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ABSTRACT 

The ionized gas is described as a mixture of several fluids; each obeying a quasi-
hydrodynamic equation of motion with additional terms describing the 
mechanical interaction. Particularly, two- and three-fluid models are con­
sidered. The nature of the approximations ('quasi-neutrality', 'creeping 
diffusion') is discussed. Conservation-laws are formulated for the case of 
negligible effect of mutual encounters and of pressure diffusion. These models 
lead to a generalization of Ohm's law; it is shown that the additional terms are of 
practical importance if one has three components, of which one may be neutral. 

I. INTRODUCTION AND GENERAL FORMULATION 
OF THE MODEL 

The dynamics of an ionized gas in an electromagnetic field can be treated 
by different methods. An exact theory would consist of the solution of the 
Boltzmann equation of the kinetic theory of gases together with Maxwell's 
equations, taking all interactions into account. Since this is impracticable 
one has to rely upon approximate methods. One such approximation 
consists in using a hydrodynamic equation of motion for the ionized gas 
supplemented by a term representing the Lorentz force, together with 
Maxwell's equations (usually neglecting the displacement current) and 
a form of Ohm's law appropriate to moving conductors. So one arrives 
at a set of simultaneous equations, known as the 'hydromagnetic' equations 

pTt=k+cixIl; d i v ^ v ) = = " ^ ' (Ifl) 
j = erEc; Ec = E + - v x H , (ib) 

c 
c curl H = 47rj; d i v H = o , (ic) 
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and - _ 3E « 
£CurlE =—^7 (id) 

(k = density of all non-electromagnetic forces, for instance k = — grad p +pg; 
p = mass density; g = gravitational acceleration; cr = ohmic conductivity; 
all other symbols have their usual meanings). 

A different method can be applied, particularly when the electro­
magnetic field can be considered known and when the effect of pressure 
is small. It consists of solving the equation of motion of some representative 
kind of the differently charged particles—either strictly or by some approxi­
mate method, as the one first used by Alfven[i]—and thence one infers 
the behaviour of the ionized gas more or less intuitively. The difficulties 
he here in knowing the electromagnetic field and in selecting the repre­
sentative particles; because of this some of the results gained by this method 
are demonstratively spurious. 

I shall discuss a third method, which is in some respects intermediate 
between the two approaches I have mentioned. Here all particles of one 
kind (characterized by their charge per mass ratio) are taken to constitute 
a fluid, and the ionized gas is described as a mixture of (at least two) such 
fluids penetrating each other. The equation of motion of each fluid com­
ponent is the conventional hydrodynamic one apart from additional terms 
describing the interaction with the Maxwell field due to the electric charge 
and the electric current carried by the component considered and further 
terms representing the frictional interaction between all components. We 
assume that the frictional force between the jth and the Ath component is 
proportional to the relative velocity v;- — vfc and proportional to the density 
of either component. We therefore write for it 

fijkPjPkfy-Vk); (2) 

pj = mass density of/th component. 
In a free path theory the parameter jSjk depends on the collisional cross-

section qiki on the root mean square relative speed vjk and on the masses 
approximately 

A**fc*^*/(OTi + OT*)- (3) 

One would therefore expect it to be essentially independent of a possible 
magnetic field. This is borne out by an exact kinetic treatment, the total 
change of fijk between zero magnetic field and infinite field strength being 
by about a factor 2. 
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The equation of motion of thejth component is then 
d v 

+ k, (4) 
(dj/dt = time derivative following the motion of the jth component, 
Pkj — Pjk > o is the friction parameter, ẑ  = charge to mass ratio, kj = density 
of all non-electromagnetic forces including the gradient of the partial 
pressure/^). 

For later convenience we give here a list of abbreviations: 

P = TiPk (total mass density), 
k 

k = 2 kfc (total non-electromagnetic force), 
k 

Py = TiPk Yk (mean mass velocity), 
k 

i = HPkzkyk (electric current density), 
k 

Ec = E + ( i / c ) v x H (electric field in a system of reference moving 
with the mean mass velocity). 

In addition to Eq. (4) we have Maxwell's equations including the relation 
between the electric field and the total charge density 

divE = 4?r £ pkzk. (5) 
k 

Together with the approximate equations determining the non-electro­
magnetic force (which we shall however not consider in detail) the system 
of equations is complete. To simplify it, we use two approximations. 

1. We assume quasi-neutrality. That is, we drop Eq. (5) and replace 
it by 2/>*** = o. (6) 

k 

With this relation the system is again complete and suffices to determine 
the electric field, including its curl-free part. The approximation is con­
sistent when it turns out that 

I div E I <̂ 4?r S pk I zk |, say, (7) 
k 

so that the relative magnitude of the two sides of this inequality is of such an 
order that the error in the densities pk induced by the approximation does 
not appreciably influence the solution of the equadon of motion. 
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2. We assume the diffusion to be 'creeping5 by neglecting the difference 
of acceleration of the components: 

*&-*? (S\ 
dt " dt' w 

Since usually the diffusion velocities are small compared with the mean 
velocity, Eq. (8) holds in most practical cases too. The physical meaning 
of this assumption is that the diffusion equilibrium sets in instantaneously 
whether or not the gas as a whole is being accelerated. 

The two assumptions are of quite a different nature. Assumption i will 
be good in almost all cases of astrophysical interest, except for problems like 
a non-linear theory of plasma oscillations of great amplitude. The simplifi­
cation gained is relatively minor, however, since we have replaced one 
instantaneous differential equation (namely Eq. (5)) by an algebraic 
relation. There are however many cases where diffusion is certainly not 
at all 'creeping', but the inertia due to the relative velocities is of decisive 
importance. Particularly, plasma oscillations are excluded. The approxi­
mation 2 will be good in all cases where a ' magnetohydrodynamic 'approach 
is reasonable. While the restriction imposed is severe, the simplification is 
considerable since we are now left with just as many time derivations as in 
ordinary hydromagnetics. 

We shall first discuss the Eqs. (4) together with our assumptions in the 
special case of a two-component plasma and only briefly deal with the 
more general case of a three-component plasma.* 

2 . THE T W O - F L U I D S MODEL 

If only two constituents are present our equations are readily solved in 
terms of those variables which describe the behaviour of the plasma as 
a whole: ,~ v 

/ > ^ + v . g r a d v j = ^ j x H - g r a d / > , (911) 

*B + v x H = £ j + ? { j x H - * g r a d # } , (9*) 

* For the case of a two-component field, equations corresponding to those given here were first 
considered by A. Schluter[2] and independendy by M. H. Johnson and E. O. Hulburt [3] (the 
latter without the inertial terms). The three-component case was considered by A. Schliiter[4] 
and applied to interstellar magnetic fields by A. Schliiter and L. Biermann[5] and to the iono­
sphere by I. Lucas and A. Schliiter [6]. The relation to the kinetic theory of gases was established 
in the case of creeping diffusion by M. H. Johnson [7]. 
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where <r = j8lzlz±. z2 (ohmic conductivity), 

* = 2(Pl-P%)l(PlZl-plZ%) 
a n d 7=(PiP*-P%Pi)l(Pi-P*) P> 

We have here taken pressure as the only non-electromagnetic force acting. 
a is a constant which only depends on the nature of the plasma, not on 

its actual state. For a mixture of ions (of mass mi and charge + e) and 
electrons it is practically a = mje. y depends on temperature only as far 
as the ratio of the partial pressures does, so in a simple plasma where the 
electron temperature equals that of the ions, y = \. 

The difference between these equations and the hydromagnetic equa­
tions (i) lies only in the two terms multiplied by a. These are the Hall term 
(ocjpc) (j x H) which produces an electric field when a current flows across 
the lines offeree, and the pressure diffusion term (oc/p) grad yp. Both terms 
are the more important the smaller the density becomes. The Hall term 
is more important than the Ohm term j/cr {{aHjopjcr, that is if the mean 
of the gyro-frequencies is larger than the collision frequency, and this is 
the case for practically all cosmical magnetic fields, except for the interior 
of stars, planets, and the like. We are particularly interested in the devia­
tions from ordinary hydromagnetics and shall therefore discuss the extreme 
case of vanishing ohmic resistivity. 

If er -> oo, the Eqs. (9) allow a number of transformations. One of 
these is gained by eliminating in Eq. (9 a) the Lorentz term by means of 
the Hall term of Eq. (gb). We then obtain: 

This is the equation of motion of a charged fluid with a mass-to-charge ratio 
a and a pressure (1 — y) pttpJ2. So, if the electromagnetic field is known, 
it is essentially the same problem to solve the equation of motion for a 
quasi-neutral plasma as for a gas consisting of charged particles of one kind 
only. This is one of the many possible transformations in this field which 
are correct in a formal sense but completely useless in practice. The point 
is, in this case, that we never know the electromagnetic field beforehand. 
There are situations where we may neglect the influence on the magnetic 
field by the currents flowing in the plasma, or where we may treat it as a 
perturbation. But the electric field is always determined by the space 
charges in the fluid, whenever the motion of a quasi-neutral plasma is 
applicable. There is no other way but to solve both the equation of motion 
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(ga) (or equivalently (10)) and the diffusion equation (gb) simultaneously. 
Because of the relative unimportance of E it is advisable to eliminate E in 
Eq. (gb) by taking its curl: 

— curl I— curl HI 
\4^ / 

aH_ 
dt ~~ " " " \4.n 

+ curl H'H 
-tf ( g r a d p x g r a d ^ ) . ( n ) 

r 

We consider again the case of vanishing resistivity i/cr. If furthermore 
oc/p -> o, we have the well-known hydromagnetic relation 

-g- = c u r l ( v x H ) . (12) 

This equation has a simple meaning: the magnetic flux through every 
closed line which is moving with the fluid is constant—the magnetic lines 
of force are frozen in. Returning to the case a 4= o, it is tempting to introduce 
instead of the mean mass velocity a slightly different velocity v' by 

V = V - - J 

or pv'=Pi*i+PiV* (J3) 

If we use this mean velocity Eq. (i i) reads (with <r -*■ oo) 

-^ = curl (v7 x H) ~ [grad p x grad£|. (14) 

The only effect of the Hall term is therefore that the lines offeree are not 
moving with the mean mass velocity (v) but with a velocity which differs 
from this by a quantity of the order of the relative diffusion velocity. This 
result is not surprising, since the concept of the mean mass velocity has been 
introduced for its obvious importance for the equation of motion, but it is 
certainly not appropriate to the diffusion problem when the forces are not 
proportional to the masses. Besides this motional-induction term we have 
the pressure term; it describes real creation and annihilation of the magnetic 
lines offeree and is of particular importance if one wants to treat the first 
origin of magnetic fields in fluid conductors. It disappears if/> and p are 
uniquely related to each other as they are in many simple cases of interest. 
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Another useful relation is obtained by taking the curl of Eq. (10). Intro­
ducing the vorticity co = curl v, we have: 

-^—^ -y =curl {v x (H + a^co)} + -2 {grad p x grad (i - y ) />}. (15) 

We have seen that the magnetic field moves with a velocity which is 
different from the mean mass velocity, now we see which quantity it is 
that is transported by v; in the case of a mixture of ions and electrons the 
conserved quantity is „ 

7 r- + curl v. (16) 

For the influence of the pressure term the same remarks apply as above. 
Eq. (15) has two interesting limiting cases. If a -> o, we return to the hydro-
magnetic case previously discussed. For H -> o we obtain, however, the 
well-known vorticity theorem of hydrodynamics, but with a small devia­
tion: ~ , 

—^-— = curl {vx curl v} + —2 {grad px grad (1 — y) p}, (17) 

the deviation consisting in the term with grad yp, which we have already 
found to be responsible for the creation of magnetic flux. The two 
quantities, the sum of which is conserved in the considered sense, are 
comparable to one another when curl v has the order of the smaller gyro-
frequency of either component. So again, the modification to hydro-
magnetics due to the Hall terms is very small indeed for all cases where the 
application of hydromagnetics is at all reasonable. 

The fact that the real importance of the Hall effect is very small is con­
trary to what one would expect, if one describes its effect as a reduction of 
conductivity across the lines of force. In our case, where we have considered 
the case of vanishing ohmic resistivity (a*->oo), the cross-conductivity 
would indeed be zero. 

3. THE THREE-FLUIDS MODEL 

From the treatment of the two-fluids model we have learned how to 
handle the diffusion equations: we have to solve them with respect to the 
electric field E or Ec in terms of the magnetic field (and thereby the electric 
current) and the partial pressures only. So we arrive at a modification of 
Ohm's law, which is then used to determine curl E and thereby dH/dt. 

If we carry through this programme for the case where we have three 

77 

https://doi.org/10.1017/S0074180900237649 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900237649


different constituents, and solve the Eqs. (4), remembering our assumptions 
(6) and (8), we arrive at the following somewhat lengthy formula: 

(02zPi4 + Pi*P24 + fi12Ps4) Ec + z1z2z3(Ec x Ujc) 

= (A12 fiizPi + Pi* P23P2 + A 3 A12P3) J 

-W/>) (P23ZI(P-2PI)+PI3Z2(P--2P2)+PI2Z3(P-3P3)) ( J x H W 

+ (l/p2) (PiZa^S+^BZl+PsZl**) ( j x H / ^ x H / c 

+ (!//>) {AsPl*l+As/>2*2 +A2PI**} k 

-{A23Pl2ik1 + ^13P2Z2k2 + ^12p3Z3k3} 

^ ( ^ ^ { P i ^ ^ + ^ ^ i ^ a + P g Z ^ J k x H / ^ 

- I 1 / / 0 ) {Pi2 a28ki+P221z8k a+/03z1z2k3} xH/f. 

We have by this formulation not completely fulfilled our aim, the term 
Ec x H not being removed. This could easily be done, but in the case of 
greatest interest—namely if one component is not charged—its coefficient 
disappears. The essential novel features appearing here are the terms which 
contain the square ofH/p. They are larger than the Hall term in the ratio 
given by a certain average value of the gyro-frequencies relative to the 
collision frequencies. Their occurrence is most easily explained in the case 
of one neutral component. Then, the Lorentz force j x H/c acts on the 
charged components only, hence these move relative to the neutral com­
ponent (' ambipolar diffusion'). It is then the mean velocity of the charged 
components which determines the motional induction v x H and this 
velocity differs from the mean mass velocity by a term proportional to the 
Lorentz force. By this effect the dissipation of energy is really increased if 
an electric current flows perpendicular to the lines of force and—as found 
by A. Schltiter and L. Biermann [5]—it might well be that this sink of energy 
is of importance in the case of magnetic fields in interstellar H n-regions. 
I t also seems that by this mechanism the tidal currents in the ionosphere 
are effectively limited to the lower layers (I. Lucas [8]). A further effect of 
this term is a modification of shock conditions compared to the hydro-
magnetic case, while the Hall term does not contribute. 
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Discussion 
Cowling: I have during the last year derived results essentially equivalent to 

those given by Schliiter. It appears that the question normally posed as to how 
the conductivity is affected by a magnetic field is too imprecise for the answer to 
have any value. The more important question is how collision processes affect 
the dissipation of a magnetic field; an answer can be given to this but only if the 
physical circumstances are clearly defined. 

Buneman: Conservation of vortices (in the electrodynamic sense, i.e. vortices 
of momentum plus vector potential) is a very fundamental property. It applies 
to each species separately when there are no collisions, even under extreme 
relativistic conditions. When there are collisions the vortices of the total 
momentum are conserved—hence Dr Schliiter's result. Conservation of 
vortices is an extremely useful fact for resolution of problems and has been 
employed successfully by myself in calculations for conditions where no col­
lisions take place, such as in interplanetary space. 

Piddington: Dr Schliiter has considered each component of the gas as having 
a separate motion. This is undoubtedly necessary to obtain a complete solution 
but it may lead to great complexity in some astrophysical problems. These 
problems are usually so complicated in any case that some simplifying assump­
tions are necessary. One simplification which is often permissible is to consider 
two or perhaps more of the different gas components as a single gas with a single 
mass motion. An example is a hydromagnetic disturbance in a gas containing 
heavy ions and electrons and perhaps neutral particles. There is no doubt that, 
because of their greater mobility, the electrons move to some degree separate 
from the heavy ions and so cause space-charge electric fields within the ion 
plasma. This results in ' an electron plasma wave' or space-charge wave as an 
integral part of the whole hydromagnetic wave. However, the electric current 
which flows to cause this wave is small; in fact it is equal to the displacement 
current which, as Dr Schliiter has pointed out, is negligible, except when relati­
vistic effects are significant. 

Perhaps it is desirable to examine each particular astrophysical problem 
with a view to reducing as far as possible the total number of gas components 
considered. This may avoid the development of equations which cannot be 
solved. 
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von Engel: What is the relative importance of the production of charges 
(e.g. in the ionosphere) which has not been considered in the theory? 

Schliiter: The equations which I have given describe only the balance of 
momentum, so they hold irrespective of the presence of ionization and recombi­
nation processes. These may, however, influence the coefficients of friction. In 
the case of three co-existing fluids one has to introduce a condition on the trans­
mutations between the constituents. In the work on the tidal currents in the 
ionosphere the approximation was made that the degree of ionization is 
controlled by the instantaneous equilibrium between radiative ionization and 
recombination, independent of the state of motion. 

Terletzsky: Do you agree with me that for extremely rarefied gases it is 
better to solve your first equations—the equations of mutually penetrating ideal 
gases? 

Schliiter: As far as the assumptions (quasi-neutrality, creeping diffusion) 
hold, both approaches are mathematically equivalent. Otherwise, one has 
either to solve the original equations directly or to use transformations which 
do not imply the correctness of these approximations. 
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