
Canad. Math. Bull. Vol. 66 (2), 2023, pp. 643–653
http://dx.doi.org/10.4153/S0008439522000613
© The Author(s), 2022. Published by Cambridge University Press on behalf of The
Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Some remarks on approximation in several
complex variables

Javier Falcó , Paul M. Gauthier, Myrto Manolaki, and
Vassili Nestoridis

Abstract. In Gauthier, Manolaki, and Nestoridis (2021, Advances in Mathematics 381, 107649), in order
to correct a false Mergelyan-type statement given in Gamelin and Garnett (1969, Transactions of the
American Mathematical Society 143, 187–200) on uniform approximation on compact sets K in C

d ,
the authors introduced a natural function algebra AD(K) which is smaller than the classical one
A(K). In the present paper, we investigate when these two algebras coincide and compare them with
the classes of all plausibly approximable functions by polynomials or rational functions or functions
holomorphic on open sets containing the compact set K. Finally, we introduce a notion of O-hull of
K and strengthen known results.

1 Introduction

Let K be a compact subset of Cd , d ≥ 1. The classical function algebra A(K) is defined
to be C(K) ∩O(K○), whereO(K○)denotes the set of all holomorphic functions in the
interior of K inC

d . Note that if K○ = ∅, then A(K) = C(K). Denote by P(K) the class
of functions on K which are uniform limits of polynomials. In complex dimension
d = 1, Mergelyan [8] (see also [3, p. 97]) gave the following complete characterization
of compact sets on which polynomial approximation is possible.

Theorem 1.1 (Mergelyan theorem) Let K be a compact subset of C. Then P(K) =
A(K) if and only if C/K is connected.

In [2], we constructed a counterexample to a Mergelyan-type statement given in
[4] concerning uniform approximation on compact sets K in C

d , d ≥ 1. In order to
correct the statement in [4], we introduced a natural function algebra AD(K), which is
contained in the classical one A(K). The algebra AD(K) is the algebra of all functions
f ∈ A(K)which are holomorphic on every analytic disk contained in K, even meeting
the boundary ∂K of K. More precisely, a function f ∶ K → C belongs to AD(K) if it
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is continuous on K and for every open disk D ⊆ C and every injective holomorphic
mapping ϕ ∶ D → K the composition f ○ ϕ is holomorphic on D.

In this paper, in addition to the family P(K) of uniform limits on K of polyno-
mials, we investigate the family R(K) of uniform limits on K of rational functions
which are holomorphic on a neighborhood of K. We also denote by O(K) the set
of all functions f ∶ K → C such that there exists a sequence of open sets (Vn)∞n=1
in C

d with K = ∩∞n=1Vn and functions fn ∶ Vn → C holomorphic on Vn such that
supz∈K ∣ fn(z) − f (z)∣ → 0 as n goes to infinity. It is easy to see that P(K) ⊆ R(K) ⊆
O(K) ⊆ AD(K) ⊆ A(K). Moreover, when d = 1, we have that AD(K) = A(K). One
of the goals of this paper is to investigate when these classes coincide in higher
dimensions, where the situation is far from being understood.

However, there are some known cases. For example, it is shown in [2] that if
K1 , K2 , . . . , Kd are planar compact sets and K = K1 ×⋯× Kd , then a function f ∶
K → C belongs to AD(K) if and only if the slice functions belong to AD(K i) for
all i = 1, . . . , d; that is, for every i0 ∈ {1, . . . , d} and every choice of points w i ∈ K i ,
i ∈ {1, . . . , d}/{i0}, the one-variable function, K i0 ∋ z ↦ f (z1 , . . . , zd) with z i0 = z
and z i = w i for all i ∈ {1, . . . , d}/{i0}, belongs to AD(K i0). See also [1].

A compact set K ⊆ Cd is called regular closed if every point in the boundary of K
is the limit of a sequence of points in the interior of K. Thus, if K is regular closed and
K ≠ ∅, then necessarily K○ ≠ ∅. In [2], it was proved that, for nonvoid regular closed
planar compact sets K1 , . . . , Kd and K = K1 ×⋯× Kd , we have AD(K) = A(K). In the
second section of this note, we shall improve this result and characterize the equality
of the two algebras when K is a product of planar compact sets (see Theorem 2.1). The
third section includes the proof of this result and some corollaries. Sections 4 and 5 are
devoted to investigating the equality of the two algebras on compact sets that are not
necessarily product domains. In particular, polynomial, rational, and holomorphic
approximation are considered.

The sixth section of this note is devoted to the study of functions plausibly
approximable by polynomials, rational functions, and holomorphic functions. More
precisely, denoting by K̂ the polynomially convex hull of K , we show that a natural
algebra containing P(K) is the algebra AD(K̂); that is, the functions f ∶ K → C

which admit a continuous extension f̂ to K̂ that belongs to AD(K̂) are plausibly
approximable, in the sense that every function that can be uniformly approximated on
K by polynomials necessarily belongs to AD(K̂). If we replace polynomials by rational
functions which are holomorphic on K, then the functions f ∶ K → C which admit an
extension to the rational convex hull K

⋀r
of K that belongs to AD(K

⋀r
) are plausibly

approximable.
Polynomially convex hulls and rationally convex hulls have played an extremely

important role in approximation by polynomials and rational functions respectively.
In order to replace polynomials and rational functions by functions holomorphic on
some neighborhood of K, it is natural to seek an appropriate hull associated with such
holomorphic approximation. There is no consensus in the literature as to the best way
of defining such a hull for a compact set K and we shall introduce a new hull for this
purpose, which we call an O-hull of K. We show that the functions h ∶ K → C which
admit an extension to an O-hull X and belong to AD(X) are plausibly approximable.
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One can always choose as X the set K itself, but in general there are more choices of
X, and, in some cases, there is no maximal O-hull for K.

In Section 7, we strengthen a density result from [2], for compact sets of the form
K = K1 ×⋯× Kd . Finally, Section 8 contains some concluding remarks and problems
for future research.

2 Main results

One of our main goals in this note is to prove the following theorem, which establishes
conditions for the equality of the algebras AD(K) and A(K) when K is a product of
nonvoid compact planar sets. We recall that a planar compact set F is called regular
closed if F○ = F. We also recall that if K = K1 × ⋅ ⋅ ⋅ × Kd , where each K i is a compact set
in C, then a continuous function f belongs to AD(K) if and only if the slice functions
belong to A(K i) (see [2, Proposition 5.3]).
Theorem 2.1 Let K1 , . . . , Kd be nonvoid compact planar sets and K = K1 ×⋯× Kd .
Then, AD(K) = A(K) if and only if one of the two following assertions holds:
(a) K○1 = K○2 = ⋯ = K○d = ∅,
(b) K○i ≠ ∅ for all i ∈ {1, . . . , d} and all K i are regular closed sets for i ∈ {1, . . . , d}.

In Section 3, we prove this result and provide some corollaries. Our other main
results, that will be discussed in the subsequent sections, are Theorem 4.1, Example
5.1, Proposition 6.4, and Theorem 7.3.

3 Proof and corollaries of Theorem 2.1

Proof of Theorem 2.1 We distinguish four cases which cover the different
scenarios of Theorem 2.1.
(i) K○1 = K○2 = ⋯ = K○d = ∅.
(ii) There exists i0 , i1 ∈ {1, 2, . . . , d} such that K○i0

= ∅ and K○i1
≠ ∅.

(iii) K○i ≠ ∅, for all i ∈ {1, 2, . . . , d}, and there is an i0 ∈ {1, 2, . . . , d} such that K i0 is
not regular closed.

(iv) K○i ≠ ∅, for all i ∈ {1, 2, . . . , d}, and K i is regular closed for all i ∈ {1, 2, . . . , d}.
We examine each case separately. For simplicity, we assume that if the interiors of
K i1 , . . . , K im are not empty, then zero is in (K i1 ×⋯× K im)

○.
Case (i). In this case, A(K i) = AD(K i) = C(K i). It follows that for every f ∈ C(K),

the slice functions belong to AD(K i). Hence, f ∈ AD(K). Therefore, C(K) ⊆ AD(K).
On the other hand, K○ = ∅, which implies that A(K) = C(K). Thus, in Case (i), we
have that AD(K) ⊆ A(K) = C(K) ⊆ AD(K).

Case (ii). In this case, K○ = ∅, so A(K) = C(K). We shall show that AD(K) ≠
C(K). Indeed, let f (z1 , . . . , zd) = z i1 . Then, f ∈ C(K) = A(K), but the slice function
corresponding to the coordinate i1 is not holomorphic in K○i1

and does not belong to
A(K i1) = AD(K i1). It follows that f ∉ AD(K). Thus, AD(K) ≠ C(K) = A(K) in this
case.

Case (iii). Since K i0 is not regular closed, there exists w ∈ K i0/K○i0
. By the well-

known Urysohn extension lemma, there exists a function ϕ ∈ C(K i0) such that ϕ ≡ 0
on K○i0

and ϕ(w) = 1. Since d > 1, there exists i1 ∈ {1, 2, . . . , d}/{i0}. We consider
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the function f (z1 , . . . , zd) = ϕ(z i0) ⋅ z i1 . Then, f ∈ C(K). Moreover, if (z1 , . . . , zd) ∈
K○, then z i0 ∈ K○i0

, and thus f (z1 , . . . , zd) = ϕ(z i0) ⋅ z i1 = 0 on K○. It follows that
f ∈ O(K○). Hence, f ∈ C(K) ∩O(K○) = A(K). Now, if z i0 = w, the slice function
corresponding to the coordinate i1 is ϕ(z i0)z i1 = ϕ(w)z i1 = z i1 and is not holomorphic
in K○i1

, and hence it does not belong to AD(K i1) = A(K i1). It follows that f ∉ AD(K).
Therefore, AD(K) ≠ A(K) in this case.

Case (iv). In this case, we know from [2] that AD(K) = A(K).
Since Cases (i)–(iv) cover the general case, the proof of Theorem 2.1 is

complete. ∎

In [2], it is also proved that, if for the planar compact sets K i , i = 1, . . . , d, we have
AD(K i) = O(K i) for all i = 1, . . . , d, then for the Cartesian product K = K1 ×⋯× Kd ,
we also have that AD(K) = O(K). One can easily see that the converse also holds.
Combining results from [2] with Theorem 2.1, we obtain the following corollaries.

Corollary 3.1 Let K1 , . . . , Kd be nonvoid compact planar sets and K = K1 ×⋯× Kd .
Then, polynomials are uniformly dense in AD(K) if and only if C/K i are connected for
all i ∈ {1, 2, . . . , d}.

Proof For d = 1, A(K1) = AD(K1), so this is just Mergelyan’s theorem (see Theo-
rem 1.1).

Assume now that d ≥ 1. If polynomials are uniformly dense in AD(K), it follows
easily that polynomials are uniformly dense in AD(K i) for i = 1, . . . , d. Therefore,
according to the previous case, C/K i is connected. Suppose now that all C/K i are
connected for i = 1, . . . , d. Mergelyan’s theorem (Theorem 1.1) implies that polynomi-
als are dense in each A(K i) = AD(K i). Hence, O(K i) = AD(K i) for all i = 1, . . . , d.
According to [2, Theorem 4.1], it follows that O(K) = AD(K).

SinceC/K i are connected, according to [2, Theorem 4.6], it follows that polynomi-
als are uniformly dense on O(K). Thus, polynomials are uniformly dense in AD(K).
See also [1, 6, 7]. ∎

Corollary 3.2 Let K be a countable compact set in C
d . Then, C(K) = P(K).

Proof The projections of K are denumerable compact planar sets. Let F be their
product. Then, A(F) = P(F), A(F) = C(F), and A(K) = C(K). Now, if f is contin-
uous on K, then, by Tietze’s theorem, it has a continuous extension h on F and h can
be uniformly approximated on F (and on K) by polynomials. ∎

Corollary 3.3 Let K1 , . . . , Kd be nonvoid compact planar sets and K = K1 ×⋯× Kd .
Then, polynomials are uniformly dense in A(K) if and only if C/K i are connected for
all i ∈ {1, 2, . . . , d} and one of the conditions (a) or (b) of Theorem 2.1 holds.

Proof Denote by P(K) the set of uniform limits of polynomials on K. Then, we
have

P(K) ⊆ O(K) ⊆ AD(K) ⊆ A(K).
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Thus, P(K) = A(K) is equivalent to P(K) = AD(K) and AD(K) = A(K). A combi-
nation of Theorem 2.1 and Corollary 3.1 completes the proof. ∎

Corollary 3.4 Let K1 , . . . , Kd be nonvoid compact planar sets and K = K1 ×⋯× Kd .
Then, A(K) = O(K) if and only if A(K i) = O(K i), for all i = 1, 2, . . . , d, and one of the
conditions (a) or (b) of Theorem 2.1 holds.

Proof Since O(K) ⊆ AD(K) ⊆ A(K), it follows that O(K) = A(K) is equivalent to
O(K) = AD(K) and AD(K) = A(K). According to [2], O(K) = AD(K) is equivalent
to O(K i) = AD(K i) for all i = 1, . . . , d. This combined with Theorem 2.1 completes
the proof. ∎

Remark 3.5 Corollary 3.4 is in contradiction with [4, Corollary 9.2], which implies
the following: if K1 , . . . , Kd are nonvoid planar compact sets, K = K1 ×⋯× Kd and
A(K i) = O(K i) for all i = 1, . . . , d, then A(K) = O(K). According to Corollary 3.4,
it suffices to take d = 2, K1 a nonempty set with empty interior, and K2 a set with
nonempty interior with A(K1) = O(K1) and A(K2) = O(K2) to obtain a contradic-
tion. For instance, take K1 = {0} and K2 = {w ∈ C ∶ ∣w∣ ≤ 1}. This was the counterex-
ample given in [2], which led us to introduce the new natural function algebra AD(K).

4 The algebra AD(K) on general compact sets

We continue by studying compact sets which are not necessarily product domains.
We start with a result which provides a simple necessary condition to ensure that the
algebras AD(K) and A(K) coincide. This result was stated as a remark in the last
section of [2].

Theorem 4.1 Let K ⊆ Cd be a compact set. Then, if AD(K) = A(K), we have that
K/K○ contains no analytic disk.

Proof We shall prove the result by showing that if K/K○ contains an analytic disk,
then AD(K) ≠ A(K). Since there is a holomorphic embedding of the open disk into
K/K○ , it is easy to see that there is also a holomorphic embedding φ of the closed disk
D into K/K○. Consider g any function in A(K○). Then, since K/K○ has empty interior,
any continuous extension of g belongs to the algebra A(K). Consider the mapping
h ∶ φ(D) → C given by h(z) = φ−1(z). Since φ(D) and K○ are disjoint compact sets,
we can find a continuous mapping f on K which coincides with g on the set K○ and
coincides with h on D. Then, the function f belongs to A(K), but does not belong to
AD(K). Thus, the algebras A(K) and AD(K)must be different. ∎

Corollary 4.2 Let K ⊆ Cd be a compact set. If K/K○ contains an analytic disk, then
P(K) ⊆ R(K) ⊆ O(K) ⊆ AD(K) ⊊ A(K). Thus, P(K), R(K),O(K), and AD(K) are
different from A(K).

https://doi.org/10.4153/S0008439522000613 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000613


648 J. Falcó et al.

5 A counterexample to the converse statement of Theorem 4.1

It is natural to ask whether the converse statement of Theorem 4.1 holds; that is, if
AD(K) ≠ A(K), then does K/K○ always contain an analytic disk? As the following
example demonstrates, the answer is negative.

Before showing the example, we recall that a compact set K is said to be regular
closed if K = K○ .

Example 5.1 There is a regular closed compact set K ⊆ C2 such that K○ is connected
and nonempty, and

AD(K) ⊊ A(K).

We remark that if we do not require that K○ be connected and nonempty, it is easier
to give such an example.

Details of the example:
Let D be the closed unit disk in C and K0 = {(z, w) ∈ C2 ∶ z ∈ D, w = 0}. We will

consider a sequence Pn , n = 1, 2, . . ., of polydomains, whose closures Pn are disjoint
from K0 , such that Pn ∩ Pm /= ∅ if and only if ∣n −m∣ ≤ 1. We will also arrange that, for
every w ∈ K0, there is a sequence wn ∈ Pn converging to w, and conversely, if wn ∈ Pn
for all n and a subsequence of wn converges to a point s, then s ∈ K0. Set

K = K0 ∪
∞

⋃
n=1

Pn .(5.1)

Then, K○ = ∪n Pn is connected, K = K○, and the disk K0 is contained in the boundary
∂K . We shall choose the polydomains Pn more carefully momentarily. For their
construction, we shall make use of the following result (for its proof, see [5]).

Lemma 5.2 Let φ be continuously differentiable, and let ε be positive and continuous
on [0, 1). Then, there is a function ϕ holomorphic in the unit disk, such that

max{∣φ(t) − ϕ(t)∣, ∣φ′(t) − ϕ′(t)∣} < ε(t), for 0 ≤ t < 1.

We note that, from [5, Theorem 1.3], we also have this result for I = (−1,+1).
Let z ∶ [0, 1) → D be an analytic curve whose “end” (cluster set) is D and z′(t) ≠ 0

for each t ∈ [0, 1). Moreover, let ε ∶ [0, 1) → (0, 1] be a positive continuous function
such that ε(t) → 0 as t → 1. By Lemma 5.2, there is a nonconstant holomorphic
function ϕ ∶ D → C, in the unit disk D, such that

max{∣z(t) − ϕ(t)∣, ∣z′(t) − ϕ′(t)∣} <min{ε(t), ∣z′(t)∣} for 0 ≤ t < 1.

Since z′(t) ≠ 0 for all 0 ≤ t < 1, it follows that ϕ′(t) ≠ 0 for all 0 ≤ t < 1. Invoking
Lemma 5.2 again, there is a holomorphic function h in the unit disk D such that

∣h(t) − ϕ(t)∣ < ε(t), 0 ≤ t < 1.(5.2)

We may choose a sequence 0 < t1 < t2 < ⋯ < tn < ⋯, tn → 1, and positive numbers
rn , such that the open disks Dn = D(tn , rn)with centers tn and radii rn form a chain in
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D (that is, Dn ∩ Dm /= ∅ if and only if ∣n −m∣ ≤ 1) and the function ϕ(ζ) is invertible
in a neighborhood of each Dn ∪ Dn+1 . Moreover, since h − ϕ is continuous on D and
(5.2) holds, we may choose the tn and rn such that

∣h(ζ) − ϕ(ζ)∣ < ε(tn) for all ζ ∈ D(tn , rn).(5.3)

For n = 1, 2, . . . , consider the open disks Wn = D(2−n , 2−n−1) and the polydomains
Pn =Vn ×Wn , where Vn is the Jordan domain Vn = ϕ(Dn) ∶= {z ∈C ∶ z = ϕ(ζ), ζ ∈Dn}.
For these Pn , the set K defined by (5.1) has the required properties.

We now define a function f ∈ A(K), by setting f (z, w) = z, for (z, w) ∈ K0 and
f (z, w) = h(ζn(z)), for (z, w) ∈ Pn , where ζn(z) is the inverse function of the
restriction of the function ϕ(ζ) to Dn . The function f is well defined and continuous
on K/K○ because if z ∈ Dn ∩ Dn+1, then ζn(z) = ζn+1(z). It is easy to see that f is
holomorphic on K○.

There remains to show that f is continuous at points of K○ . Since the restriction
of f to K○ is continuous, it is sufficient to show that if (zk , wk) is a sequence in K/K○
converging to a point (z, 0) ∈ K○ , then f (zk , wk) → f (z, 0) = z. We may assume that
(zk , wk) ∈ Pn(k), n(k) → ∞. Moreover, if (zk , wk) ∈ Pn(k), then zk ∈ ϕ(Dn(k)), and
so there is yk ∈ Dn(k) such that zk = ϕ(yk). Thus, using (5.3), we conclude that

∣ f (zk , wk) − z∣ = ∣h(ζn(zk)) − ϕ(yk)∣ = ∣h(yk) − ϕ(yk)∣ ≤ ε(tn(k)),

which implies that f ∈ C(K) since ε(tn) → 0 as n →∞. Consequently, f ∈ A(K).
Finally, it is easy to see that f /∈ AD(K), since f (z, w) = z on the analytic disk K0 .

6 Plausibly approximable functions

6.1 Polynomial approximation

Let K be a compact planar set, and let Pn be a sequence of polynomials uniformly
Cauchy on K. Then, by the maximum principle, it is uniformly Cauchy on every
bounded component of the complement of K. Thus, if h ∈ C(K) is the uniform limit
of Pn on K, then h has an extension f on the polynomially convex hull K̂ of K, which is
the union of K with all bounded components of the complement of K. Furthermore,
f belongs to A(K). Conversely, if f belongs to A(K̂), since the complement of K̂ is
connected, according to Mergelyan’s theorem in one variable, f belongs to P(K̂) =
P(K). Thus, in one variable, the problem is solved: a function h on K belongs to P(K)
if and only if it has an extension f belonging to A(K̂).

If K is a compact subset ofCd , d > 1, then the polynomially convex hull K̂ of K is the
set of z ∈ Cd , such that for every polynomial P, the number ∣P(z)∣ is less than or equal
to the supremum on K of the modulus of P. It follows easily that if h belongs to P(K),
then it has an extension f in AD(K̂), so such functions are plausibly approximable by
polynomials on K. Consider the following example.

Example 6.1 Let K be the unit sphere in C
d . Then, K̂ is the closed unit ball B

and AD(K) = C(K), AD(K̂) = A(B) = P(B). If z = (z1 , . . . , zd), then the continuous
function h(z) = z1, the complex conjugate of z1, does not have an extension belonging
to AD(K̂), so it is not uniformly approximable by polynomials on K .
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It is easy to see that, for d = 1, if every h in AD(K) has an extension belonging
to AD(K̂), then K is polynomially convex. However, the result does not hold in
general if d > 1 as the following example shows. That is, there exists a set K that is not
polynomially convex such that every function h in AD(K) has an extension belonging
to AD(K̂).

Example 6.2 Let d > 1 and K1 ∶= {z ∈ Cd ∶ 1/2 ≤ ∣z∣ ≤ 1}, which is not polynomially
convex. Then, K̂1 is the closed unit ball B and every function h in AD(K1) has an
extension to AD(K̂1) and can be approximated by polynomials.

We shall show now that for every compact, convex set K with nonempty interior,
P(K) = A(K), and for this, we shall invoke the following lemma. Although the lemma
is well known, for the sake of completeness, we include the proof here.

Lemma 6.3 If K ⊆ Cd is a compact and convex set with K○ ≠ ∅, then for every z0 ∈ K○
and every z1 ∈ K , the segment [z0 , z1) is in K○. Consequently, K is regular closed.

Proof Without loss of generality, we can assume that z0 = 0. Fix ε > 0 such
that the open ball of center zero and radius ε is in K○, B(0, ε) ⊆ K○. Consider z
any fixed point in K. We claim that z ∈ K○. Indeed, for every r ∈ (0, 1) and every
y ∈ B(rz, (1 − r)ε), we have that y−rz

1−r ∈ B(0, ε) ⊆ K. By the convexity of K, we obtain
that y = rz + (1 − r) y−rz

1−r ∈ K. Therefore, B(rz, (1 − r)ε) ⊆ K, and hence rz ∈ K○. We
have shown that [0, z) ⊆ K○, and since z = limr→1 rz, we obtain that K ⊆ K○. ∎

Proposition 6.4 If K ⊆ Cd is a compact, convex set with nonempty interior, then
P(K) = A(K). In particular, P(K) = AD(K).

Proof We may assume that 0 ∈ K○, and by Lemma 6.3, we obtain that for each
r < 1 and every z ∈ K, the point rz belongs to K○. Fix a function f ∈ A(K). Then, the
function fr(z) = f (rz) is holomorphic on a neighborhood of K. Furthermore, for
fixed ε > 0, there exists rε < 1 such that ∣ frε(z) − f (z)∣ < ε/2 for every z ∈ K. Since
K is compact and convex, K is polynomially convex. By the Oka–Weil theorem,
there exists a polynomial p such that ∣p(z) − frε(z)∣ < ε/2 for every z ∈ K. Thus,
∣p(z) − f (z)∣ < ε for every z ∈ K. Hence, polynomials are dense in AD(K). ∎

6.2 Approximation by rational functions

Let K be a compact set in C
d , d > 1. The rationally convex hull K

⋀r
of K is the set of z

in C
d such that for every rational function f holomorphic on an open set containing

K, the number ∣ f (z)∣ is less than or equal to the supremum on K of the modulus of
f. It follows easily that if a function h in C(K) is in R(K), then h has an extension H
in AD(K

⋀r
). Thus, the functions h in C(K) admitting an extension H in AD(K

⋀r
) are

plausibly approximable by rational functions. In Examples 6.1 and 6.2, the rational
convex hull and the polynomial convex hull coincide. Thus, Example 6.2 shows that
there exists a set K that is not rationally convex such that every function h in AD(K)
has an extension belonging to AD(K

⋀r
).
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If L is a rationally convex compact subset ofCd , then it is not always true that every
function f in AD(L) can be approximated by rational functions. For example, let K1
be the Swiss cheese and put L = K1 × {0}. Then, L is rationally convex, but R(L) /=
AD(L).

6.3 Approximation by functions in O(K)

Let us start with an example. Let K be the unit sphere in C
d , d > 1, and let f be a

function holomorphic on a connected open set containing K. Then, f has an extension
F holomorphic in an open set containing the closed unit ball B. Furthermore, for every
z in B, ∣F(z)∣ is less than or equal to the supremum of ∣ f ∣ on K. It follows easily that if
h is a function in O(K), then h has an extension in AD(B). As before, these functions
are plausibly approximable by elements of O(K). More generally, let K be a compact
set in C

d , d > 1, and let X be a compact set in C
d containing K and satisfying the

following: for every open set V containing K so that every component of V meets
K, and for every function f holomorphic on V, the function f has an extension F, to
an open set containing X, that is holomorphic, and satisfies that for every z ∈ X the
number ∣F(z)∣ is less than or equal to the supremum of ∣ f ∣ on K.

We call such a compact set X an O-hull of K. Obviously, X = K is always such a hull.
We note that in general there is no maximal such hull. It follows that if K is rationally
convex, then the only O-hull of K is K itself.

Example 6.5 Let d > 1 and K ∶= {z ∈ Cd ∶ ∣z∣ = 1/2 or ∣z∣ = 1}. Let r be a number in
(1/2, 1) and let Xr be the set of z ∈ Cd such that ∣z∣ ∈ [0, 1/2] ∪ [r, 1]. Then Xr is an
O-hull of K and their union B too.

Example 6.6 Set K = S × {0}, where S is the Swiss cheese. Then, the only O-hull of
K is K itself (since K is rationally convex), but AD(K) and O(K) are different from
each other.

7 A density result

We start by stating two of the main results which were proved in [2] (see Theorem 3.8
and Corollary 3.10, respectively).

Theorem 7.1 Let X be a compact subset of C such that O(X) = AD(X), and let Y be
a compact subset of Cm such that O(Y) = AD(Y). Then, O(X × Y) = AD(X × Y).

Corollary 7.2 Let K i , i = 1, . . . , d, be compact subsets of C, and let L i a subset of C ∪
{∞} meeting every complementary component of K i . We also assume that O(K i) =
AD(K i). Then, every f in AD(K1 ×⋯× Kd) can be uniformly approximated on K1 ×
⋯× Kd by finite sums of finite products of rational functions of one variable zi with
poles only in L i .

For d = 2, we have the following.
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Theorem 7.3 Let X be a compact subset of C such that O(X) = AD(X), and let Y
be a compact subset of Cm such that O(Y) = AD(Y). Let LX be a subset of C ∪ {∞}
meeting every complementary component of X, and let S be a dense subset of AD(Y).
Then, every f in AD(X × Y) can be uniformly approximated on X × Y by finite sums
of products of the form g(z)h(w), where g is a rational function of one variable z with
poles only in LX and h ∈ S.

Remark 7.4 This strengthens Corollary 7.2 in case d = 2, for which we can take S to
be the rational functions in z2 with poles in L2 .

Proof According to Theorem 7.1, we can assume that f is holomorphic on a set
V ×W , where X is a subset of V ⊆ C and Y is subset of W ⊆ Cm and V and W
are open sets. Let l be a cycle in V/X such that Ind(l , z) = 1 for all z ∈ X and
Ind(l , z) = 0 for all z ∈ C/V . Cauchy’s formula gives that, for z ∈ X and w ∈ Y , the
number f (z, w) is equal to an integral on l. The quantity to be integrated is uniformly
continuous on X × Y × l ; therefore, f (z, w) can be uniformly approximated by
Riemann sums of the integral on X × Y ; that is, linear combinations of products of
the form (ζ j − z)−1 f (ζ j , w). Each function f (ζ j , w) as a function of w can also be
approximated by a function h j(w) ∈ S, because ζ j is fixed and varies in a finite set.
Similarly, the functions (ζ j − z)−1 can be approximated by rational functions g j(z)
with poles in LX . ∎

Remark 7.5 In Theorem 7.3, in some scenarios, we can choose the functions g and
h to belong to some specific families:
• If X is a compact subset of C with connected complement, then the functions g can

be chosen to be polynomials.
• If S is the set of polynomials of m variables, then of course the functions h are

polynomials.
• If S is the set of rational functions of m variables holomorphic on Y, then of course

the functions h are rational functions of m variables holomorphic on Y.
• If S = O(Y), then of course the functions h are in O(Y).

8 Concluding remarks

We conclude with some remarks and lines of future research.
(1) It is natural to ask what happens if we replace the compact sets by closed sets,

and require uniform approximation there, since our new algebra AD(K) can be
defined for closed sets as well. Moreover, one can consider tangential (Carleman)
approximation on closed (unbounded) sets. This problem was originally studied
in [1] in the more general context of Riemann surfaces, where the authors
avoided the error in [4] by not using the standard definition for A. Instead,
they gave a definition for A on products [1, p. 98], which is equivalent to AD .
In [2], a new original proof was written completely independently of [1] and
new Mergelyan-type results were given for the algebra AD , for example, for
certain graphs as well as for Cartesian products of an arbitrary (possibly infinite)
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indexed family of planar compact sets. Thus, it would be interesting to investi-
gate whether we can obtain analogous results for Carleman approximation on
closed sets.

(2) There remains the open question of providing sufficient and necessary condi-
tions for the existence of a maximal O-hull for a compact set K.

(3) Wu Jujie and the second author are presently investigating A(K), AD(K) and
approximation, in the context of holomorphic motions.
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