ON MINIMALLY THIN SETS IN A STOLZ DOMAIN

BY
H. L. JACKSON

Let D denote the open right half plane and

$$
K=\left\{z \in D:|\operatorname{Arg} z| \leq \theta_{0}<\pi / 2\right\}
$$

a Stolz domain in D with vertex at the origin. If h is a minimal harmonic function on D with pole at the origin then $E \subset D$ is minimally thin at the origin iff $R_{h}^{E} \equiv h$ where R_{h}^{E} is the reduced function of h on E in the sense of Brelot. We now define

$$
I_{n}=\left\{z \in D: s^{n+1} \leq|z|<s^{n}\right\}
$$

where s shall be fixed to be $1 / e$. For the set $E \cap I_{n}$ we shall let c_{n} denote the outer ordinary capacity (see [1, pp. 320-321]), λ_{n} the outer logarithmic capacity, and σ_{n} the outer Green capacity with respect to D. If $E \subset K$, Mme. Lelong [3, p. 131] was able to prove that E is minimally thin at the origin iff $\sum_{n}{ }^{\infty}{ }_{1} \sigma_{n}<+\infty$. Since one cannot easily relate the classical measure theoretic properties of a plane set with its Green capacity, it would appear desirable to find some other criteria for minimal thinness. If $E \subset\left\{z:|z|<\frac{1}{2}\right\}$ it is known (see [1, p. 320]) that

$$
c_{n}=\frac{1}{\log \left(1 / \lambda_{n}\right)} \quad \text { if } \lambda_{n}>0
$$

and that

$$
c_{n}=0 \quad \text { iff } \lambda_{n}=0
$$

Furthermore the logarithmic capacity can be directly related to some of the classical measure theoretic properties of the set in question (see [4, pp. 84-85]). In an earlier paper (see [2, Theorem 1]), the author was able to prove that $E \subset K$ is minimally thin at 0 if $\varlimsup_{n \rightarrow \infty}\left(n c_{n}\right)<1$ and $\sum_{n=1}^{\infty} c_{n}<+\infty$. It turns out that these conditions, taken together, are sufficient for minimal thinness but not necessary. On the other hand the condition $\sum_{n=1}^{\infty} c_{n}<+\infty$, by itself is necessary for minimal thinness but not sufficient.
The main purpose of this paper is to give necessary and sufficient conditions for minimal thinness at 0 for a set $E \subset K$ in terms of ordinary and logarithmic capacity. We shall verify that these new conditions provide an improvement of Theorem 1 in [2]. We shall now state and prove a version of our main theorem.

[^0]Theorem 1. If $E \subset K$, then E is minimally thin at 0 iff the following conditions are satisfied:
(i) There exists n_{0} such that $n c_{n}<1$ for all $n \geq n_{0}$.
(ii) $\sum_{n=n_{0}}^{\infty} \frac{c_{n}}{1-n c_{n}}<+\infty$.

Proof. We shall employ the following inequalities that were established in [2].
(I) (see inequality (vi) in the proof of Theorem 1 [2]):

$$
\frac{\sigma_{n}}{1+(A+n) \sigma_{n}} \leq c_{n}
$$

where $A=1+\log \left(1 /\left(2 \cos \theta_{0}\right)\right)$. We note that $A>0$ for every $\theta_{0} \in[0, \pi / 2)$.
(II) (see inequality (vi') in the proof of Theorem 5 [2]):

$$
\frac{\sigma_{n}}{1+(n-\log 2) \sigma_{n}} \geq c_{n}
$$

In future we shall ignore all terms where $c_{n}=0$ or equivalently $\sigma_{n}=0$. We first combine inequalities I and II to obtain

$$
\begin{equation*}
\frac{\sigma_{n}}{1+(A+n) \sigma_{n}} \leq c_{n} \leq \frac{\sigma_{n}}{1+(n-\log 2) \sigma_{n}} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{\sigma_{n}}+A+n \geq \frac{1}{c_{n}} \geq \frac{1}{\sigma_{n}}+n-\log 2 \tag{ii}
\end{equation*}
$$

If we subtract n from both inequalities in (ii) we obtain

$$
\begin{equation*}
\frac{1}{\sigma_{n}}+A \geq \frac{1}{c_{n}}-n \geq \frac{1}{\sigma_{n}}-\log 2 \tag{iii}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1+A \sigma_{n}}{\sigma_{n}} \geq \frac{1-n c_{n}}{c_{n}} \geq \frac{1-\log 2 \sigma_{n}}{\sigma_{n}} \tag{iv}
\end{equation*}
$$

We now suppose that E is minimally thin at 0 . Then $\sum_{n}{ }_{=1}^{\infty} \sigma_{n}<+\infty$ which implies that $\lim _{n \rightarrow \infty} \sigma_{n}=0$ and which in turn implies that $\lim _{n \rightarrow \infty}\left(1 / \sigma_{n}-\log 2\right)=+\infty$. By the right side of (iii) it follows that $\left(1 / c_{n}\right)-n=\left(1-n c_{n}\right) / c_{n}>0$ for all n sufficiently large, and therefore $1-n c_{n}>0$ for all n sufficiently large. We choose n_{0} such that $1 / \sigma_{n}-\log 2>0$ if $n \geq n_{0}$, and note that $1-n c_{n}>0$ also when $n \geq n_{0}$. If $n \geq n_{0}$ all terms in (iv) are greater than zero so that (iv) is equivalent to

$$
\begin{equation*}
\frac{\sigma_{n}}{1+A \sigma_{n}} \leq \frac{c_{n}}{1-n c_{n}} \leq \frac{\sigma_{n}}{1-\log 2 \sigma_{n}} \quad \text { when } n \geq n_{0} \tag{v}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} \sigma_{n}=0$, therefore $\left(1-\log 2 \sigma_{n}\right)>\frac{1}{2}$ or $1 /\left(1-\log 2 \sigma_{n}\right)<2$, for all n sufficiently large, and it follows that $\sum_{n=1}^{\infty} \sigma_{n}<+\infty$ implies

$$
\sum_{n=n_{0}}^{\infty} \frac{\sigma_{n}}{1-\log 2 \sigma_{n}}<+\infty
$$

which in turn implies

$$
\sum_{n=n_{0}}^{\infty} \frac{c_{n}}{1-n c_{n}}<+\infty
$$

The necessity part of our theorem follows. For the sufficiency we note from (v) that the given conditions of our theorem imply that $\sum_{n}{ }_{=1}^{\infty}\left[\sigma_{n} /\left(1+A \sigma_{n}\right)\right]<+\infty$. The function $f(x)=x /(1+A x)$ is continuous and monotone strictly increasing on $(-1 / A,+\infty)$, and possesses its only zero at $x=0$. The convergence of the series $\sum_{n=1}^{\infty}\left[\sigma_{n} /\left(1+A \sigma_{n}\right)\right]$ implies $\lim _{n \rightarrow \infty}\left(\sigma_{n} /\left(1+A \sigma_{n}\right)\right)=0$, which in turn implies $\lim _{n \rightarrow \infty} \sigma_{n}=0$. Hence $1+A \sigma_{n}<2$ or $1 /\left(1+A \sigma_{n}\right)>\frac{1}{2}$ for all n sufficiently large, and it follows that $\sum_{n}{ }_{=1}^{\infty}\left(\sigma_{n} /\left(1+A \sigma_{n}\right)\right)<+\infty$ implies $\sum_{n}{ }_{=1}^{\infty} \sigma_{n}<+\infty$, which in turn implies minimal thinness of E at 0 . This proves the sufficiency and the theorem.

Remark 1. If $\varlimsup_{n \rightarrow \infty} n c_{n}<1$, then

$$
\sum_{n=n_{0}}^{\infty} \frac{c_{n}}{1-n c_{n}}<+\infty \quad \text { iff } \sum_{n=1}^{\infty} c_{n}<+\infty
$$

so that the sufficiency part of our new theorem is at least as strong as Theorem 1 in [2]. We shall demonstrate by example that it is stronger.

Lemma. It is possible for $E \subset K$ to be minimally thin at 0 and satisfy the condition that $\varlimsup_{n \rightarrow \infty} n c_{n}=1$.

Proof. Let us define $E \subset K$ to be a sequence of intervals so that

$$
\left.\begin{array}{rlrl}
c_{n} & =\frac{1}{n^{2}} & & \text { if } n \neq m^{4} \\
& =\frac{1}{n}-\frac{1}{n \sqrt{n}} & \text { if } n=m^{4}
\end{array}\right\}
$$

where m runs through the natural numbers. It follows that

$$
\left.\begin{array}{rlr}
1-n c_{n} & =1-\frac{1}{n} & \text { if } n \neq m^{4} \\
& =\frac{1}{\sqrt{n}} & \text { if } n=m^{4}
\end{array}\right\}
$$

and that

$$
\left.\begin{array}{rl}
\frac{c_{n}}{1-n c_{n}} & =\frac{1}{n(n-1)} \\
\text { if } n \neq m^{4} \\
& =\frac{1}{\sqrt{ } n}-\frac{1}{n}
\end{array} \quad \text { if } n=m^{4}\right\}
$$

Hence

$$
\sum_{n=1}^{\infty}\left(\frac{c_{n}}{1-n c_{n}}\right) \leq \sum_{n=2}^{\infty} \frac{1}{n(n-1)}+\sum_{m=1}^{\infty}\left(\frac{1}{m^{2}}-\frac{1}{m^{4}}\right)
$$

Since the series $\sum_{n=1}^{\infty}\left(c_{n} /\left(1-n c_{n}\right)\right)$ is a positive series and all series on the right side of the above inequality converge, it follows that

$$
\sum_{n=1}^{\infty}\left(\frac{c_{n}}{1-n c_{n}}\right)<+\infty
$$

and hence E is minimally thin at 0 . Nevertheless

$$
\left.\begin{array}{rlr}
n c_{n} & =1-\frac{1}{\sqrt{n}} & \text { if } n=m^{4} \\
& =\frac{1}{n} & \text { if } n \neq m^{4}
\end{array}\right\}
$$

and it is evident that

$$
\varlimsup_{n \rightarrow \infty} n c_{n}=\lim _{m \rightarrow \infty}\left(1-\frac{1}{m^{2}}\right)=1
$$

The lemma follows. We shall now rephrase Theorem 1 in terms of logarithmic capacity.

Theorem $1^{\prime} . E \subset K$ is minimally thin at 0 iff the following conditions are satisfied:
(i) There exists n_{0} such that $\left(\lambda_{n} e^{n}\right)<1$ for all $n \geq n_{0}$.
(ii) $\sum_{n=n_{0}}^{\infty} \frac{1}{\log \left(\frac{1}{\lambda_{n} e^{n}}\right)}<+\infty$.

Proof. As before we restrict ourselves to $\left\{z:|z|<\frac{1}{2}\right\}$. Then

$$
\begin{aligned}
c_{n} & =\frac{1}{\log \left(1 / \lambda_{n}\right)} & & \text { where } 0<\lambda_{n}<1 \\
& =0 & & \text { if } \lambda_{n}=0 .
\end{aligned}
$$

It follows that $n c_{n}<1$ iff $\log 1 / \lambda_{n}>n$, or $1 / \lambda_{n}>e^{n}$. The condition of Theorem 1 that
there exists n_{0} such that $n c_{n}<1$ if $n \geq n_{0}$ is therefore equivalent to the condition that $\lambda_{n} e^{n}<1$ if $n \geq n_{0}$. If $c_{n} \neq 0$, then

$$
\frac{c_{n}}{1-n c_{n}}=\frac{1}{\left(1 / c_{n}\right)-n}=\frac{1}{\log \left(1 / \lambda_{n}\right)-n}=\frac{1}{\log \left(1 / \lambda_{n} e^{n}\right)}
$$

so that

$$
\sum_{n=n_{0}}^{\infty} \frac{c_{n}}{1-n c_{n}}<\infty \quad \text { iff } \sum_{n=n_{0}}^{\infty} \frac{1}{\log \left(1 / \lambda_{n} e^{n}\right)}<+\infty .
$$

It follows that Theorem 1^{\prime} is a rephrasing of Theorem 1 in terms of logarithmic capacity.

Remark 2. If $E \subset K$ it would be of interest to develop an integral criterion for minimal thinness in terms of ordinary or logarithmic capacity comparable to the one developed by Brelot (see [1, pp. 334-336]) for ordinary thinness.

Remark 3. In [2, Theorem 5] the author was able to prove that the condition of minimal thinness for $E \subset K$ strictly implies that it is an r-set of finite logarithmic length. Let us examine a set E such that each $E \cap I_{n}$ is a disk of radius r_{n}. Then $\lambda_{n}=r_{n}$, and E is an r-set of finite logarithmic length iff $\sum_{n=1}^{\infty} \lambda_{n} e^{n}<+\infty$. In the particular case where $\left(\lambda_{n} e^{n}\right)$ is a monotone decreasing sequence the minimal thinness of $E \subset K$ implies that

$$
\frac{1}{\log \left(1 / \lambda_{n} e^{n}\right)}<\frac{1}{n \log n}
$$

for all n sufficiently large, so that

$$
\frac{1}{\lambda_{n} e^{n}}>n^{n} \quad \text { or } \quad \lambda_{n} e^{n}<\frac{1}{n^{n}}
$$

for all n sufficiently large. One can easily provide more stringent inequalities but the one above provides evidence that the condition of finite logarithmic length is not a good approximation for minimal thinness.

References

1. M. Brelot, Points irréguliers et transformations continues en théorie du potentiel, J. Math. Pures App. 19 (1940), 319-337.
2. H. L. Jackson, Some results on thin sets in a half-plane, Ann. Inst. Fourier (Grenoble) (2) 20 (1970), 201-218.
3. J. Lelong, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. de L'École Normale Sup. 66 (1949), 125-159.
4. M. Tsuji, Potential theory in modern function theory, Maruzen, Tokyo, 1959.

McMaster University,
Hamilton, Ontario

[^0]: Received by the editors January 27, 1971.

