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Introduction

The purpose of this paper is to investigate the moduli of compact Riemann

surfaces with non-trivial automorphisms.

We shall explain our problems by giving a summary of the contents.

In § 1, we shall explain by some examples from where our problems occur.

We know that the problems of representations of the group of automorphisms

as linear transformations of the Spaces of differentials have been studied. Our

first subject is a converse of these problems in a certain sense, that is, giving

a group G and a representation 5 of G, we wish to find such a Riemann

surface that has G as a subgroup of the group of automorphisms, and where

the representation of the group G is equivalent to S. From here many

interesting problems arise.

In §2, we consider a family Ω{G, p) of Riemann surfaces with a prescribed

type of automorphisms (cf. 2.1) and study some properties of the family, by

which we are able to obtain some information about the structures of compact

Riemann surfaces of small genera, i.e., of genus 2 and 3. It seems to us an

interesting matter that we obtain Theorem 2.17 as a residual product.

In §3, we consider a family Ω(g\ n, {pu . . . ,vr\) of Riemann surfaces

which is a subfamily of Ω(n> p) with respect to the exponents viy . . . , vr

subject to certain conditions (cf. 3.1) and following the methods of Teichmuller

[19], Ahlfors [21 and'Bers [3], we shall devote ourselves to construct from

this family a complex manifold A, which we shall call a generalized Teichmuller

space. The'main result of this section is Theorem 3.21, which asserts that

Λ is a 3gr-3 + r dimensional complex, analytic manifold. Here the number

3g'-3-\-r is nothing but the number of linearly independent quadratic dif-

ferentials which are invariant by the given automorphism with r fixed points.
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In §4, we shall deal with a special family i2(0, n, {P\, . . . , vr))t from

which we obtain a generalized Teichmϋller space Λ(0, n, {vi}). We see that

Riemann surfaces R belonging to Ω(0, n, {*/*}) are of the form

/•= {χ-admι- Λx-as)
m\ n\mι+ + tns, r = s+l,

where tm (i = 1, . . . , 5) are the numbers which are completely determined by

vu . » vr as shown in Proposition 3.4.

Let / be the jacobian variety of R, and let Co be the birational correspondence

of R with itself given by (x, y)-*{x, ζy), where C is a primitive n-th root of

unity. Denote by 0(C) the automorphism of / corresponding to Co. Let *€ be

the canonical polarization of /, and p the automorphism of Q(C) such that

CP = C"1. Then we get a polarized abelian variety of type {(J(C), 0, p} in the

sense of Shimura [16] for a certain representation φ of degree g. Here g is

the genus of R.

On the other hand it is known by Shimura [16] that there exists a sym-

metric domain H which parametrizes an analytic family of polarized abelian

varieties J* of type {Q(Q, <ρ, p).

We shall investigate the appearances of the jacobian varieties in this

family of abelian varieties. For this purpose we consider the question whether

there exists a holomorphic mapping of the generalized Teichmϋller space A

into the symmetric domain H. The answer is affirmative, as shown in Theorem

4.13, which is one of our main theorems in the present paper.

In § 5, we shall discuss the holomorphy of parameters in the above equation

of Riemann surfaces with respect to the complex structure of the generalized

Teichmuller space A, For that purpose we consider the moduli-variety S§ for

the family of abelian varieties introduced in [18], which is the quotient of H

by a discontinuous group Γ. Let S= {Ui, . . . , xs) e Cs Xi^Xj, if f */}. Then

we can let (Rx, σx) correspond to each (xu . . . , xs) ε S . Let ^ be a point of

A corresponding to (Rx> σx). Then we obtain a rational mapping ψ : S-»δ

which relates, roughly speaking, the parameters xu . . . , x5 holomorphically to

λ. The precise statement of this fact is given in Theorem 5.9, which is our

second main theorem.

In §6, we consider, as an example, a special case of the family Ω (0, 7, {l,

1, 1, 2}) and apply the theory developed in the above sections to it. In this

https://doi.org/10.1017/S0027763000023990 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023990


ON ANALYTIC FAMILIES OF COMPACT RIEMANN SURFACES 121

case, we see that both A and H are one dimensional manifolds and the mapping

of A into H is a ratio of the periods of the differentials of the first kind of

the Riemann surfaces (cf. 6.2). As for the holomorphy of parameters we can

construct an invariant which is holomorphic in the whole space A (cf. Theorem

6.7).

The author should like to express his hearty thanks to Prof. G. Shimura

who has led him to this investigation and has given many valuable advices

and constant encouragements. And the author also expresses his sincere thanks

to Prof. S. Koizumi and Prof. M. Kuga for their kind advices and hearty

encouragements.

§ 1. Preliminary consideration

1.1. Let R be a compact Riemann surface of genus g; we can express an

arbitrary meromorphic differential on R in the form ω = fdg, where /, g are

meromorphic functions on R, Let a be a holomorphic mapping, of another

Riemann surface R' onto R. If we set fι(z) = f(a(z))> gλz) = g(o{z))} then

fi(z), gι(z) are meromorphic functions on R1, and ωi~fιdgι is a meromorphic

differential on R'. We denote this differential by ωι = ωa. Particularly if R = Rf,

and if o is an automorphism of R, then ωi is a meromorphic differential on R.

Moreover if ω is a differential of the first kind, then ωι is also of the first

kind, and (α>i-f ωz)a = ωχo + ω2σ, (λω)a = λ(ωσ) where ^ is a complex number.

We shall denote by V(R)9 or simply by V, the complex vector space of all

differentials of the first kind on R. Let G be a subgroup of the group of all

automorphisms of R. Every element a of G induces a linear mapping of V

onto V as we have seen above and moreover we see that ω(aτ) = {ωσ)τ for

arbitrary </, r e G. Therefore fixing a basis of V, we obtain a matrix repre-

sentation p of G. It is known that this representation is faithful if the genus

of R is greater than one, for a proof see [9, p. 416].

1.2. LEMMA. The notation being as above, let p be the complex conjugate of p.

Then the representation

( p o
\ 0 jf

of G is equivalent to a rational representation of G. Moreover, t r p(a) + tr p(a)is

a rational integer for every σ&G.
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The first assertion is classical and well-known. For a proof, see for

example [7; pp 270-272]. The second assertion follows easily from the first

assertion.

1.3. Let R and G be as above in 1.1. Let R' be the quotient of R by G.

Then R' has a structure of compact Riemann surface, and R can be regarded

as a Galois covering of R' whose Galois group is G.

Let K (resp. K1) be the field of meromorphic functions on R (resp. R1).

Then K is a Galois extension of Kf, whose Galois group can be identified with

G in a natural manner.

If G is a cyclic group of order n, then p can be determined by p(σ) for a

generator a of G. Furthermore we can transform p into a diagonal form, i.e.,

we can find a basis {α>i, . . . , ωg} of V so that

n 0 \

0ωsσ

with ^-th roots of unity αri, . . . , agf which may not be primitive. Let p be

the number of indices k for which ocu = 1. It is well-known that p is equal to

the genus of R1. We shall denote sometimes the above matrix by Zaci, . . . , agl.

1.4. As explained in the Introduction, our subject of study is a family of

Riemann surfaces with non-trivial automorphisms. In this paper we shall con-

sider exclusively the case where the group of automorphisms is a, cyclic group

of prime order, though one can certainly investigate a more general case.

Now we shall give some examples.

1.5. EXAMPLE. Let R be a Riemann surface defined by the equation

y = ix — ai)(x - ao)(χ- az) (ai^aj if

We see easily that R is of genus 6, and {y~*dx, y~βxdx, y~5dx, y~5xdx, y~4dx, y~3dx}

provides a basis of V. A map a : (x.y)-*(x,Cy) is an automorphism of R,

where C is a primitive 7-th root of unity. This a generates a cyclic group G

of order 7. If we write the above basis {ωu . . . , ω6} in order, then we have

O?i</ = Cϋ)i, 0)2 0 = CuL>2, α>3<7 = C2O>3, 0>4<7 = C2a>4, O>5<7 = ^ O>5, ^6 O = ζ 4 O)tί. T h e r e f o r e W β

can express these relation as follows:
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C2

0 C4

1.6. EXAMPLE. Let R be the Riemann surface defined by the equation:

y- = (x- tfj)(*+ aι)(χ- a2)(x+ az){χ- az)(x+ a*) {ai* aJf if i*j).

It can be seen that R is of genus 2, and {y~ιdx, y~ιxdx) is a basis of V. A

map a ' (x, y) -*(. - x, -y) is an automorphism of R. This ^ generates a cyclic

group G of order 2. If we set ωi =y~ίdx, ω>> - y~xxdx, then ωit; = o>i, ω2ί; = — ω?.

Therefore we have

(<Ol0\ l 0
O -

Let us now recall the following well-known lemma from Galois theory.

1.7. LEMMA. Let K be a Galois extension of a field k. Suppose that the Galois

group is cyclic and of order n, and k contains a primitive n-th root of unity C.

Then for every generator a of the Galois group, there exists an element y of K

such that oiy) = ζy, K=k(y) and yn<=k.

1.8. We shall apply this lemma to the fields of algebraic functions, which

are considered in the above. Let R, G} R', p, p, Kt K1 be as in 1.3. Suppose

that G is a cyclic group whose order is a prime number n. Let ί b e a generator

of the Galois group and let C = £niln.

(Case 1: p= 0). Then R' is a Riemann sphere, and K' = C(x), where C(x)

is a rational function field. So we have

(1.8. l) K— C(x, y), yn = fix), <τ(χ, y) = (x, Cy)

where fix) is a polynomial in x. Therefore in general we can write the

equation of the Riemann surface in the form

( 1 . 8 . 2 ) y =z i x — a{) \x a2) ' • • • ( # — as) s

with distinct complex numbers au «2, . . ., as, and positive integers mi, m2, . . . , m s

less than n. Without loss of generality, we may assume that

(1.8.3) 4-
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In fact, assume that mi + m2 + + ms = nq with an integer q. Let # ' = ( # - 0i)~\

bi=(ai-aι)-\ (/ = 2, . . . , 5) and y « {(βi-α*)1*- -(βi-fli^Γ^U-βiΓ^.

Then we have jK>C(*',y), *(*',y) - (*', ζy') andy"= ( * ' - δ 2 ) m ϊ U ' - δ s ) m '

^ + ̂ 2 4- ̂ 3 + -f ms.

Now coming back to the original notation of (1.8.1) and (1.8.2) with the

assumption (1.8.3), we obtain, by means of Riemann-Hurwitz formula,

(1.8.4) 2 £ = U - l ) ( s - l ) .

We can further normalize the equation (1.8.2) in the form

(1.8.5) yn = xmι(x-\)m*(x-cι)m** -(x-Cs-*)1"'

with distinct complex numbers cu - . , cs~* which are different from 0 and 1.

(Case 2: p = 1). Then K' is an elliptic function field. Hence K' = CU, 0)

where ^ 2 = 4 y3 - r2^ — re, r\-27 γ\* 0. So we have

(1.8.6) K=C(u, v,y)t y
n = a(v) +b(v)u, σ(u, υy y) = («, v, ζy)

where α(t ), b(v) are rational functions in υ.

(Case 3: /> = 2). Then X' is a hyperelliptic function field, and so K' = C(«, t;)
5

where « 2 = Π ( v —β, ) with distinct <z, . So we have

(1.8.7) K = C(u, v,y), yn - a(v) +b(v)u, σ(u, v, y) - {ut v, ζy)

where a(v), b(v) are rational functions in υ.

Here we should notice that in each case, G is generated by an automorphism

<r which transforms y to ζy and leaves all elements of K1 invariant, where

1.9. EXAMPLE. Let G be a cyclic group of order 7, and a a generator of

G. We wish to determine a Riemann surface of genus 3 on which a operates

as an automorphism so that, for a suitable basis ωu ω2, ω3 of differentials of

the first kind of it, one has

I ωισ\ / C 0\/ωΛ / C O
I woo 1 = 1 C I ω2 b p = LC, C , C J = C
Vαiatf/ \0 C'AωsJ \0 C3

where C = ̂ 2 Λ / / 7. From the result of 1.8, we see that such a Riemann surface

must be defined by an equation of the form
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and the automorphism is given by σ(x, y) = (x, Cy). Furthermore we see later

that mi = 1, m2 - 1, (or, mx = 1, m2 = 5), (cf. 2.13).

1.10. EXAMPLE. Let G be a group of order 2, and a the generator of G.

We wish to determine a Riemann surface R of genus g on which a operates as

an automorphism so that, for a suitable basis ωu . . . , ωg of V{R), one has

cΰ\ a

ωgσ

0

- 1

<O\

u>g 0

0

- 1

C-1, - 1 1

By the result of 1.8, such a Riemann surface should be determined by an

equation *

y2 = x(x- l)(x-aι) (x-a2e-i)

where aίt . . . , a2g-i are different from each other and are not equal to 0, 1.

1.11. In general one can ask the question of finding Riemann surfaces with

an automorphism whose representation by differentials of the first kind is

equivalent to a given matrix p, as described in the above examples. With an

arbitrary p, there may be no such Riemann surfaces. But for a suitable p there

may exist Riemann surfaces of prescribed type with several parameters as we

see in Example 1.10. It may also happen that there is no continuous parameter

for such Riemann surfaces, as in Example 1.9.

Our first problem is to investigate these phenomena in detail for compact

Riemann surfaces of genus 2 and 3. This will be treated in the next section.

Our second problem is to construct a complex manifold A which parametrizes

compact Riemann surfaces of genus g (g>2) with a given type of automor-

phism. Such a manifold may be regarded as a generalization of Teichmϋller

space.

Our third problem is to clarify the relation between the following three

kinds of parameters:

(1) the point on A corresponding to a Riemann surface R.

(2) the periods of the integrals of the first kind on R.

(3) the parameters aίt . . . , as in the equation (1.8.2).
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§2. A family of Riemann surfaces: Ω(n, p)

2.1. Let n be a prime number, g a positive integer >1, and p a complex

matrix of degree g such that ρn = 1. Let us consider a couple (R, o) formed

by a compact Riemann surface R and an automorphism o of R of order w such

that the representation of a in the vector space V{R) of differentials of the

first kind on R is equivalent to p. We say that {R, a) and (R'f a') are iso-

morphic if there exists a holomorphic bijection / : R-+R1 such that fσ = σ'f.

We denote by <i?, <;> the isomorphism class of (i?, c;) with given n and p, and

we denote by Ω(n> p) the set of all classes <i?, σ>.

As an example if G={l}, p = /, then Ω consists of all Riemann surfaces

of genus g that is, Ω is nothing but the so-called space of moduli of Riemann

surfaces of genus g.

2.2. PROPOSITION.

(1) Ω{n, po) = φ if Po = [1, . . . , 1],

(2) Ω(nf p2) = 0 if P2 = Cl, 1, Cλ3,

The assertion (1) is well-known (cf. [9; p. 416]). But here we

give a proof for both (1) and (2) by means of the formula of Riemann-Hurwitz -

where g is the genus of R and gf the genus of R' = i?/G, and ^ the ramifica-

tion degrees.

(l) Since g — g1, we must have n = 1, which shows that Ω(ny po) = <ρ for

(2) Since g =3, g1 =2, [G : 1]^3, the left hand side of the equation is

equal to 4, but the right hand side >2 n, which is a contradiction when n>3

(If ?z = 2, i? must be an unramified covering of R').

2.3. Now we notice that every automorphism of R can be represented also

in the space V* = V*(2?) of regular quadratic differentials of R. It is well-

known that the dimension of V* is 3g-3. Let p* be a matrix of size 3 ^ - 3

such that p*n = 1.

We denote by Ω(n, p, p*) the set of all isomorphism classes <i?, σ> which

satisfies the following conditions:

(1) <R, a> represents a member of Ω(n, p).
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(2) The representation of a in the space V*{R) is equivalent to p*.

2.4.. Remark. If we put g^2y n = 2, p = C - 1, - 1], p* = [1, 1, 1], then

i2(2, p, p*) is the set of all <i?, <?>, where R is a Riemann surface defined by

the equation:

yz z= χ(χ- l)(χ- a\)(x- a2)(x- a%)

and a is an automorphism of R which maps x to xy and y to — y.

In order to study the properties of p, p*, we may use the trace formulas of

Eichler [7, 8].

2.5. LEMMA. Let a be an automorphism of R of order n and let ζ = e2nt/n.

We denote by tr p(σ) the trace of the representation of a in the space V(R). Let

t be a local parameter at a point P which is fixed by σ. Then a can be represented

as t-*CtΛ'ζ!iLΛ- . Here v is an integer such that l<Lv<n - 1, and does not

depend on the choice of local parameters. Then we have the formula:

where r is the number of fixed points. If we denote by tr p*(a) the trace of the

representation of a in the space V*, then we have the formula:

2.6. Now we shall apply this lemma to our case. Let us suppose that ζk

appears λk times in the matrix ρ(σ)t while in the matrix p*U), Ck appears μk

times, where & = 0, . . . , n- 1. We may evaluate these multiplicities λk, μk by

the above lemma. But in order to determine μ0 we may use the following

lemma owing to Lewittes [12, 13].

2.7. LEMMA. Let G be a subgroup of the group of automorphisms of R, σ a

generator of Gy r the number of ramified points on R over R\ and g1 the genus

of R'. Suppose that 2gf - 2 + r X ) . Then

( 2 . 7 . 1 ) iMβ

In fact, if we fix a function f0 on i?', any quadratic differential is given by

g(df^2

y where g is an arbitrary meromorphic function on Rf. Then we have

only to evaluate the number of g(dfo)2 which are everywhere finite in the local
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parameter on R. Then we get easily the lemma by the theorem of Riemann-

Roch and the formula of Riemann-Hurwitz.

2.8. Let us now consider a Riemann surface R defined by the equation:

where n is prime, l<Zki<n (i = 1, . . . , 5), and the β, are distinct. Let a be

an automorphism of R such that a (x,y) = (x, Cy\ ζ = e2ni/n. There are 54-1

fixed points, i.e., alf . . . , as and the point at infinity. At the finite point β, ,

if we take the least positive /,- such that kih Ξ 1 (mod n) and put kih = 1 + nqu

then ylίl(x-ai)Qί is a local parameter t which is transformed to tClί by a.

Therefore vi is equal to /,-. As for the point at infinity, if we take the least

/ such that / Σ&; + 1 Ξ O (mod n) and put / Σ * / + 1 = ##» then yιlxQ is a local
i = l

parameter t which is transformed to tCι by 0. Therefore / is equal to vs+i.

We shall give a list which will be necessary in the following.

R Vl V2 VZ VA V5 λl λ2 λz λi βo βί βi βZ βi

(1) / = x(x-l)(x-ά)(x-b) 1 1 1 1 1 3 2 1 0 2 1 5 4 3

(2) y * = > χ ( χ - l ) ( x - a ) ( x - b Y 1 1 1 2 4 2 2 1 1 2 2 4 4 3

( 3 ) y* = x ( x - i ) l x - a ) \ x - b ) * 1 1 2 2 3 2 2 1 1 2 3 3 3 4

Remark. In the above table μ0 = 3 g' - 3 + r = 2 is common to all these and

the number 2 coincides with the number of parameters.

(2) and (3) are contained in the same Ω(n> p)9 but are not in the same

£(», p, p*).

2.9. We are going to classify compact Riemann surfaces of genus 2 with

non trivial automorphisms by investigating thoroughly all the possible Ώ(n, p).

We shall use the same notations as in 1.8.

(Case 1 : ^ = 0). As shown in 1.8, R can be expressed in the form

R : /• = (*-a,)"1*- '(χ-as)
ms

t n\ Σm/, l^nn<n, l g i ^ s ,

and a is a map which maps x to x, y to Cy, where C = e2ntln.

Since ^ = 2, the formula (1.8.4) now gives 4= ( « - l ) ( s - l ) with" a prime

n. Therefore only following three cases (i), (ii), (iii> may occur.

(i) n^2, 5 = 5 : Ω(2, p) is a family of <R, σ>, where R is defined by the

equation
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y1 = χ(χ— 1)(ΛΓ — aι)ix- a2)(χ-~ az)

and a is a map which maps x to x, y to -y.

(ii) n = 3, s- 3 : J2(3, p) is a family of <i?, <;>, where 7? are defined by the

equations

R v\

(1) / = * ( * - l){x~aΫ 1 1 2 2 1 1 ]

(2) / = * ( * - l ) U - f l ) 2 1 2 2 1 . 1 1 ) ( 1 ' ΰ

and <7 is a map which maps x to x, y to Cy, where C = e*πί/3. We can see easily

that a Riemann surface of (l) is conformal to a Riemann surface of (2) in a

usual sense. We can see easily that Ω(3, p) = φ if p = [C, C] or p = [<C2, C2].

(iii) « = 5, s = 2 J2i5, p) is a family of <i?, <;>, where i? are defined by

the equations

R

(1) / = *(.

(2) y.

o) y= ., _ . . . . . . .
,4, y • ' < l 3 ) " >

Pi

1

1

3

4

1

3

2

2

1

2

4

4

3

3

2

2

2

1

4

3

3

1

4

4

1

1

0

0

1

1

0

0

^2

1

1

0

0

0

0

1

1

λt

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

I
/

I
I

I

(5) / = # ( # - I ) 2

(6) / = ^ 2 U - 1 ) 2

(7) / = * 3 U - 1 ) 3

(8) f = x\x-lΫ

and <; is a map which maps x to x, and ,y to Cy, where ζ = e27ll/5. We can see

easily that all of these Riemann surfaces are conformal to each other from (1)

to (4), and all of these are conformal to each other from (5) to (8). However

we can show that 11) and (6) are conformal to each other. In fact, if we

put

then we have

Y5 ^X(X-l).

And we have also

y=Y\

x=X.
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Therefore we conclude that all of these are conformal to each other from

(l) to (8) in a usual sense.

(Case 2; p- 1). Let r be the number of fixed points of a. We see by

the formula of Hurwitz that 2=(n-l)r. Only two cases (l) and (2) may

occur.

(1) n = 3, r = 1: By Lemma 2.5 we see easily that this case does not occur.

(2) n = 2, r = 2 : We see that p = [1, - 1]. We shall prove later that i2(2,

p) is not empty as a special case of a general theorem.

2.10. Remark. In the compact Riemann surfaces of genus 2, we see that

any of them cannot have a group of order 84 as a group of automorphisms (cf.

84 = 84(£ - 1), g=2). Because any of them cannot have an automorphism of

order 7 as we see in 2.9, and so we obtain the assertion by a theorem of Sylow.

Of course, any compact Riemann surface of genus 2 is found at least in one

of these families in 2.9.

2.11. Remark. We know that any compact Riemann surface of genus g

cannot have an automorphism of order more than 10 g — 10. Therefore in case

of compact Riemann surfaces of genus 3 we have only to study Ω{n, p) for

w = 2, 3, 5, 7, 11, 13, 17, 19.

2.12. Remark. Ω{n, p) =φ if w = 7, 11, 13, 17, 19 and if p « t l , Cλ, Cμ] l^A,

μ<Ln-ly ζ = e2™ln. In fact, by the lemma 1.2 it is sufficient to prove that

tr p -f tr p is not equal to any rational number. But we see this fact by a

simple application of the theory of the Galois group.

2.13. Now we are going to classify compact Riemann surfaces of genus 3

with non-trivial automorphisms in the same way as 2.9.

(Case 1 : £ = 0). Since ^ = 3, the formula (1.8.4) now gives 6 = ( w - l )

{s- l) with a prime n, and so only the following three cases (i), (ii), and (iii)

may occur.

(i) ra = 2, s = 7 : Ω(2, p) is a family of <R, σ>, where R is defined by the

equation

y2 = x(x—l)(x~ aι){x- a%)ix- a>i)(x- # 4 K # - #δ)

and a is a map which maps x to x, y to —y.
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(ii) w = 3, 5 = 4 : #(3, p) is a family of <i?, *>, where /? are defined by

the following equations

R V\ V2 VZ V\ Vo ^1 ^2 N*v, (3/

(1) yz = x(x-l)(x-a1)(χ-a2) 1 1 1 1 2 2 1

(2) y* = x(x-l)(x-aι)(x-a2)
2 1 1 1 2 1 2 1

(3) y* = x2(x-l)2(x- a^ix-az) 2 2 2 1 2 1 2

(4) 2 2 2 2 1 1 2

and a is a map which maps x to x and y to Cy, where C = e2 nt/3. We can see

easily that all of these Riemann surfaces are conformal to each other from (1)

to (4) in a usual sense.

(iii) n = 7, 5 = 2 : Ω(7> p) is a family of <i?, </>, where R are defined by the

following equations

Group ί a ) :

(1) yΊ = x(x-l) 1 1 3 1 1 1 0 0 0

(2) yΊ = x(χ-l)5 1 3 1 1 1 1 0 .0 0

(3) / = * 2 U ~ 1 ) 6 4 6 6 0 0 0 1 1 1

(4) y7 = x*(x-l)6 6 6 4 0 0 0 1 1 1

Group (b)

(5) / = * 2 U - 1 ) 2 4 4 5 1 0 0 1 1 0

(6) y7 = χ2(χ-l)3 4 5 4 1 0 0 1 1 0

(7) / = # 4 U - 1 ) 3 2 3 3 0 1 1 0 0 1

(8) / = * 5 U - l ) δ 3 3 2 0 1 1 0 0 1

Group (c):

(9) / = Λ: 3(Λ:-1) 3 5 5 1 1 0 1 0 1 0

( 1 0 ) / = * ( * - 1 ) 8 1 5 5 1 0 1 0 1 0

2 2 6 0 1 0 1 0 1

2 6 2 0 1 0 1 0 1

(11) / = #V-1)4

(12) y = ̂ 4 U - l ) 6

Group (d):

(13) / = * ( * - I ) 2

(15) / = * ( * - I ) 4

(16) / = * * ( * - I ) 5

(17) y7 = χ5(χ-l)«

(18) / = Λ: 3 U-1) 6

1 4 2

4 2 1

1 2" 4

5 3 6

3 6 5

5 6 3

1 1 0 10 0

1 1 0 10 0

1 1 0 1 0 0

0 0
a
 1 0 1 1

0 0 1 0

0 0 10 11

1 1 j

1 1 I

σ>

o>

σ>

σ>

σ>

a>
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We can see easily that any two curves of the same group are conformal

to each other. Furthermore we can prove that (l) is conformal to (5). In

fact, if we put

r = / / * ( * - 1 ) , x=χ,

then we have

Y7 =X{X-l).

And we have also

y=Y\ x = X.

Here / = # 2 ( # - l ) 2 . Furthermore we can prove that (8) is conformal to (9).

For the proof we have only to put

Thus we can conclude that all of these are conformal to each other from

(1) to (12) in a usual sense.

(Case 2: p = l). Let r be the number of fixed points of a. We see that

6 - 2 = {n - l) r by the formula of Riemann-Hurwitz. Therefore only the

following three cases may occur.

(1) n = 5, r= 1: By Lemma 2.5 we see easily that this case does not occur.

(2) ft = 3, r = 2: By Lemma 2.5 we see that the possible p is as follows:

0

(3) n = 2, r = 4: By the same Lemma as above, we see that the possible

p is as follows:

1 0

The general equation of R is given in 1.8 (Case 2: p = ΐ). We shall

prove later that both J2(3, pA) and Ω(2, pB) are not empty (cf. Theorem 3.2).

(Case 3: p-2). By proposition 2.2 (2) the possible p is as follows:

(1 0
Pc = 1

VQ - I
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The general equation of R is given in 1.8 (Case 3 : p = 2). We shall prove

later that J2(2, pc) is not empty.

2.14. Remark. In (Case 2) (1) of 2.13, we have only to check following

P : Pi = Cl, C, C2], p2 = [1, C, C8], p3 = [1, C2, C4], and p4 = Cl, C3, C4] by Lemma 1.2.

2.15. Remark. In compact Riemann surfaces of genus 3, we see that only

two types: y7 = x(x-l), y7 -x(x-l)2 have an automorphism of order 7.

Moreover we see that the former cannot attain the maximum of automorphisms

of genus 3. Since it is hyperelliptic, we get the assertion by a theorem of

R. Tuji [20].

2.16. Remark. It is known by Klein that the Riemann surface defined by

the equation: xyz + y + xz =•- 0 has the group of automorphisms of order 168

( = 8 4 ( £ - l ) ; p = 3). Now we can see the Riemann surface defined by the

equation y7 = x(x- I) 2 is birationally equivalent to the Riemann surface of Klein.

In fact, if we put

x=Y/X, y= YΊX,

then we have

If we rewrite this equation by y* + Xs + xy = 0, and put

then we have

and so we see that this equation is birationally equivalent to y7 = x(x~ l)2.

2.17. THEOREM. There exists one and only one Riemann surface up to conformal

equivalence which has a group of automorphisms of order 168 among compact

Riemann surfaces of genus 3.

This theorem follows easily from Remark 2.15 and Remark 2.16.

2.18. It would be interesting to study automorphisms of compact Riemann

surfaces of higher genera from the view-point of us.

In our study the decision of the surfaces for the cases of p>l is left to

future, since it is beside the main purpose of this paper.
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§3. A family of Riemann surfaces: Ω(g', n, {vi,... , vr))

3.1. In view of the results of § 2, it is natural to define certain subfamilies

of Ω(n, p) with respect to the exponents {vu . . . , vr) Let n be as before a

prime number, and {i>i, . . . , vr) be a set of positive integers such that \<Lvi<n.

Let ζ = e2ni/rt. We denote by Ω{gl

i n, {vιt . . . , vr)) the set of all isomorphism

classes of {R, a) satisfying the following conditions.

(1) a is an automorphism of R of order n with r fixed points.

(2) RIG is of genus g\ where G is the cyclic group generated by </.

(3) Let U be a local parameter at a point Pi of R which is fixed by o.

Then a can be represented as U-*C1ti + Vt}+ . Here the coefficient Cv* is

an Tz-th root of unity and does not depend on the choice of local parameters.

In this case we shall say that a has the exponents {i>i, . . . , vr).

3.2. A necessary and sufficient condition for Ω(gf, n> {jjly . . . , vr}) not to be

empty. Let S be a compact Riemann surface of genus g1 and let (R} σ) be a

cyclic covering of prime order n. Let the ramification points on R be Pi, . . , , Pr

and the projections of them to 5 be Qu - - - , Qr respectively. Let U be a

suitable local parameter at P, , then we may assume that

and let KR and Ks be the algebraic function fields of R and S1 respectively.

Then there exists an element y of KR such that σ(y) = ζy, KR = Ks(y) and yn e Zfs.

Let the expansion of y at the point Pi be

then we have ζ = ?iki. Therefore we have viki=\ (mod n). On the other

hand if we consider the divisor of yn on S we have

as the divisor. Here D is a divisor on S. Now the degree of Σ&©/ 4- nD is

=0.

Therefore we have Σ&i^O (mod n). This is a necessary condition.

Conversely we shall show that this condition is sufficient. By the assump-
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tion we can put *Σki = nl, where / is an integer. The degree of the divisor
r

ΣkiQi — nlQo is equal to zero. Here Qo is an arbitrary point on S. Now the

divisor class group of degree 0 of the algebraic function field Ks is isomorphic

to a jacobian variety. Since the jacobian variety is a complex torus, there

exists the point of order n for an arbitrary point on the variety. Therefore

we have an element z of Ks and a divisor E of S such that

%
Then Ks(

n\l z) is an algebraic function field of our desired Riemann surface.

3.3. Remark. We are now in a position to prove the existence of Riemann

surfaces which are left in 2.9 and 2.14.

The non-empty of Ω(2, p) for p = [1, - 1] is proved as follows. From n = 2,

r = 2 and p = [l, - 1 ] we can derive that vι = 1 and v2 = 1. Therefore by the

condition viki=\ (mod 2) we see that ki + k2 = 0 (mod 2).

As for the non-empty of i?(2, p) for p = [1, - 1, - 1] we can derive vi = 1,

Ϊ,2 = l, j , 3 = l, and i>4 = 1 from n = 2, r = 4 and p — [1, — 1, — 1]. Therefore we
4

see that Σ & ^ O (mod 2).

The existence of i2(3, p) for p = Cl, C, C2] is shown as follows. We see that

v\ = 1, and z>2 = 2. Therefore &i = 1-f 3 Λ, and 2 &2 = 1-f 3 k where h is an odd

number. Then we see that kx-f k% = 3(1 + /2)/2 Ξ 0 (mod 3).

As for the existence of Ώ(2, p) for p = [1, 1, - 1] we must recall that r = 0.
r

Therefore the condition Σ&/ = 0 (mod 2) is always satisfied.

3.4. _G(0, ?z, {*>!, . . . , vr)) is a family of <i?, <;>, ^Λ^r^ R is defined by the

equation:

; is ΛW automorphism of R such that {x,y)-*(xy Cy)y ζ = e2™ln. Here

mi(i = 1, . . . , s) are the numbers which are completely determined by {vι, . . . , vr}.

Proof By 1.8, we see that R is defined by

yn={x-a1)
)h- •(*-<*,)*•, n\kx+ - +ks; l^ki<n, i = l , . . . , 5

and <r is defined by (ΛΓ, y) -» (ΛΓ, C3;), ζ = e2*i/n. Then as is seen in 2.8, the &,
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are determined by &,-*/,-=1 (mod n) for i = l, . . . , s and Ϊ M Σ & I + I = 0 (mod

n).

3.5. Remark. Ωig1, n} {uu . , iv }) is a subfamily of Ω(n, p), where p is a

matrix of size g which is determined by the trace formula of Eichler:

tr (p) = 1 + Σ T ^ Γ where C = e2 π//*,

and g is determined by the formula of Riemann-Hurwitz:

3.6. Now we notice here that the number of parameters roughly spoken

is equal to

s - 2 = 3 #' - 3 + r.

But this number is equal to μQ, i.e., the number of linearly independent quadratic

G-invariant differentials (See Lemma 2.7). Therefore it will be natural to

construct the theory of Teichmϋller space for Ω{gf, n, {vi}).

3.7. For that purpose we begin our study by recalling the definition of

Teichmϋller space [1], Let i?0 be a compact Riemann surface of genus g>2.

We consider all pairs {R, a) consisting of compact Riemann surfaces R of

genus g and homotopy classes a of topological mappings of i?0 onto R. Two

such pairs (i?, a) and (R\ af) will bs called equivalent if there exists a con-

formal mapping of R onto R' which belongs to the homotopy class α'α:"1. The

equivalence class which contains (R, a) will be denoted by <R, <*>. The set

of all classes <R, α> will be denoted by Tg, and is called Teichmϋller space

of genus g.

There is another definition of Teichmϋller space Tg. Let us choose a

point ί e i ? and let πi(Rtp) be the fundamental group formed by the homotopy

classes of closed curves from p. The group πi(R, p) can be generated by 2 g

generators AY> Bu . . . , Agi Bg which satisfy the single relation

Any such ordered system of generators is called a canonical system. If q is

another point on R we can associate a unique isomorphism of πΛR, p) to

πι(R} q) with every arc γ from p to q, which is denoted by Tr.
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Let Σp and Σq be canonical systems for πΛR, p) and πΛR, q^ respectively.

We shall say that Σq is equivalent to ΣP if and only if Σq = T~Σ>> for some γ

the notation means that each generator in Σb is transformed by Tτ into the

corresponding generator in ΣQ.

Suppose that / is a topological mapping of R onto another surface Rr.

Then any canonical system Σ on R is transformed into a canonical system f{Σ)

on R' formed by the images of the generators. We shall say that / maps

(R, Σ) onto (R'f Σf) if and only if f(Σ) is quivalent to 2". Moreover if / is a

conformal mapping we say that / maps {Rt Σ) conformally onto {R1, Σ') and

the two pairs are said to be conformally equivalent. The equivalence class

which contains (R, Σ) will be denoted by <R, Σ>.

The set of all classes <i£, Σ> defines also a Teichmύller space.

We remark that our two definitions are equivalent. In fact, we know that

if (R, Σ) and (Rf, Σ') are two members of the same genus, then there exists

a homeomorphism / * R-»R! such that / maps (i?, Σ) onto {R'f Σ') (cf. [4],

[14]). And we know that if / maps (Rt Σ) onto (R1, Σ') and h maps (R, Σ)

onto (R', Σ') then the mappings/and h are homotopic. Conversely, if h ' R->Rf

is a homeomorphism homotopic to /, then h maps (R, Σ) onto (Rf, Σ') (cf.

M).
Now we denote by <i?> the class of Riemann surfaces which are conformally

equivalent to R and the set of all classes <i?> will be called the space of moduli

and will be denoted by Rd. Here g means the genus of Riemann surfaces.

3.8. Let Q(g\ n, {vi, . . . , vr)) the set of all isomorphism classes of (R, σ)

which is defined in 3.1. Let (i?, a) and (Rr, σ') be two couples such that <i?, J>

and <R', σ'> belong to Ω(g', n, {i/, ». We say that (R, a) and {R\ a1) are

topologically equivalent if there exists a topological mapping /of (R> a) onto

(R\ af). Here a topological mapping /of (i?, a) onto (R'y a1) means a topological

mapping f : R-* Rf such that fa = </'/. We shall also say that <R, σ> and <i?', </>

are topologically equivalent in this case.

3.9. We fix a couple (j?0, σ0) such that <i?0, c;o> belongs to Ώ(gf,n, {VJ})

and denote by Γ{Rΰt <r0) the set of all the elements ζR, a> of Ω(g\ n, {»{)) such

that (R, σ) is topologically equivalent to (RQ, σQ).

Let us consider a triple (i?, σ, a) formed by a couple (R, a) such that

<i?, a> e Γ(i?0, ί/o\ and a homotopy class or of sense preserving topological

https://doi.org/10.1017/S0027763000023990 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000023990


138 AKIKAZU KURIBAYASHI

mappings of (i?o, σo) onto (R, a). Here topological mappings / and g of (R, a)

into (i?\ a1) are homotopic means that there exists a continuous mapping

h{z, t) of the product i?x[0, 1] into R' such that f(z) = h(zy 0), g{z) = h(z, l).

It should be noticed that we do not necessarily require the bridge mapping h

to satisfy the relation ha = a'h. Obviously our definition is well defined. We

say that {R, a, a) and {R\ a\ ccf) are isomorphic if there exists an isomorphing

of (i?, a) onto (Rf, a1) which belongs to the homotopy class a9a'1. We denote

by <R, at α> the isomorphism class of {R, β> a) and the set of all classes

<R, a, a> is denoted by Λ(g'f n, {vi) i?0, a0) or briefly A(R0, σo)f or A.

The space Γ(RQ, σo) corresponds to the space of moduli Rg and ui(Ro, </0)

corresponds to the Teichmύller space Tg.

Now we shall make A(ROt σ0) into a topological space and furthermore a

complex analytic manifold. For that purpose we shall make use of a result of

Teichmύller [19].

3.10. LEMMA. Let <R, a> and <R'y α'> be arbitrary two distinct points of Tg

and choose (R, a) e<7?, ay, (R'f α')e<i?;, α'>. Then there exists a quasi conformal

mapping f of R onto Rf which belongs to the homotopy class α'α"*1. Moreover

among such mappings there exists one and only one mapping /o for which the

minimum of the maximal dilatations is attained.

The dilatation of /o is a constant K and if /o is not conformal, then the

characteristic μ= (fo)z/(fo)z is given by a regular quadratic differential φdz2 on

R as

Here ψ is determined uniquely up to a positive factor.

Conversely\ if we fix an {R, a) and give a regular quadratic differential φdz2

on R and a constant k (0<&<l), then we can determine uniquely an <#', af>

and an extremal quasi-conformal mapping f0 : {R, a)->(Rf

y α'), such that the

characteristic μ of fa is equal to kφ/\φ\.

Now we have an analogous proposition to the above in our case.

3.11. DEFINITION. By a quasi-conformal mapping of (R, σ, a) to(i?', σf, a1),

we understand a quasi-conformal mapping / of R to Rf which belongs to the

homotopy class a'a"1 and such that fa = a'f We shall also say that the mapping

/ is a quasi-conformal mapping of <Rt a, α> to <i?', a\ α'> in this case.
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3.12. PROPOSITION. Let <i?, a, *> and <J?', a', α'> be topologically equivalent.

Then there exists a quasi-conformal mapping of ζR, σ, α> to <l?\ a\ α'> and

moreover among such mappings there exists one and only one mapping /0 for which

the minimum of the maximal dilatations is attained.

The dilatation of / 0 is a constant K and if f0 is not conformal then the

characteristic μ~ (/o)i/(/o)z is given by a a-invariant quadratic differential ψdz2

on R as

Here ψ is determined uniquely up to a positive factor.

Conversely, if we fix a <i?, σ, u> and give a regular quadratic a-invariant dif-

ferential φdz2 on R and a constant k (0<k<l), then we can determine uniquely

an ζR', a1, α'> and an extremal quasi-conformal mapping ft such that the characteristic

μ offo is equal to kψ/\ψ\.

Proof We see generally the following fact. Namely, let <i?, σ, αr> and

</?', a\ a'> belong to J1(RQ, a*) and choose (if, a) e <R, a> and (Rf, a1) e <R', σ>.

By virtue of our definition of Λ(RQy <r0), there exists a topological mapping /

of (R, a) onto (R't <jf) belonging to the homotopy class α'α~\ then for all

topological mappings h which map {R, a) onto (R1, αO we must have

hσ^σ'h.

In fact, we have ha^fσ, fa^σ'f and σ'f^σ'h. Therefore we get the assertion.

Here the notation f^g means that / is homotopic to g\

Now let /o be the extremal quasi-conformal mapping of {R, a) onto (R'f a').

The existence of /0 is guaranteed by Lemma 3.10. Since / 0 is one of the h,

which we have considered in the above, so we have

foσ^σ'fo.

Therefore we have

On the other hand the maximal dilatation of anlf9σ is equal to the maximal

dilatation of / 0. Therefore by the uniqueness of the extremal quasi-conformal

mapping we must have

a9'ιfoσ =/o or foa = <;'/<>.
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Therefore we have

= μ { z )

for the corresponding characteristic μ. From these facts we conclude that

there exists an extremal quasi-conformal mapping fa and that the corresponding

quadratic differential is cr-invariant.

Now we prove the converse. By Lemma 3.10, under our assumptions we

can determine uniquely an <iv", α'> and an extremal quasi-conformal mapping

fa : (R, a)-+(R', af) such that the characteristic μ of/0 is equal to kψl\ψ\.

Then we see that μ is <r-invariant and so faσfή1 is conformal. In fact, we can

see easily that if μ is <;-invariant, then the characteristic of fa a is μ and so

faσfό1 is conf ormal. Therefore if we denote faσfo1 by </, then σf is an auto-

morphism of Rf such that σ'n - 1. Moreover (Rf, σ\ a1) can be considered as

a representative of an element of A(Ro, σo). Because the genus of Rf is equal

to g and the number of fixed points is equal to the number of fixed points of

a. Since n is prime, it is easy to see that the genus of R'/{σ'} is equal to gf.

Moreover we see that u% - v\y z = 1, . . . , r. In fact, fa is an orientation preserving

topological mapping such that σ'fa-faσ with conf ormal mappings σ, a1.

We denote the above <R', σ1, a1} by (R, σ, α:>μ following Bers's notation in

the classical theory.

3.13. Teichmiiller defines a distance between <R, a> and <i?;, α;> by log

K, where K is the constant dilatation of the extremal quasi-conformal mapping

of R to R' in the homotopy class a'a"\ Now we can also define a similar

distance between two arbitrary points <R, σy α>, <i?;, a1, a1} of Λ(i?0, ao) by the

same method of Teichmiiller. Indeed, we see that there exists one and only

one quasi-conformal mapping / of <i?, a, c*> onto <i?', a1, α'> for which the

minimum K of the maximal dilatations is attained. Therefore if we put

dis «2?, σ, ά>, <R', σ', a'» = log K

then Λ(RQ, σo) becomes a metric space.

3.14. THEOREM. The metric space A {RQ> σ0) is homeomorphic to ans-3g'-3 + r

dimensional ball B.

Proof. Let ψi, . . . , φs be a basis of the vector space of ^-invariant regular

quadratic differentials on R. Let C= (Ci, . . . , O be an arbitrary point of B.
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/ * Λ1/2

If we put |C| = (ΣlCil 2) , and consider a mapping:
V 1 /

( s — — \ /' 8

where μ is equal to \C\( ΣCyft / | SCyft Then we are able to see that this

mapping is topological. In fact, by the classical method we see that it is

continuous and by Proposition 3.12, we see that it is a one to one and onto

mapping. And as C tends to a boundary point of B, <i?, a, a>μ does not tend

to any interior points. Therefore our mapping is topological and the assertion

is proved.

3.15. We observe that the correspondence ζR> σ, a> ~» </?, <*> defines a

mapping of A into Tg, which we denote by :. This correspondence is well-

defined, that is, if (R, σ, a) is isomorphic to (R't a\ a1) then obviously (R, a)

is equivalent to {Rf

fa
f). If <i?, α:> and <!?', α'> are corresponding points to

ζR, a, a> and ζRf, a\ a'} respectively, then we have hσ^σ'h for every topological

mapping h ' {R, a) -> (R'7 a'). Conversely let <i?, α> and <it", af> belong to Tg

and choose (R, a) e <i?, α> and (Rf, a1) e <i?', α'>. Let J and σ' be automorphisms

of R and i?; respectively and we assume that there exists a topological mapping

/of (i?, a) onto (i?', α') such that fa ^ <;'/. Furthermore we assume that </?, <;, α>

is an element of Λ(2?o, <ro). By 3.12 we see that under our assumption the

extremal quasi-conformal mapping /0 of ζR, ay onto <i?', Λ;> is a mapping of

(i?, (;) onto (Rf,a'). Therefore we can conclude that <i?', a\ α;> belongs to

Λ(Ro, σo) by 3.12.

3.16. Let <i?o, cto> be an element of Tg and assume that <*o is an automor-

phism of RQ such that <i?0, <̂o> belongs to a family J2(g"', ^, {ẑ /}). Then we

denote by 7λi?0, <?o) all the elements ζR, a> of T^ which satisfy the relation:

fσo^af

with <; and / such that a is an automorphism of R and / is a topological

mapping of (RQt αo) onto (R} a).

Now let T(i?o, <τo) be naturally topologized.

3.17. The mapping t in 3.15 of A{ROf a0) to T(i?o, tfo) is bijection and

moreover topological. In fact, let <i?, ct> be an arbitrary element of T(Ro, a*).

Then <i?, α> has an automorphism J such that foao = <;/o, where/0 is the extremal
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mapping of <i?0, α:0> to <R, a>. That is, we can correspond uniquely an element

<i?, a, a> of Λ(R0, σ0) to <R, a>. Therefore c is a one-to-one and moreover onto

mapping. We see easily that it is topological.

We shall summerize above properties in the following proposition.

3.18. PROPOSITION. Let <R, α> be an dement of T(Ro, a0) c Tg. If the

extremal quasi-con formal mapping f of ζR, a> onto <i?\ α'> e Tg corresponds to a

σ-invariant regular quadratic differential of R, then <i?', α'> belongs to T(i?o, <?o)

Conversely, if <i?', #'> belongs to T{Rύf <r0) /λ̂ w *λ# extremal mapping f of

ζR> a^ onto <i?, <xfs> corresponds to a σ-invariant regular quadratic differential of R.

Proof The assertion follows easily from 3.12, 3.15, and 3.16.

3.19. THEOREM. T(RQ, σ<>) is an s ( = 3 gf — 3 + r) dimensional non-singular

analytic submanifold of Tg.

Proof Let <R, a> be an element of T{RQy <r0) and let ψjdz2 (j = 1,. . . , 3 g - 3)

be a basis of regular quadratic differentials of R. We may sssume that the

first 3 ^ ' ~ 3 + r of the above basis are ^-invariant. Now let p\dz\{p>0) be a

^-invariant metric, then by a theorem of Weil [21] for sufficiently small c μj = cψj/p

(j = 1, . . . , 3 gf - 3) is a Beltrami basis of R. The first 3 g1 - 3 + r of the above

Beltrami basis are j-invariant.
3 ςr—3

It is known by Bers [3] that for μ =

is a C°°-homeomorphism of a neighborhood of the origin of the complex number

space C38~z onto a neighborhood of <i?, α>. We call these ^y'the coordinates

associated with complex Beltrami basis μj ( i = 1, . . . .,3 £ - 3 ) . Then it is

known that the coordinates associated with Beltrami basis are complex analytic

coordinates in Tg.

Now introduce the complex analytic structure in a neighborhood U of any

point <i?, a}. Then by Proposition 3.18 we can show that UΠT{Ra, <JQ) is

identical with all points (ziy . . . , zSy 0, . . . , 0). Thus we get the assertion.

3.20. THEOREM. If3gf~3-\-ris equal to one, then T{RQi OQ) is holomorphically

equivalent to the upper-half plane {or the interior of the unit circle).

Proof By Theorem 3.19, T(Ro, <*>) is a one dimensional manifold and by
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Theorem 3.14 it is simply connected. Therefore it is holomorphically equivalent

to either the unit circle or the punctured complex plane.

However it is known that Tg is holomorphically equivalent to a bounded

domain in complex number space (cf. [5]). Therefore there are non-constant

bounded and holomorphic functions on T(R0, σo) and so we conclude that it is

holomorphically equivalent to the upper-half plane by the theorem of Liouville.

3.21. THEOREM. Λ(RO, σo) isa 3 g1~3+rdimensional complex analytic manifold.

Proof. By 3.17 and Theorem 3.19 we can endow Λ(R0, (JQ) with an analytic

structure such that the natural mapping ι is holomorphic. In fact, T(RQ, </O)

is a non-singular analytic submanifold of Tg.

§ 4. Embedding of A into a bounded symmetric domain

4.1. In 3.9 we fix an element <i?0, &d> in Ω(gf> n, {*>/}), and we denote by

Γ(R0, σ0) all the elements of Ω which are topologically equivalent to <i?0, <?o>.

However if g1 = 0, then we have the following lemma.

4.2. LEMMA. Any two elements of J2(0, n, {v\> . . . , vr)) are topologically equi-

valent.

Proof. By 3.4, i2(0, nt {pi}) is a family of <i?, <*>, where R is defined by

the equation:

and a is an automorphism of R such that (x, y) -* (xt ζy), C = £2 Λ I / n. Then

mi (i = 1, - . . , r) are completely determined by vu - > vr-

Now taking a suitable branch, we may assume that

logy= ~ Σ Wk log (x - ak).

Let yoiqo, x), . . . , yn~i(qo, x) be w function elements at an ordinary point

ίoG R/{σ}. We may assume that Cy0 = J Ί , C2JΌ = J>2, . . - > Cn"Vo = ̂ n-i. Let iΓv

be a curve on i? from po to jv/>o such that the projection Cv does not pass

through any branch points au . . . , as, oo. Where />0 is a point over #0.

Performing continuation along Cv we have
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S I 8

d\ogyϋ(qo, x) = — Σ *

*, Cv)

where /(β*, Cv) is the index of the curve Cv with respect to an. By the con-

tinuation, yo(x) is transformed to y^x). Then we have

9 ""7* *

φ, x) - log3^0(^0, x) s -——ΈnikKak, Cv) (mod 2τrί).

But by the assumption we have j/vW = Oo(#). Therefore we have

logC = -^Έmkliak, Cv) (mod 2ιrί)

and so we obtain

(4.2.1) ^ Σ « * / ( Λ Λ , C V ) (modw).

This relation is fundamental in our argument.

Now we construct a topological mapping / : R-+Rf which satisfies fa = </'/,

provided that <7?, (;> and <i?;, ίτ'> belong to Ω(09 n, {vi}). We may assume that

R' is defined by

y f l = U ' - β i ) f f l l ( ^ - β ί ) ^

and j ' is an automorphism of # ' such that (#', y) ->(A;', cy), C = e2Λl7rt. Let S

and S' be #/{<;} and R'lio1) respectively. Let Π and T77 be the natural projec-

tions of R to 5 and of R1 to Sf respectively.

We know that there is a diffeomorphism g of 5 to Sf which takes aι into

a'h i- 1, . . . , 5. Then we have a local diffeomorphism:

Π'tfΠ : p^p\

such that po-^pΌ. Let 77(^0) be #0, and ^(^0) be ^J. Let Kι be a curve from

po to a point p such that the projection Ci does not pass through any branch

points. Let K2 be another such curve and C2 be the projection. Then we

denote by C the projection of the closed curve K^Ki from pQ to p0 on R. By

the above formula (4.2.1) we have

(4.2.2) Σm*/(αjfe, C ) Ξ O (mod »)
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for the closed curve C.

Now put C!=#(Ci), CJ=#(C 2), and C' = g(C). Then we have by the

formula (4.2.2)

(4.2.3) Σ w J ( f l l , CO =0 (mod n).

If we lift C! to a curve from p'ϋ to £' and C[ to a curve from p'o to £'' then

by (4.2.3) we see that p1 must coincide with pn. Therefore we can define a

mapping / of R to Rf.

Now let if be a curve on R from po to <//>0. The projection of K is a

closed curve C from q0 to #0, and so we obtain by the formula (4.2.1)

1 = ΣwjfeJία*, C) (mod Λ).

Therefore we obtain also

1 Ξ Σ » * / ( β l , CO (mod »)..
/ l

From this we can assert that / commute with given automorphisms.

4.3, By Lemma 4.2, using the whole members of J2(0, n, {v\9 . . . , pr}) we

are able to construct the generalized Teichmuller space Λ{R0, <*>).

Now we may say that one of our main problems is to investigate the

holomorphy of parameters alt . . . , a3 of Riemann surfaces:

(4.3.1) yn=(x-ai)
mi(x~a2)

nt2' -(x-ai)m\ nkj&m*, r = 5+l f

with respect to the complex structure of the generalized Teichmuller space A.

For that purpose we begin by studying the periods of the integrals of the

first kind on R.

4.4. Now let <i?, σ> be an element of Ω(Q, n, {vι; . . . , vΛ). By Lemma

2.5, we have a matrix representation of a in the form:

Λ l 0

0 Cσ

We must notice here that C*1, . . . ,<*9 are primitive «-th roots of unity and
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any of them is not equal to 1. Now we denote by Λo a point <i?0, tfo, #o> and

we shall find a suitable system of basis α>iU), . . . , ωg(λ) of differentials of the

first kind such that we get the same representation φ (C) for all λ in a neighbor-

hood V(λo) with ωiQ), . . . , ωg{λ) in the following 4.5-4.8.

4.5. LEMMA (Bers [6]). Let Tg be the Teichmuller space. One can associate

to every r a Tg a bounded Jordan domain B(τ) and 2 g Mδbius transformations

z-^AjiZy τ), z->Bj{z, τ), .7 = 1, . . . , g such that the following conditions are

satisfied.

(1) The Aj and Bj depend holomorphically on r and satisfy the relation:

(4.5.1) ύ AjBj A]1 B}1 =-1.

For every fixed r e Tg they generate, with single defining relation (4.5.1), a fixed

point free discrete group G{τ) of conformal self-mappings of B{τ), so that

Riτ) = B(τ)/G{τ) is a compact Riemann surface of genus g. R(τ0) is the surface

R.

(2) Denote by Σiτ) the basis of the fundamental group of Riτ) defined by

Aι, . . . , Bg and by fXox a quasi-conformal mapping of R<* onto Riτ) which takes

Σ{τo) into Σ{τ). Then the point τ corresponds to the couple <i?(r), (/τιrc)>, here

(/) means the homotopy class of f

( 3 ) 7 / tυe denote by W(τ) the complex vector space of holomorphic functions

ψ{z)y z&BKτ) for which ψ{z)dz is invariant under G(τ) there exist in W(τ), g

distinguished elements, pk(z, τ) determined by the conditions

(4.5.2) f % ' •'pk{z',τ)dz' = δik;<

J z

these correspond to the normalized Abelian differential's of the first kind on R(τ)

belonging to the "canonical" homology basis Σ(τ) determined by Σ(τ). The period

matrix of Riτ) belonging to Σ(τ) will be denoted by [πij(τ)). It has the elements

pj(z\ τ)dzf

z

and is a point in the Siegel space of symmetric matrices with positive definite

imaginary part.

(4) If we denote by M the domain in a complex number space of 3 ^ - 2

dimensions which consists of points (z, τ) with z^B(τ) and r £ Γ g ) then the
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functions pk(z, τ), k = 1, . . . , g are holomorphic in M> and the mapping τ^> (

of the Teichmuller space into the Siegel space is holomorphic.

Now let us apply the above lemma to our case.

4.6. Let (R*, σ*) define an element Λ* of Λ, and let (R, a) define an element

λ of Λ. As seen in Theorem 3.21 there exists an holomorphic injection c : A -* Tg.

Put <U*) = r*, and t(λ) = τ. Then we can take R(τ*) for R* and take J?(r)

for R. Let HΛR(τ), Z) be one dimensional homology group of Riτ) with

integral coefficients. Let ψ*(a A) denote the endomorphism of Hx(R(τ)y Q)

induced naturally by the automorphism a of R{τ), where Q is the rational

number field.

By Lemma 4.5, τ = c(λ) corresponds to CRir), (/τ*τ)> and every member of

(fx*τ) takes Σ(τ*) into Σ(τ). And the extremal quasi-conformal mapping / of

R(τ*) onto Riτ) which belongs to (/τ τ) takes not only Σ(τ*) into Σ(τ) but

also commute with the automorphisms; that is, we have

This / induces an isomorphism /*:

Furthermore we can see that the following commutative diagram:

HΛRiτ*), Q ) - ^

hold. In fact, from fσ* = σf we can easily obtain f*φ*(o* A*) = φ*(σ

Let ί4ιU, τ) be the homology class which is defined by Ai(z, τ), and Bi(z, τ)

be the homology class which is defined by Bi(z, τ). Now put

pΛZy τ)a

•

pgiZy τ)σ t

=

•
aij(τ)

. . .

pi(z, τ)

pg(z> r)

or simply P(i, τ)σ = A{τ)P(zt τ), then we have

= \
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Since φ*(a, λ)Άj(z, τ) ^Hi{R(τ), Q) we may write

q ^ Q ^

*ΣιQCji(τ)Ai(zi τ) -f Σi9y/( τ)Bi(zt r).
<=1 i = l

It is easy to see that aji(τ) and βjdτ) are constants. In fact, we have

Ψ*(<r> λ)f*Άj(z, r*) = ̂ * U λ)Άj(z, τ)

Σ U Σ3;. (r)S, (2:, r)
ί - l

and on the other hand we have

/*?*(**, Λ*)^U r*) = Λ ( Σ * / I ( Γ * ) A ( S , r*) + ΣAϊ(r*)SίU r*))

= Σ « Λ ( r * ) A U , T) + Ίlβji(τ*)Bi{z, τ).

Therefore we obtain

ccji(τ) = αy, (r*) and fl, , (r) = Aϊ(r*).

Then by Lemma 4.5, we see that

( pi{z,τ)dz

and so all Λ,V(Γ) are holomorphic in T(RQi σ0)* By Theorem 3.21 τ = t(λ)t is

holomorphic. Therefore ^4(ί(^)) is a holomorphic matrix in Λ(RQ, a*). We

denote this-matrix by A*(λ) and the vector P(z, c(λ)) by P*U, A),

By our assumption we may assume that A*(λ) is equivalent to φ(C) for

all λ^Λ{Ro, <τo). Then we have the following proposition.

4.7. PROPOSITION. Notations being as above, for an arbitrary point λ* e A,

there exists a non-singular and holomorphic matrix X(λ) in a sufficiently small

neighborhood V{λ*) such that

Proof. Let f(x) be the characteristic polynomial of φ(C), and put
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where the C, runs over all the distinct elements of the diagonal of φ(ζ) in 4.4.

If we put

then there are r polynomials Pι(x), . . , , PAx) such that

Pι(x)fΛx) + 4- PΛx)fΛχ) = l.

Therefore we have

P , U * U ) ) / i U * α ) ) + + P r U * ( ; ) ) / r U * U ) ) = / .

Put P,-(il*U))/iU*U)) = S, (i4*U)). By the simple application of the theory

of linear algebra we can choose g vectors & , . . . , & such that

Si(A*U*))ϊi , . . . 9SAA*(λ*))Snι9

are linearly independent. Now if we put

X(λ) = ( S i ( i *

then X(λ) is not only a holomorphic matrix in λ but also a non-singular matrix

in a sufficiently small neighborhood V(λ*).

Thus we see that

4.8. Now we are in a position to prove the assertion stated in 4.4. Put

X'1(λ)P"c(z> λ) = ω(z, λ) = ' (ωiCz, A), . . . , ω ^ U λ ) ) ,

then for all l e F ( f ) we have the desired system ω(z, λ). Namely we have

ω(z, λ)σ = (χ-\λ)P*(z, λ))a
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therefore we see that

ω(z, λ)a-φ(C)ω(zt λ)

for a l U e V(λ*).

4.9. Every element a of Q(C) is of a form: a = ao + aiC+ + an-.z£n~2,

where α0, βi, . . . , fln-ze Q. If we define f * U λ) by

(4.9.1) y>*(0 λ) =ao + axφ*(o ; ; ) + ••• + £«-2?*(* λ)n~\

then naturally we have

?*(c *) = ¥>*(* λ).

Now ίP+(β A*), βeϋΓ=Q(C) operates on JSi(Λ(r*), Q), and so we can

find u = g/h vectors ZiU*), . . . , ZM(A*) such that

(4.9.2) H1(R(τ*),Q)=φ*{K; λ*)Zi(λ*)®

where CϋC : QH = « - 1 = 2 A, and Θ means the direct sum.

If we denote by Z, Q) the images of Z, (A*) by the mapping /*, then we

have

(4.9.3) HAR(r),Q)=φ*(K; λ)ZM)@

Now if we put

(4.9.4) &U) = f ωU, A ) , . . . , tu(λ) = ( OΪ(Z, /I),

then £i(X), . . , £«(A) are holomorphic vectors of Λ in F(^*). In fact, we can

put

(4.9.5) ZiU*) = Σ * U * U T*)

with rational coefficients. Since the mapping /* is a Q-isomorphism, and so

we have

(4.9.6) Zi(λ) = ΣαiΛ*U r) + Σ Λ f t U r).

Therefore we have

(4.9.7) li(λ) = ί X^{λ)P(zf

f τ)dz'

Σ6if. P(z\ τ)dz')
* » 1 J BkίZ, X) IZ, τ)
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In view of Lemma 4.5 and Theorem 3.21, this proves the holomorphy of r,(A).

4.10. Now we recall some results of Shimura [16, 17]. Let Q be the

rational* number field and let iΓ= Q(C), IK' Q] = 2 h as in 4.9.: We denote

by p the complex conjugation. Let φ be a representation of K by complex

matrices of size g. We say that a triplet JP = (Af *€, θ) is a polarized abelian

variety of type {K, φ, p} if the following conditions are satisfied:

(i) A is an abelian variety of dimension g, defined over C.

(ii) θ is an isomorphism of K into Eiidρ(A), and the representation of θ(x)

for x e K by an analytic coordinate system of A is equivalent to ψ.

(iii) Ί% is an polarization of A and the involution of Endρ(A) determined

b y X coincides with θ(x)->θ(x?) on Θ{K).

Let </i, . . . , ah '> aip, . . . , ^ΛP be all the isomorphisms of K into C and let

rv (resp. sv) be the multiplicity of <;v (resp. σ^p) in ^. In order to insure the

existence of JP of type {K, Φ, p}, the following relation should be satisfied:

(4.10.1) £ =Mr v + sv) (l<v^h).

Put U = ,§ //2.

Let c^ = (A, ^ , /?) be of type {K, Φ, p}. Take a complex torus C8/D isomor-

phic to A, where D is a lattice in C8. We may choose the coordinate system

of C8 so that 6(a) is represented by the matrix φ(a) on C for every a^K.

Then we find ^ vectors ?i, . . . , lu in C8 such that

(4.10.2) Qb = Σ£i0(*3ϊf.

For every α= («i, . . . , <z«) in Ku

t put Λ:(α) = Σf=i0(^ί)ϊi. Then the mapping

a-*x(a) is an isomorphism of Ku onto QZ). Let M be the inverse image of Z>

by this mapping.

Let ".ECS, t)) be a non-degenerate Riemann form on C /̂Z) corresponding to

a basic polar divisor in *€. For each ϊ and /, the mapping a-*E(φ{a)li\ ξ/V is

a Q-linear mapping of ϋί into Q. Hence there exists an element tij of K such

that

(4.10.3) E(φ(a)ϊi, ϊy) = tr

where tr denotes the reduced trace of K to Q. Put T= (ί/y).

It is known by Shimura [16] that &, . . . , £w, Mand 71 satisfy the following

conditions:
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(4.10.4) C8 = 'ΣtiφiK® QR)ϊi,

(4.10.5) TH? is p-symmetric and p-positive, where H-khij) is a matrix, with

entries in K<&QR determined by V~ 1 & ~ *Σ%iψ(hij)tj (l^i^u).

(4.10.6) tr (MTΛΓ)cZ.

Conversely the data {?i, . . . , lu \ M T) determine a polarized abelian

variety of type {K, φt p} if the above conditions are satisfied.

The above conditions (4.10.4, 5) can be expressed in a more explicit form.

First we write each vector & in the form

(4.10.7) ' & - ( ' & . . . Λ / , . . Λ )

with fi e CM. Define a matrix X, for each v as follows. Put '# = (Vi, ' ^ 0

with f& e Crv, z i e CSv and

Then the matrices Z v for l^v^h determine the vectors & , . . . , s« and conversely.

We see that the condition (4.10.4) is equivalent to

(4.10.9) d e t ( X v ) * 0

and putting Tv = (σΛtij)) the condition (4.10.5) is equivalent to the following

condition:

(4.10.10) V ^ X v Γ v " 1 ^

where 3ίv and Sv are positive hermitian matrices such that

(4.10.11) 3Iv e Mr,{C), sSv e MSv(C),

where Mm(C) denotes the ring of matrices of degree m with entries in C.

Therefore our T must satisfy the condition

(4.10.12) V~l TΓ has the same signature as Γv __ Γ

for every i>, where Ir denotes the identity matrix of degree r.

Assuming (4.10.12) to be true, take, for each v, a matrix Wv in.MM(C)

such that

[ T C\ Ί

Ω ~ T ί
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Put

Then

(4.10.

(4.10.10)

15)

It follows that

is

I

Πv,

equivalent to

USBv - lί?)v = 0,

$ v are invertible, and

, ?)v
•

= 0 and

are positive

^ ( ^ S δ v ) .

hermitian.

Therefore,

=i(?)v12Bv), we observe that (4.10.15) is equivalent to

(4.10.16) I-zlz* is positive hermitian.

Let cĵ v be the space of all complex matrices z with n rows and sv columns

such that I-z{z* is positive hermitian, and let

(4.10.17)

and let

( 4 . 1 0 . 1 8 ) 2 = (2i, . . . ,2/,).

If we fix Γ and M> then we get an analytic family of polarized abelian

varieties of type {K, </>, p} parametrized by the points of Jύ^iψ). We denote

by Σ(T, M) this family and by Λ the member of Σ(T, M) determined by z,

T, M. Summerizing, we write

(4.10.19) Σ

Let J* = (A, tf, θ) and <?' = (A', <€\ 0') be polarized abelian varieties of

type {Kt Φ> p). Let Γ(Γ, M) = {{/e ^ ( i Γ ) I UTU? = T, MU=M). Then it is

known that two members JPZ and c-̂ 2/ of the same analytic family Σ(Tt M)

are isomorphic if and only if 2= U(z') for an element U of F(Tt M). For a

proof, see Shimura [16]. Therefore the isomorphism classes of the members

of Σ are one to one correspondence with the points of the quotient space

rJ^/Γ(Tt M). Now we denote sometimes Γ(T, M) by Γ.

4.11. Now take a point λ = <i?, 0, α> in the generalized Teichmϋller space

Λ(Ro, tfo) defined in 4.3. Let J(R(λ)) be the jacobian variety of a representative

{Rf a) belonging to λ. Denote by 0(0 be the automorphism of / corresponding

to a. We see that ζ->d(C) can be extended naturally to an isomorphism θ of

Q(ζ) into End v(/). Let "€ be the canonical polarization of / , and p the
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automorphism of Q(C) such that Cp = C"1. The involution of Endρ(/) determined

by *€ gives the automorphism 6(a) -*θ(a?) on Θ{Q{C)). In this way we get a

polarized abelian variety of type {Q(C), Φ, p} in the sence of 4.10, for a

representation ψ of degree g defined in 4.4.

We see that if (R, a) and (R't a1) belong to the same element <R, <;>, then

corresponding polarized abelian varieties JP and *&' are isomorphic and vice

versa. As seen above, to every point λ in Λ(i?o, σo) there corresponds a polarized

jacobian variety JP, and furthermore we see that all these varieties belong to

the same type {Q(C), φ, p). As we see in 4.4-4.8, for an arbitrary point Λ* in

Λ{RQ, a) there exists a neighborhood V{λ*) such that we can define a data

{SiOO, . . . . ϊ«U) MU) ΓU)>. corresponding to any point λ in FW*). That

is, we define the vectors by (4.9.4), and we define M(λ) by

M(λ) ={(*!, . . . 9au)<ΞKu\φ#(ai9 λ)ZΛλ)+ ••

As for T(λ), it is defined by (4.10.3) :

W)9 ϊyU)) - t r

It is easy to see that this data is nothing but the data defined in (4.10). , .

Now let the data corresponding to a point λ*.&Λ{Ro, OQ) be {£*, . . . , lu ί

M* T*}. Then we obtain the following lemma.

4.12. LEMMA. Let the data corresponding to a point λ in a sufficiently small

neighborhood VU*) be {ϊi{λ), . . . ,tu{λ) M(λ) T(λ)}. Then we haveM{λ) = M*,

If

y*(n,, λ*)ZAλ*) + •• + cp*(βκ, A*)Z«(A*) eJHi(lί(r*), Z),

then we see easily that

ψ*(au λ)ZΛλ)+ -' + ψΛa»9 λ)Zu(λ)ΈΞHi{R(τ),Z)

since we have /*f*(β, A*) =•?*(«, i)/*. Therefore we can conclude that

for all i ε F ( f ) .

As for T(A), we see that for all
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jyj) = E(φ(xi)i1a)'{- +ψ(xu)iu(λ)9φ(yi)h(λ)+ +φ(yu)Zu(λ))
ij

= KI(<ρJxi)ZΛλ)+ +<P*(Xu)Zu(λ),φ*(y1)Zί{λ)+ - + φ*(yu)Zuiλ))

= tr
ϊ» 3

Here i£7 means the Kronecker index. From this we can conclude that

T(λ) = T(λ*) = Γ*

for all J

By the same reason as above we see that M(λ)t T(λ) are constants for all

λ€LΛ. .

Moreover we see that EiQ), . . . , £«U) are holomorphic in FQ*), by 4.9.

Now we can state an important theorem as follows.

4.13. THEOREM. Let Λo =: <i?o, <fo, <*o> ίβ /^^ origin of the generalized Teichmuller

space Λ(Ro, <ro) as in 4.3, and let λ = <i?, <;, αr> ^ an arbitrary element of Λ. We

get from these (R, σ) polarized abelian varieties of type {K, φf p) for a certain

representation φ as in 4.11. Let J& be the corresponding symmetric domain defined

by (4.10.17). Then there exists a holomorphic mapping wiλ) of Λ(R0, σQ) into

J& such that the corresponding jacobian variety of R(τ), where τ=c{λ), defined

as in 4.11 is isomorphic to a polarized abelian variety JPW{\) defined in 4.10.

Proof As we see in 4.11 and Lemma 4.12 for an arbitrary point λ* e Λ,

the data corresponding to a point λ in a sufficiently small neighborhood FU*)

can be denoted as {ϊiU), . . . , U(λ) MQo) T(λo)}. Here we remark that

ϊi-(λ), . - . , ϊu(λ) are holomorphic and we write MUoh TUo) by M, T respectively.

We can correspond to this data a point z e J& as in 4.10. That is, we

have a mapping z(λ) of FU*) into Jέ/. If we put

zU) = UiQ), . . . 9zu(λ)')

then zM) is equal to '(^(λMBb^λ)) (v - 1, . . . , h) as in 4.10, which is

holomorphic in V(λ*). In fact, φvU) and 2B>(A) are holomorphic in V(λ*) and

det (Fv(^)) is not equal to zero in V{λ*). Thus we see that there exists a

holomorphic mapping z(λ) in a neighborhood FQ*) for every point Λ*£ Λ(i?o, <τo).

In this way we can find an open covering ψ = {V} oί Λ and a holomorphic

mapping zv V-+J&, for each F e ^ , with the above property of FU*) and
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z(λ). We may assume that VΓ\ Vf is connected if V and V are members of

Ψ such that VΓ\V'*φ.

Let V, V1 be the neighborhoods and let

z : V

be holomorphic mappings. Then for every λ<ΞVΠV, we have

for an element U\ of Γ(T, M), since JPZ(\) and ̂ 2>u) are isomorphic (see 4.10).

Now as we see in [16] for an arbitrary ί/e Γ(T, M)t U(z) is a rational

function in the coordinates of z. Let k\ be an extension field of Q by the

adjunction of the set which consists of all the coefficients of U(z) for all

l7e=Γ(T, M).

Since Γ(T,M) is a discrete subgroup of G(T) = {ϋ"eMU{K® QR^U^U:= T},

^i has at most countable elements. Therefore we can take a generic point Λι

of FΓϊ F' for {̂ ( ), z'{λ)} over ĵ in the sense of Shimura. Put £/= Uxιt then

we have

«(ii) = Wz'(λi)).

Since Ai is generic over ku we have

for every 2 G F Π F ' . Putting

I z(λ) in A e F
1 Uiz'iλ)) in 16 7'

we can prolong the holomorphic mapping z(λ) : V-*<J(f to a holomorphic

mapping w(λ) : FU F ' - > c ^ .

Now starting with the origin Λo we continue the above process to all points

in Λ(RQ9 σo\ Since A is simply connected, finally we can obtain a holomorphic

mapping of A into Jt/:

such that w(λ) = £/κ(2r(λ)) in F, with an element 6V of Γ(T> M). Here ̂ y denotes

the original holomorphic mapping of V-^Jίf.

Thus the data {hW, . . . , £«U) M T} corresponding to a point ^ in A

determines a point w/U) in ,¥/ up to Γ-equivalence. We see that this point
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w(λ) can be represented by w(λ) = Uv(zv(λ)) in V(λ*).

The second assertion of the theorem is an immediate consequence of our

definition.

§ 5. Holomorphy of parameters

5.1. By proposition 4.2 we see that £(0, ny {vu . . . , vr}) is a family of

<i?, a> where R is defined by

3> n =(#~ai) m i - -(x~as)
ms

f n\iZfm, r = - s + l ,
ί - l

as (4.3.1), and σ is an automorphism of R such that (x, y)->(x, Cy), C = £2π//*.

We shall denote this R by Ra and the <r by aa. Then (2?α, </β) defines a point

As in 4.11, we get a polarized jacobian variety (/, "to\ θ) of type {K, <ρt p}

from (R, a). Let i7 be the corresponding symmetric domain. Let T, M, Γ( T, M),

21 = Σ(T, M) = {^e\z e F } be as in 4.10. We shall investigate the holomorphy

of parameters at, . . . , as with respect to the complex structure of Λ(Ro, σo).

Suppose that n>3 or s>3.

5.2. LEMMA [18J. Suppose that either dimi2>l, or H/Γ{T, M) is compact

Let k be the algebraic number field in [18. Th. 5.1]. Then one can define a

variety δ and assign, to every J* of type {Q(O, <ρt p}, exactly one point ϋ ( ^ )

of $8 so that the following conditions are satisfied.

(5.2.1) SB is defined over k.

(5.2.2) H(c^) = 5 ( ^ 0 if and only if J> is isomorphic to J*'.

(5.2.3) Let J* = (A, # , θ) be a member of the family Σ of type IQ(C\ ψ, p}

difined over a field K. Suppose that JP' is a specialization of J? over K, then

(5( J^ ; ) , J*') is a specialization of (S(<_^), J9) over K.

(5.2.4) kiUJ*)) is the field of moduli of J*.

(5.2.5) There exists a holomorphic mapping ψ of Jtf onto *8, which induces an

isomorphism of JCS/ΓiT, M) onto S, and such that to(J*u>) = ψ(w) for every

member JPW of Σ.

5.3. As we see in 4.13 there exists a holomorphic mapping w of A into

c ^ . Let φ be the natural mapping of H onto S5 = cj^/AT, M). Then, of

course, the mapping ψ w of A into $8 is holomorphic.

Let S= {(xlt . . . , Xs) &Cs\xi*Xj if /#;} . Then S is a Zariski open subset
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in Cs. Let (bu . . . , bs) be a generic point of S over the field k^>Q(ζ). Let

(Rb,ob) be the point corresponding to (fa, . . . , bs). Then (!&,. ^ ) is defined

over the field k(bu . . > bs). Let Λi e Λ be a point corresponding to (&, . . . , £s).

In the equivalence class of Ω corresponding to λi there exists an element (Rb, ΰb)

which is defined over k(bi, . . . , bs). Therefore we have an element of Σ(T> M)

which corresponds to (Rb, ob) and which is isomorphic to Λ α , ) , and which

is defined over k(bι, . . . tbs). Then we have

k(<f(w(h)))c:k(bi,. . . 9b$).

In fact, by the properties of 3J we see that k(i(JPw^1))) is the field of moduli

of ^wai)9 and δί^Όxλj^ -ψ(wiλι)). Hence we can define a rational mapping

ψ : S->S, defined over k, by

(5.3.1) ψ(bu - . . ,bs) = ψ(wUι)).

Now let ΛeΛ be* a point corresponding to a point (alf . , . , β s ) G S , then

obviously (7?Λ, '<;α) is the specialization of {Rb, ab) over the specialization {aί9 . '. . , as)

of (fti, . . . , bs) with reference to *.'

5.4. Now we shall construct an analytic isomorphism of a Riemaπn surface

R of genus g into a projective space.

Let D = Σ npP be a divisor such that J ^ D>2 g, where the ftp are integers

and zeros except for finite numbers of them. Let L(D) be the vector space of

meromorphic functions / of R such that op(f)> ~~ n.F for all P e i ? , where oP

is the order of / at P. Then we obtain the following well-known lemma [15].

5.5. LEMMA. Let /0, . . . , fN be a basis of L(D). For all P ε i ? , let F{P)

be the point of the projective space PN of homogeneous coordinates /0( P), . . . ,fAP).

The mapping F is an analytic isomorphism of R onto a non-singular subvariety

of P.v and the divisor D is equivalent to a hyper-plane section of F(R).

5.6. Now again we take a generic point (bu . > bs) of S over the field

k. Let Db be a divisor defined as in 5.4, for the Riemann surface corresponding to

(bι, . . ., bs). Let Da be the specialization of Db of over (bι, . , ., bs) -> (alt . . >, as)

with reference to k and let L(Dj), L(Da) be the corresponding vector spaces

defined as in 5.4.

By a theorem of Koizumi-Shimura [11] we can find a basis {/<>,. . . , fN}

of L{Db) such that the specialization {/{, . . . , f'N} of {/0, . . . ,fN) over Rb-*Ra
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is a basis of L(Da). Then we construct Ca by means of the basis {/{, . . . , f's)

following Lemma 5.5. Let C be a specialization of Cb over (bi, . . , , έs) -»

(#i, . . . , as) with reference to k. Since the complete system \D\ has no fixed

components we have deg (Da) - deg (Ca), deg (Db) = deg (C&), and we have

obviously deg (Dα) = deg (Db). On the other hand we see that O — Ca is

positive, i.e., C>Cn. However we have deg (CO = deg (Cb) - deg (Ca). Therefore

C'^Ca.

Now let τb be the isomorphism of the curve Cb induced by σb, and let (Cb, τb)

be the couple corresponding to (Rb, σb) and(C a , τa) be the couple corresponding

to (Ra, a a)- We have seen that Ca is the specialization of Cb over (bit . . . ,bs)

-> (au . . . , as) with reference to k. Furthermore we see that τa is the specializa-

tion of τb over (bi, . . . , bs) -> (fli, . - . , as) with reference to k.

Thus we obtain the following lemma.

5.7. LEMMA. Notations being as above, (Ca, τa) is the unique specialization of

{Cb, τb) over (bi, . . . , bs)-* (aίf . . . , as) with reference to k.

Now we have moreover the following lemma.

5.8. L E M M A . Let (Jb, "€b> db) and (Ja, ¥> a, θa) be the polarized jacobian

varieties of type (Ky φy p) corresponding to {Rb, σb) and (Ra> σa) respectively. Then

(Ja, ^o a, θa) is the unique specialization of (Jb, *€b, Ob) over (bi, . . . ,# s)->(tfi , . . . , # « )

with reference to k.

Proof B y L e m m a 5 .6 w e s e e t h a t if {Rb)-+(Ra) o v e r (bi, . . .-,bs) ^*

(ai, . . . , as) with reference to k, then

(5.8.1) ({Cb, τb), (Rb, σb))->{{Ca, τa), {Ra, aa))

over {Rb, σb)-*(Ra, aa).

Then by the compatibility theorem of Igusa [10]

(5.8.2) {Cb, τb Jb, Vb) - (Ca, τa I Ja, tfa)

over (bu • . . , bs) -+ (aίy . . . , as) with reference to k.

Furthermore, we see that θb-*θa over (5.8.2).

5.9. Now we construct a specialization (au . . . , a3 c) of (b\, . . . , bs\

ψ(biy . . . , bs)) over k.

By Lemma 5.8 we see that JPwai is the unique specialization of JPwκ\X)
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over the specialization (bi, . . . ,bs I ψ(bι, . . . , bs)) -* (fli. . . >as ', c). Therefore

by Lemma 5.2 <au . . . , as c J*wa) ψ(w(λ))) is a specialization of

(δi, . . . ,bs ψibu . . ,bs) Λ ( λ l ) y(wU))). Since 0(fc, ; . . , bs) = y(wUi)),

we see that c = f(wU)).

In fine, we obtain the following facts.

(I) c is the unique specialization of ψ(bΛy . . . , bs) over the specialization

(fti, . . . , bs) -*(ait . . . , as) with reference to k.

(II) If Ui, . . . , as) corresponds to λ, then the unique specialization

u . . . , as) is equal to ^(wU)).

5.10. THEOREM. Notations being as above, there exists a rational mapping

ψ : S -• S w#/? the following properties.

(5.10.1) ψ is a morphism, i.e., everywhere defined on S.

(5.10.2) ψ{au . . . , a3) = ψ(wiλ)) if λ corresponds to {aίf . . . , as) in the above

sense.

§6. Special case: Ω(0, 7, (I, 1, 1, 2})

6.1. Now we give our attention to the case where Λ{Ro, σo) is a 1-dimen-

tional manifold and gf = 0 in Ω(g\ nt {vi}), over which we construct Λ(Ro, σ0).

Then by Theorem 3.21 we see that the space Λ(RQ, σ0) is holomorphically

equivalent to the upper-half plane. For example, if we put g' = 0, n = 7,

{vi) = {1, 1, 1, 2}, then Ωig\ n, {z/, }) is a family of <#, <;>, where i? is a Riemann

surface defined by the equation:

(6.1.1) yΊ {

and <; is an automorphism such that (x,y)-» (x, Cy), C =

In general, by 3.4 we see that the equation of the Riemann surface is

(6.1.2) yn = x

where nnvi = 1 (mod n) for /= 1, 2, 3. The genus of (6.1.2) is equal to Λ - 1.

In the present paper, we, treated the moduli of Ω only at the special case

(6.1.1). However it would be interesting to study the analogy of the theory of

elliptic functions in our case.

Now we reappear the calculation in 4.10 for our case: £(0, 7, {1, 1, 1,2}).

6?2. We see that the matrix φ(ζ) is of the form:
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φ(C) =

c 3

0 C4

Furthermore we see that # = 6, h = Z, and κ = 2 in (4.10.1), a n d n = r2 = 2,

Si = s2 = 0, r» = sa = 1.

Put

(6 2 υ ifϋJΓΓ Γ'Γ Γ Γΐ
42 — \**12> 2*22 » ^32> **42 » ^ δ ί » ^ 6 2 /

Then the period matrices Xv, ^ = 1, 2, 3 are as follows:

ίa O Ô  V /^ll ^12\ v" /^31 ^32\ v" /^δl ^5
\Ό.C,.Δ) JL\ ϊ = 1 l» Λ.2:=z I J» Λ 3 = ( — —

We have following relations for the matrices as Tv in 4.10:

\0 \)

/I Λ\

(6.2.4)

applying suitable matrices PFi to Tv.

Now in our case we have only to investigate (6.2.4). Put

(6.2.5)

Then we have u/v- (w/y), and

(6.2.6) Xzy/—lT;u 0

We must notice here that I u I2 - | υ | 2 > 0, I to I2 - i^ I2 < 0. Thus putting z = (u/v),

we observe that 1 - zz>0.

Now we can see that

(6.2.7)

= (a(uju52) δ)
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Here Zi, Z2 are vectors defined as in (4.9), and \ (xix- 1) (x-~ a) ) ~ z n dx are

hypergeometric functions in α.

It must be interesting that in our case both A and J& are the upperhalf

plane and the holomorphic mapping z(λ) is exactly a ratio of the periods of

the differentials of the first kind of Riemann surfaces, corresponding to λ.

Moreover we must remark that in our case JCf/ΓKT, M) is compact Icf. [17]).

We shall study some elementary properties of the parameter a.

6.3. Let R1 be another Riemann surface defined by the equation:

y'7 = x'(x'-l)(x'-β) (βWo, 1).

Then we get a polarized abelian variety <^' of type {Q(O, ψ, p} by R' in the

same way as in 6.1.

We recall that S* is isomorphic to ^ ' if and only if there exists a holo-

morphic bijection / : R1 such that /</ = σ'f(cf. [17]).

We see also that if (R, a) and {R'f a
1) belong to the same <R, σ> then

xf = ax + b, y -cy.

Here a, bt and c a re complex numbers such t h a t

a = 1, £ = 0 a~ 1/a, b = 0 a= — 1, b = l ;a= - 1/αr, b = 1,

and c= 1. Therefore (i?, ίr) and (Rf, a') are equivalent if and only if 0=ay

6.4. Let Sf be a Riemann sphere punctured at 0, 1, and infinity °°. Let

G be the group of the anharmonic ratio. Then the quotient space S ='S'/G

is a Riemann surface and there exists a one-to-one correspondence between the

space of moduli Ω and S. Ω has a complex structure induced from A(RQ> aQ)

and S has a natural complex structure. Our problem is to investigate the

analyticity of the correspondence.

6.5. We consider the above problem in a little more simple form; that is,

we consider the Riemann surface defined by the equation:

(6.5.1) / = * 8 + * + />

where p is a complex number different from — 2 ί/3V 3 , 2 i/3\J 3 . Let R' be
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another Riemann surface defined by the equation:

(6.5.2) - y'Ί = x

where p' is also a complex number different from -2i/3yjl$, 2//3VT.

Then {R, a) is topologically equivalent to {R't <?'), where <J, a1 are naturally

defined. In fact^for every such p there exists a number a such that

yη -χ{χ- l)(x-<x) is conformally equivalent to y1 ~x* Λ-xΛ-p. We see that

the relation between p and a is given by

(6.5.3) p = - 2 7 U 2 - * + l ) 3

Now let i? ' y = x5 + # + /> and R1 '* y1 = xz + x + p* be equivalent for naturally

defined automorphisms. Then we see that p' is equal to ±p. Let S" be the

Riemann sphere punctured at -2//3V3, 2i/3^3f and let G be the group of

automorphisms of the Riemann sphere generated by τ ' P-> - P . Here Pis the

point of the sphere. Then there exists a one-to-one correspondence between

the space S"/G and the space Ω. Here we see that p= °° corresponds to

a

Finally, we shall apply our general theory to this case.

6.6. Let S* = {*|*eC}.' Let q be a generic point of 5* over the field

k^Q(ζ). We see that the field of moduli of JPux^^kiq2) (cf. [17]). Here λi

is a point corresponding to q. Then we can define a rational function 0 such

that

(6.6.1) Φ(^)^φ{w{λι)).

Therefore in the same way as 5.3-10, we see that

(6.6.2) φ(p2) = <p(w{λ)),

if λ corresponds to p in, our sense. Here we notice that p takes all values

except for p2 = —4/27, i.e., φ is defined over all the points of the Riemann

sphere punctured at ~ 4/27 and infinity °o. Here ψ is a rational function of

one variable, and so we may consider that Φ is everywhere defined on the

Riemann sphere.

On the other hand ψ the Riemann sphere -» § is one-to-one at the generic

points (cf. [17]). Therefore since 5$ can be regarded as the Riemann sphere,

we have
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(6.6.3) ψ(p2) = (apz

with constants a, b, c, and d.

Thus we have by (6.6.2)

(6.6.4) p2=(φ(w(λ))d-b)/(-φ(w(λ))c+a).

Therefore p2 is a meromorphic function on A, and it has poles only at the points

corresponding to a = (1 ± V 3 0/2.

6.7. THEOREM. Notations being as above,

1/(4 + 27/)

is a holomorphic function on the whole space A. And

is a meromorphic function in λ on the generalized Teichmuller space A. Here F is

defined by (6.6.4), and cannot take the value - 4/27, and has poles at λ corresponding

to a = (1 ± >IΊΪi)/2 in the equation (6.1.1).

6.8. Remark. In S, considered as the Riemann sphere, the point - 4/27 is

the unique point which does not correspond to any Riemann surfaces. It would

be interesting to study the properties of the abeliaπ variety corresponding to

the point. We shall discuss this problem in another place.
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