ON THE COMPLETE RING OF QUOTIENTS

BY
KWANGIL KOH

In [2: p. 415], P. Gabriel proves that if R is a ring with 1 and S is a non-empty multiplicative set such that $0 \notin S$, then $S^{-1} R$ exists if and only if for every pair (a, s) $\in R \times S$, there is a pair $(b, t) \in R \times S$ such that $a t=s b$ and if $s_{1} a=0$ for some s_{1} in S then $a s_{2}=0$ for some s_{2} in S. The purpose of this note is to give a self contained elementary proof of Gabriel's result.

Theorem 1. Let R be a ring (not necessarily with 1) and S be a non-empty multiplicative set such that $0 \notin S$. Then the following statements are equivalent:
(1) For every pair ($a, s) \in R \times S$, there is a pair $(b, t) \in R \times S$ such that at $=s b$ and if a is an element of R such that $s_{1} a=0$ for some s_{1} in S then $a s_{2}=0$ for some s_{2} is S,
(2) There is a non-zero ring $S^{-1} R$ with an identity element and a ring homomorphism θ from R into $S^{-1} R$ such that (i) For every $s \in S, \theta(s)$ is a unit in $S^{-1} R$, (ii) $\theta(a)=0$ implies that as $=0$ for some $s \in S$, (iii) Every element of $S^{-1} R$ is of the form $\theta(a) \theta(s)^{-1}$ for some $a \in R$ and $s \in S$, (iv) If there is a ring homomorphism g from R into a ring B such that $g(s)$ is a unit in B for everys in S and every element of B is of the form $g(a) g(s)^{-1}$ for some $a \in R, s \in S$, then there is a unique homomorphism h from $S^{-1} R$ into B such that $h \circ \theta=g$.

The fact that (1) is a consequence of (2) is fairly easy to see. For if $(a, s) \in R \times S$ then $\theta(s)^{-1} \theta(a)=\theta(b) \theta(t)^{-1}$ for some $(b, t) \in R \times S$. Since every element of $S^{-1} R$ is of the form $\theta(b) \theta(t)^{-1}$ for some $(b, t) \in R \times S$. Hence $\theta(a) \theta(t)=\theta(s) \theta(b)$ and $\theta(a t-s b)=0$. Thus $(a t-s b) s_{1}=0$ for some s_{1} in S and $a t s_{1}=a b s_{1}$. Since $\left\{t, s_{1}\right\} \subseteq S$ and S is a multiplicative set, $t s_{1}$ is an element of S.

In order to prove that (1) implies (2), we use a concept of partial homomorphism which is introduced in [1] and [3]. Recall that if R is a ring, and B and A are right R-modules, and if D is any R-submodule of B, then a R-homomorphism of D into A is called a partial homomorphism from B into A.

Lemma 1. Let R_{R} be the regular right R-module (i.e. the module operation is the given ring multiplication). Let H be the set of all partial R-homomorphisms from R_{R} into R_{R}. Define $H(S)=\{f \in H \mid \operatorname{dom} f \cap S \neq \phi\}$. For every f, g in $H(S)$, define $(f+g)(x)=f(x)+g(x)$ for every $x \in \operatorname{dom} f \cap \operatorname{dom} g$ and $(f \circ g)(x)=f(g(x))$ for every $x \in g^{-1}(\operatorname{dom} f)$. Then $(H(S),+)$ is an abelian group and $(H(S), 0)$ is a semigroup.

Proof. Let $s \in S \cap \operatorname{dom} f$ and $t \in S \cap \operatorname{dom} g$. Then there exist $s_{1} \in S$ and $b \in R$ such that $s s_{1}=t b$. Hence $S \cap(\operatorname{dom} f \cap \operatorname{dom} g) \neq \phi$ and $f+g \in H(S)$. Since $g(t)$ is an element of R, there is s_{2} in S and a in R such that $g(t) s_{2}=s a$. Therefore $t s_{2} \in$ $S \cap g^{-1}(\operatorname{dom} f)$ and $f \circ g \in H(S)$. It is clear that $(H(S),+)$ is an abelian group and $(H(S), 0)$ is a semigroup.

Lemma 2. For every f, g in $H(S)$, define $f \sim g$ if and only if $f(s)=g(s)$ for some s in S. Then \sim is a congruence relation with respect to the addition and multiplication of $H(S)$ and $H(S) / \sim$ is a ring with an identity.

Proof. Clearly, the relation is reflexive and symmetric. Suppose $f \sim g$ and $g \sim h$ for some f, g and h in $H(S)$. There exist s and t in S such that $f(s)=g(s)$ and $g(t)=$ $h(t)$. There exist $s_{1} \in S$ and $a \in S$ such that $s s_{1}=t a$. Hence $f\left(s s_{1}\right)=g\left(s s_{1}\right)=g(t a)=$ $h(t a)=h\left(s s_{1}\right)$ and $f \sim h$. Thus the relation is an equivalence relation on $H(S)$. Now suppose $f \sim g$ and $f^{\prime} \sim g^{\prime}$ for some f, f^{\prime}, g and g^{\prime} in $H(S)$. Then there exist s, t in S such that $f(s)=g(s)$ and $f^{\prime}(t)=g^{\prime}(t)$. Let $a \in R$ and $s_{1} \in S$ such that $s s_{1}=t a$. Then

$$
\left(f+f^{\prime}\right)\left(s s_{1}\right)=f\left(s s_{1}\right)+f^{\prime}\left(s s_{1}\right)=g\left(s s_{1}\right)+g^{\prime}(t a)=g\left(s s_{1}\right)+g^{\prime}\left(s s_{1}\right)=\left(g+g^{\prime}\right)\left(s s_{1}\right)
$$

and

$$
f+f^{\prime} \sim g+g^{\prime}
$$

Now, there exist $s_{1} \in S$ and $a \in R$ such that $f^{\prime}(t) s_{1}=s a$. Hence

$$
f \circ f^{\prime}\left(t s_{1}\right)=f\left(f^{\prime}\left(t s_{1}\right)\right)=f(s a)=g(s a)=g\left(f^{\prime}\left(t s_{1}\right)\right)=g\left(g^{\prime}\left(t s_{1}\right)\right)=g \circ g^{\prime}\left(t s_{1}\right) .
$$

Thus $f \circ f^{\prime} \sim g \circ g^{\prime}$. If $f \in H(S)$, let $[f]$ be the equivalence class represented by f. Define $[f]+[g]=[f+g]$ and $[f] \cdot[g]=[f \circ g]$ for every f, g in $H(S)$. For every f, g and h in $H(S)$ we claim that $[f] \cdot([g]+[h])=[f] \cdot[g]+[f] \cdot[h]$ and $([g]+[h]) \cdot[f]=$ $[g] \cdot[f]+[h] \cdot[f]$. Recall that if $s_{0} \in S \cap \operatorname{dom} f, s \in S \cap \operatorname{dom} g$ and $t \in S \cap \operatorname{dom} h$, then $s s_{1} \in \operatorname{dom} g+h$ for some s_{1} in S and $s s_{1} s_{2}=s_{0} a$ for some s_{2} in S and $a \in R$ such that $s s_{1} s_{2} \in S \cap(g+h)^{-1}(\operatorname{dom} f)$ (refer a proof of Lemma 1). Hence $f \circ(g+h) \sim f \circ g+f \circ h$. Similarly, $(g+h) \circ f \sim g \circ f+h \circ f$. Thus $H(S) / \sim$ is a ring with an identity.

Definition. For each a in R, let $t_{a}(x)=a x$ for every x in R.
Lemma 3. Let $\Gamma(R, S)=H(S) / \sim$. Then there is a ring homomorphism η from R into $\Gamma(R, S)$ such that $\eta(s)$ is a regular element for every s in S. If every element of S is regular in R, then η is a monomorphism and every element of $\Gamma(R, S)$ is of the form $\eta(a) \eta(s)^{-1}$ for some a in R and s in S.

Proof. Define $\eta(a)=\left[t_{a}\right]$ for every a in R. Clearly, η is a ring homomorphism of R into $\Gamma(R, S)$. If $\left[t_{i}\right] \cdot[f]=0$, for some s in S and $f \in H(S)$, then $s f\left(s^{\prime}\right)=0$ for some $s^{\prime} \in S \cap \operatorname{dom} f$. Hence, $f\left(s^{\prime}\right)=s^{\prime \prime}=0$ for some $s^{\prime \prime}$ in S and $[f]=0$. If $[f] \cdot\left[t_{s}\right]=$ 0 , then $f\left(s s_{1}\right)=0$ for some s_{1} in S and $[f]=0$. Thus $\eta(s)$ is a regular element of $\Gamma(R, S)$ for every $s \in S$. Now, suppose every element of S is regular in R Then
clearly, the kernel of η is zero and for every t_{s}, there exist f, g in $H(S)$ such that $t_{s} \circ f(s x)=s x$ and $g \circ t_{s}(x)=x$ for every x in R. Hence $f\left(s^{2}\right)=g\left(f s^{2}\right)$ and $[f]=[g]=$ $\left[t_{s}\right]^{-1}$. Now, let [f] be an arbitrary element of $\Gamma(R, S)$. Then $f(s)=a$ for some $s \in S$ and $a \in R$ and $[f] \cdot\left[t_{s}\right]=\left[t_{a}\right]$. Thus $[f]=\left[t_{a}\right] \cdot\left[t_{s}\right]^{-1}$.

Proof of Theorem. We have already shown that (2) implies (1). So assume (1). Then in the ring $\Gamma(R, S), \eta(s)$ is a regular element for every s in S. Let $\bar{S}=\eta(S)$ and let $\bar{R}=\eta(R)$. Then clearly \bar{S} is a multiplicative set in the ring \bar{R}, every element of S is a regular element in \bar{R} and furthermore, if $\left[t_{s}\right] \in \bar{S}$ and $\left[t_{a}\right] \in \bar{R}$ for some s in S and a in R, then $\left[t_{a}\right] \cdot\left[t_{s_{1}}\right]=\left[t_{s}\right] \cdot\left[t_{b}\right]$ for some s_{1} in S and b in R. Thus by Lemma 3 , there is a monomorphism, say ϕ from \bar{R} into the ring $\Gamma(\bar{R}, \bar{S})$ such that $\phi\left(\left[t_{s}\right]\right)$ is a unit element for every $\left[t_{s}\right]$ in \bar{S} and every element of $\Gamma(\bar{R}, \bar{S})$ is of the form $\phi\left(\left[t_{a}\right]\right) \phi\left(\left[t_{s}\right]\right)^{-1}$ for some $\left[t_{a}\right]$ in \bar{R} and $\left[t_{s}\right]$ in S. Let $S^{-1} R=\Gamma(\bar{R}, S)$ and define $\theta=\phi \circ \eta$. Then θ is a ring homomorphism of R into $S^{-1} R$ and if $\theta(a)=0$, then $\phi(\eta(a))=0$ and $\eta(a)=0$ since ϕ is a monomorphism. Hence $\left[t_{a}\right]=0$ and $a s=0$ for some $s \in S$. If $a s=0$ for some a in R and s in S, then $\eta(a) \eta(s)=0$ and $\eta(a)=0$ since $\eta(s)$ is a unit and therefore $\theta(a)=0$. By Lemma 3 and by the definition of θ, if $s \in S$, then $\theta(s)$ is a unit element in $S^{-1} R$ and every element of $S^{-1} R$ is of the form $\theta(a) \theta(s)^{-1}$ for some $a \in R$ and $s \in S$. Suppose that g is a ring homomorphism from R into a ring B such that $g(s)$ is a unit in B for every s in S and if $b \in B$, then $b=g(a) g(s)^{-1}$ for some $a \in R$ and $s \in S$. Define h from $S^{-1} R$ into B by $h\left(\theta(a) \theta(s)^{-1}\right)=$ $g(a) g(s)^{-1}$ for every $a \in R$ and $s \in S$. If $\theta(a) \theta(s)^{-1}=0$, then $\theta(a)=0$ and $a s^{\prime}=0$ for some s^{\prime} in S. Therefore, $g(a) g\left(s^{\prime}\right)=0$ and $g(a)=0$. Hence $h(0)=0$. Consider $h\left(\theta(a) \theta(s)^{-1}+\theta(b) \theta(t)^{-1}\right)$ for some a, b in R and s, t in S. There exist s_{1} in S and c in R such that $s s_{1}=t c$. Hence

$$
\begin{aligned}
\theta(a) \theta(s)^{-1}+\theta(b) \theta(t)^{-1} & =\left(\theta(a) \theta(s)^{-1}+\theta(b) \theta(t)^{-1}\right) \theta(s) \theta\left(s_{1}\right) \theta\left(s_{1}\right)^{-1} \theta(s)^{-1} \\
& =\left(\theta(a) \theta\left(s_{1}\right)+\theta(b) \theta(t)^{-1} \theta(s) \theta\left(s_{1}\right)\right) \theta\left(s_{1}\right)^{-1} \theta(s)^{-1} \\
& =\left(\theta(a) \theta\left(s_{1}\right)+\theta(b) \theta(c)\right)\left[\theta(s) \theta\left(s_{1}\right)\right]^{-1}
\end{aligned}
$$

since

$$
\theta(t)^{-1}=\theta(c) \theta\left(s s_{1}\right)^{-1}
$$

Thus

$$
\begin{aligned}
h\left(\theta(a) \theta(s)^{-1}+\theta(b) \theta(t)^{-1}\right) & =\left[g\left(a s_{1}\right)+g(b c)\right] g\left(s s_{1}\right)^{-1} \\
& =g(a) g(s)^{-1}+g(b) g(c) g\left(s_{1}\right)^{-1} g(s)^{-1} \\
& =g(a) g(s)^{-1}+g(b) g(t)^{-1} \\
& =h\left(\theta(a) \theta(s)^{-1}\right)+h\left(\theta(b) \theta(t)^{-1}\right) . \text { Since } g(t)^{-1}=g(c) g\left(s s_{1}\right)^{-1} .
\end{aligned}
$$

Now consider $h\left[\theta(a) \theta(s)^{-1} \theta(b) \theta(t)^{-1}\right]$. There exist s_{1} in S and a_{1} in R such that $b s_{1}=s a_{1}$. Hence $\theta(b) \theta\left(s_{1}\right)=\theta(s) \theta\left(a_{1}\right)$ and

$$
\begin{aligned}
\theta(a) \theta(s)^{-1} \theta(b) \theta(t)^{-1} & =\theta(a) \theta(s)^{-1} \theta(s) \theta\left(a_{1}\right) \theta\left(s_{1}\right)^{-1} \theta(t)^{-1} \\
& =\theta(a) \theta\left(a_{1}\right) \theta\left(s_{1}\right)^{-1} \theta(t)^{-1}=\theta\left(a a_{1}\right) \theta\left(t s_{1}\right)^{-1} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
h\left[\theta(a) \theta(s)^{-1} \theta(b) \theta(t)^{-1}\right] & =g\left(a a_{1}\right) g\left(t s_{1}\right)^{-1} \\
& =g(a) g\left(a_{1}\right) g\left(s_{1}\right)^{-1} g(t)^{-1} \\
& =g(a) g(s)^{-1} g(b) g(t)^{-1} \\
& =g(a) g(s)^{-1} g(b) g(t)^{-1}=h\left(\theta(a) \theta(s)^{-1}\right) h\left(\theta(b) \theta(t)^{-1}\right)
\end{aligned}
$$

since $g(s)^{-1} g(b)=g\left(a_{1}\right) g\left(s_{1}\right)^{-1}$. Clearly, $h \circ \theta=g$ and h is unique.

References

1. G. D. Findlay and J. Lamhek, A generalized ring of quotients I, Canadian Math. Bull., Vol. 1, no. 2, May 1958.
2. P. Gabriel, Des categories abeliennes, Bull. Soc. Math., France 90 (1962), 325-448.
3. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.

North Carolina State University,
Raleigh, North Carolina 27607

