ,

for any f ∈ AI(G) and a ∈ H. ∎

Corollary 2.13 Let G and H be two locally compact groups, and let T ∶ AI(G) →
B(H) be a contractive complex linear operator. If T satisfies that T(I(G)) ⊂ IB(H),
then there exist an open subgroup U of H, a continuous group homomorphism or
antihomomorphism ψ from U into G/Ge , and elements b ∈ G and c ∈ H such that

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

f (b[ψ(ca)]Ge ), if a ∈ c−1U ,
0, if a ∈ H/c−1U .

Proof Since φG is an isometric isomorphism, Φ is a contractive operator provided
that so is T. By Lemma 2.6, Φ is a contractive homomorphism from A(G/Ge) into
B(H). It follows from [20, Theorem 5.1] that there exist an open subgroup U of H, a
continuous group homomorphism or antihomomorphism ψ from U into G/Ge , and
elements bGe ∈ G/Ge and c ∈ H such that for any f ∈ A(G/Ge) and a ∈ H, Φ f (a) =
f (bGeψ(ca)) provided a ∈ c−1U ; otherwise, Φ f (a) = 0. Recalling the definition of
Φ, we have the characterization of T. ∎

Note that when the group G is totally disconnected, we have AI(G) = A(G). In
such case, positive or contractive complex linear idempotent preserving operators
from A(G) to B(H) are algebraic homomorphisms; thus, our results recover The-
orems 4.3 and 5.1 in [20].

2.2 Idempotent preserving maps with T(I(G)) ⊂ I(H)

Let us assume that the bounded linear operator T ∶ A(G) → B(H) satisfies T(I(G)) ⊂
I(H). Then, naturally, we obtain T(AI(G)) ⊆ AI(H).
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We define Tq ∶ A(G/Ge) → A(H/He) by

Tq( f ) = φH ○ T ○ φ−1
G ( f ) = φH ○Φ( f ),

for any f ∈ A(G/Ge), where φH ∶ AI(H) → A(H/He) is an isometric isomorphism
defined similarly as in (2.1). Note that Tq is an algebraic homomorphism.

Lemma 2.14 Let a ∈ ϕ−1(1) ⊂ H and b ∈ H such that a−1b ∈ He . Then ϕ(b) = 1 and
ψ(a) = ψ(b).

Proof Suppose that ψ(a) ≠ ψ(b). By (2.3), we have Φ ∶ A(G/Ge) → B(H) such
that for any f ∈ A(G/Ge),

Φ( f )(a) = f (ψ(a))

and

Φ( f )(b) = ϕ(b) f (ψ(b)).

Since G/Ge is Hausdorff, there are disjoint open neighborhoods Va and Vb of ψ(a)
and ψ(b), respectively, in G/Ge . By Lemma 2.3, for λG/Ge (ψ(a)) ∈ V N(G/Ge), there
is h ∈ I(G/Ge) such that supp h ⊂ Va and h(ψ(a)) ≠ 0. Since a ∈ ϕ−1(1), we get

Φ(h)(a) = h(ψ(a)) ≠ 0

and

Φ(h)(b) = ϕ(b)h(ψ(b)) = 0.

By the assumption that T(I(G)) ⊂ I(H) and φ−1
G (h) ∈ I(G), we have Φ(h) =

T(φ−1
G (h)) ∈ I(H), an idempotent in A(H). Hence, there is Y ∈ Ωc

o(H) such that
1Y = Φ(h). Since 1Y(a) = Φ(h)(a) = h(ψ(a)) ≠ 0, we have a ∈ Y . In addition, Y is
a clopen subset of H and He is a connected component containing e; thus, aHe ⊂ Y .
This implies that b = aa−1b ∈ Y . It follows that

1 = 1Y(b) = Φ(h)(b) = 0.

This is a contradiction. Thus, we have ψ(a) = ψ(b). Furthermore, suppose that ϕ(b) =
0. There is an h ∈ I(G/Ge) such that h(ψ(b)) ≠ 0. Thus, there is Y ∈ Ωc

o(H) such that
1Y = Φ(h). By a similar argument, we have 1Y(a) = Φ(h)(a) = h(ψ(a)) ≠ 0, a ∈ Y
and b ∈ Y . We obtain that

1 = 1Y(b) = Φ(h)(b) = ϕ(b)h(ψ(b)) = 0.

This is a contradiction. Therefore, ϕ(b) = 1 and ψ(a) = ψ(b). ∎

For any a, b ∈ H, the condition a−1b ∈ He induces an equivalence relation on H.
Lemma 2.14 shows that ϕ ∶ H → {0, 1} and ψ ∶ H → G/Ge are constant functions
on each equivalence class. Thus, these induce maps ϕ′ ∶ H/He → {0, 1} and ψ′ ∶
ϕ′−1(1) → G/Ge by

ϕ′(aHe) = ϕ(a) for any a ∈ H
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and

ψ′(aHe) = ψ(a) for any aHe ∈ ϕ′−1(1).

By Lemma 2.7, the map ψ ∶ ϕ−1(1) → G/Ge is continuous. As we have ϕ′−1(1) =
qH(ϕ−1(1)), we obtain that ψ′ ∶ ϕ′−1(1) → G/Ge is continuous.

Theorem 2.15 Let G and H be two locally compact groups, and let T ∶ A(G) → B(H)
be a bounded complex linear operator. Suppose that T satisfies T(I(G)) ⊂ I(H). Then
there exist an open subset U of H and a continuous map ψ′ from an open subset qH(U)
of H/He into G/Ge such that

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

f ([ψ′(aHe)]Ge), if a ∈ U ,
0, if a ∈ H/U ,

(2.7)

for any f ∈ AI(G).

Proof Define U = ϕ−1(1). Recall that qH ∶ H → H/He is the quotient map and U is
an open subset of H by Lemma 2.8. By (2.3), for any f ∈ A(G/Ge) and a ∈ H, we have

Tq( f )(aHe) = φH ○Φ( f )(aHe) = Φ( f )(a) = ϕ′(aHe) f (ψ(a)).(2.8)

We shall show that ϕ′−1(1) is an open subset of H/He . Let a ∈ ϕ′−1(1). By Lemma 2.5,
there is an idempotent 1ψ′(a)G0 of A(G/Ge) where ψ′(a)G0 is an open compact
neighborhood of ψ′(a). Since Tq(1ψ′(a)G0) ∈ A(H/He) ⊂ C0(H/He), the space
of all continuous functions on H/He vanishing at infinity, there exists an open
neighborhood V of a in H/He such that if b ∈ q−1

H (V), then

∣Tq(1ψ′(a)G0)(a) − Tq(1ψ′(a)G0)(bHe)∣ ≤
1
2

.

We have

∣1 − ϕ′(bHe)1ψ′(a)G0(ψ(b))∣ = ∣Tq(1ψ′(a)G0)(a) − Tq(1ψ′(a)G0)(bHe)∣ ≤
1
2

.

Since either ϕ′(bHe)1ψ′(a)G0(ψ(b)) = 1 or ϕ′(bHe)1ψ′(a)G0(ψ(b)) = 0, this implies
that

ϕ′(bHe)1ψ′(a)G0(ψ(b)) = 1.

Hence, we have ϕ′(bHe) = 1 for any b ∈ q−1
H (V). Thus, V ⊂ ϕ′−1(1). It follows that

ϕ′−1(1) is an open subset of H/He . Let us recall that ψ′ ∶ qH(U) → G/Ge is a
continuous map. Applying (2.8), we have

Tq( f )(aHe) = ϕ′(aHe) f (ψ(a))

=
⎧⎪⎪⎨⎪⎪⎩

f (ψ′(aHe)), if a ∈ U ,
0, if a ∈ H/U ,

for any f ∈ A(G/Ge) and a ∈ H. As we have

Tq(φG( f ))(aHe) = φH ○ T ○ φ−1
G (φG( f ))(aHe) = φH ○ T( f )(aHe) = T f (a)
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for any f ∈ AI(G) and a ∈ H, we get

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

φG( f )(ψ′(aHe)), if a ∈ U ,
0, if a ∈ H/U . ∎

3 Idempotent preserving bijections on AI(G)

In this section, we assume that the bounded linear operator T ∶ A(G) → B(H)
satisfies that T(I(G)) ⊂ I(H) and T ∣AI(G) is a bijection onto AI(H).

Theorem 3.1 Let G and H be two locally compact groups, and let T ∶ A(G) → B(H) be
a bounded complex linear operator. Suppose that the operator T satisfies that T(I(G)) ⊂
I(H) and T ∣AI(G) ∶ AI(G) → AI(H) is bijective. Then there exists a homeomorphism
ψ ∶ H/He → G/Ge such that

T f (a) = f ([ψ(aHe)]Ge )

for all f ∈ AI(G) and a ∈ H.

Proof Since T ∣AI(G) is a bijective linear map, and φG and φH are isometric
isomorphisms, by the proof of Proposition 2.1, we have Tq ∶= φH ○ T ∣AI(G) ○ φ−1

G is
an isomorphism from A(G/Ge) onto A(H/He).

Applying Theorem 2.15, there are an open subset U of H and a continuous map ψ
from an open subset qH(U) of H/He into G/Ge such that

Tq( f )(a) =
⎧⎪⎪⎨⎪⎪⎩

f (ψ(a)), if a ∈ qH(U),
0, if a ∈ (H/He)/qH(U),

for any f ∈ A(G/Ge). Since Tq ∶ A(G/Ge) → A(H/He) is surjective and the Fourier
algebra A(H/He) separates the points in H/He , we have qH(U) = H/He . Thus, U =
H and we have

Tq( f )(a) = f (ψ(a))

for every f ∈ A(G/Ge) and a ∈ H/He . For any h ∈ I(H), there exists hq ∈ A(H/He)
with h2

q = hq such that

φH(h) = hq .

Since Tq is bijective, there exists fq ∈ A(G/Ge) such that

Tq( fq) = hq .

Moreover, since Tq is an algebraic homomorphism, we have Tq( f 2
q ) = (Tq( fq))2 =

h2
q = hq = Tq( fq). By the injectivity of Tq , we get f 2

q = fq . On the other hand, as
φG is an isometric isomorphism from AI(G) onto A(G/Ge), there exists f ∈ I(G)
such that

φG( f ) = fq .
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Hence, we have

T( f ) = (φ−1
H ○ Tq ○ φG)( f ) = φ−1

H ○ Tq( fq) = φ−1
H (hq) = h.

This implies that T(I(G)) = I(H). In particular, we have T−1(I(H)) ⊂ I(G). Thus,
we can apply similar arguments to T ∣−1

AI(G) ∶ AI(H) → AI(G) and to T−1
q = φG ○

T ∣−1
AI(G) ○ φ−1

H on A(H/He), and we can then define a continuous map ψ̃ ∶ G/Ge →
H/He such that

T−1
q (g)(b) = g(ψ̃(b))

for any g ∈ A(H/He) and b ∈ G/Ge .
For any g ∈ A(H/He) and a ∈ H/He , we have

g(a) = Tq(T−1
q g)(a) = g(ψ̃(ψ(a))).

Since the Fourier algebra A(H/He) separates points in H/He , we get

a = ψ̃(ψ(a)) for a ∈ H/He .(3.1)

Moreover, we obtain

f (b) = T−1
q (Tq f )(b) = f (ψ(ψ̃(b))),

for any f ∈ A(G/Ge) and b ∈ G/Ge . Similarly, as A(G/Ge) separates points in G/Ge ,
we have

b = ψ(ψ̃(b)) for b ∈ G/Ge .(3.2)

By (3.1) and (3.2), we have that ψ ∶ H/He → G/Ge is a bijection and ψ̃ = ψ−1. Let us
recall that ψ and ψ̃ are continuous on H/He and G/Ge , respectively. As ψ̃ = ψ−1, we
have that ψ is a homeomorphism. In addition, we obtain

Tq( f )(a) = f (ψ(a)) for f ∈ A(G/Ge), a ∈ H/He .

Since T = φ−1
H ○ Tq ○ φG , we get

T f (a) = f ([ψ(aHe)]Ge )

for all f ∈ AI(G) and a ∈ H. ∎

Note that the bijectivity in Theorem 3.1 is an essential assumption for the function
ψ ∶ H/He → G/Ge to be a homeomorphism.

Example 3.2 Let G = {1, 2} be a multiplicative group equipped with the discrete
topology. Let H = {0} be the trivial group. We define T ∶ A(G) → A(H) by T f (0) =
f (1) for any f ∈ A(G). Then T is a bounded complex linear operator on A(G) and for
any 1Y ∈ A(G), T(1Y) = 1H if 1 ∈ Y ; otherwise, T(1Y) = 0. Thus, T(I(G)) = I(H). On
the other hand, T(1{1}) = 1H = T(1G), this implies that T ∣AI(G) ∶ AI(G) → AI(H) is
not injective. In addition, ψ ∶ H/He = H → G/Ge = G satisfying

ψ(0) = 1.

is not a homeomorphism.
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Under additional assumptions such as positivity or contractivity on T, a character-
ization of linear idempotent preserving maps between two Fourier algebras follows
from Corollaries 2.12 and 2.13. Note that since the continuous map ψ in the following
two corollaries is either a group isomorphism or an anti-isomorphism, we naturally
have f ○ ψ ∈ AI(H) for any f ∈ AI(G) (see [25]); thus, we obtain a necessary and
sufficient condition for the idempotent preserving operator T on AI(G).

Corollary 3.3 Let G and H be two locally compact groups. A surjective complex linear
contraction T ∶ AI(G) → AI(H) satisfies T(I(G)) ⊂ I(H) if and only if there exist a
continuous group isomorphism or anti-isomorphism ψ ∶ H/He → G/Ge and an element
b ∈ G such that

T f (a) = f (b[ψ(aHe)]Ge )

for all f ∈ AI(G) and a ∈ H.

Proof Since the operator T defined on AI(G) is contractive and satisfies
T(I(G)) ⊂ I(H), we have a characterization of T by Corollary 2.13, and now the
result follows from Theorem 3.1 as T is onto AI(H). ∎

Similarly, if the operator T ∶ AI(G) → AI(H) is positive and preserves the idem-
potents, we have a characterization of T by Corollary 2.12 and thus the following
corollary follows from Theorem 3.1.

Corollary 3.4 Let G and H be two locally compact groups. A positive bounded complex
linear bijection T ∶ AI(G) → AI(H) satisfies T(I(G)) ⊂ I(H) if and only if there exists
a continuous group isomorphism or anti-isomorphism ψ ∶ H/He → G/Ge such that

T f (a) = f ([ψ(aHe)]Ge )

for all f ∈ AI(G) and a ∈ H.

We will end our article with a special case when the groups are totally disconnected.
In such case, the idempotent preserving operators between Fourier algebras recover the
results of algebraic homomorphisms. More precisely, Theorem 2.15 and Corollaries 3.3
and 3.4 are followed by the following remark.

Remark 3.5 Suppose that G and H are totally disconnected locally compact groups.
Let T ∶ A(G) → A(H) be a bounded complex linear operator satisfying T(I(G)) ⊂
I(H). Then there exists a continuous map ψ from an open subset U of H into G such
that

T f (a) =
⎧⎪⎪⎨⎪⎪⎩

f (ψ(a)), if a ∈ U ,
0, if a ∈ H/U ,

for any f ∈ A(G) and a ∈ H. In addition, if T is a surjective contraction or T is a
positive bijection, then it is equivalent to T f = f ○ (bψ) for some b ∈ G or T f = f ○ ψ,
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respectively, where ψ ∶ H → G is a continuous group isomorphism or group anti-
isomorphism, and bψ ∶ H → G is defined by bψ(⋅) ∶= bψ(⋅); in particular, T is an
algebraic homomorphism.
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