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PROPAGATION OF FLAME FRONTS
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Abstract

The propagation of a flame front in a combusting gas is considered in the limit
in which the width of the reaction-zone is small compared with some overall flow
dimension. In this approximation, the front propagates along its normals at a
speed dependent on the local curvature of the front and is governed by a nonlinear
equivalent of the geometric optics equations. Some exact solutions of this equation
are found and a numerical scheme is developed to solve the equation for more
complicated geometries.

1. Introduction

In linear wave theory, geometric optics provides a simple (and accurate)
method of obtaining approximate solutions of wave propagation problems
when the wave field is slowly varying or when the motion of a front is be-
ing considered. In this approximation, a wave front is propagated along its
normals at the local wave speed. The question naturally arises as to whether
geometric optics can be extended to nonlinear wave propagation problems.
In what was called geometrical shock dynamics, Whitham [7], [8], applied the
ideas of geometric optics to the propagation of shock waves. In this theory,
a shock is propagated along its normals at a local Mach number M which
depends on the local area A of the shock, these being related by the A-M
relation

0 = f(M)/f(M0), (1.1)
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where Mo and AQ are the initial Mach number and area respectively and / is
some function whose details need not be given here. The equations of geo-
metrical shock dynamics form a second order system of nonlinear hyperbolic
equations and a number of solutions were found by Whitham [7], [8], [9].
These solutions were found to agree very well with both exact solutions of
the gas equations and experimental results.

Since geometrical shock dynamics involves propagating a shock along its
normals at a Mach number determined by (1.1), it is a very fast method
of propagating shocks numerically. Henshaw, Smyth and Schwendeman [4]
developed such a numerical method and used it to study a variety of shock
propagation problems. Good agreement was found between their results and
both analytical and experimental results.

The application of geometric optics to nonlinear problems is not limited to
geometrical shock dynamics and can be applied to many situations in which
the propagation of a front is involved. For example, nonlinear geometric op-
tics was developed for soliton propagation problems by Miles [5] and for the
propagation of phase change fronts by Ben-Jacob et al [2]. Stewart and Bdzil
[6] considered an unsteady flame propagating in a polytropic, combusting gas.
On assuming that the reaction-zone thickness is small compared with some
overall dimension of the flow, they showed that the flame front propagates
along its normals with a local speed V given by

V = DCJ-aK, (1.2)

where K is the curvature of the front, DCJ is the steady one-dimensional
Chapman-Jouguet velocity and a is a constant.

In the present work, exact solutions of the equations of motion of the flame
front obtained from (1.2) will be found for a flame front propagating in a one-
dimensional duct and a cylindrical tube. Also, a numerical scheme similar to
that of Henshaw, Smyth and Schwendeman [4], but using the normal velocity
relation (1.2), will be discussed and used to study the propagation of a flame
front in a duct with a hump and in a duct with a 90° circular bend.

2. Governing equations

In the present section, the derivation by Stewart and Bdzil [6] of the normal
velocity relation (1.2) from the gas equations will be summarised. Consider
an unsteady detonation wave propagating in a polytropic gas filling some
tube. Behind this front, there is reacting gas and in order to construct an
asymptotic theory, we shall assume that the reaction-zone thickness is small
compared to some overall dimension of the flow. We shall further assume that
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the reaction-zone is fully resolved. We shall use a coordinate system moving
with the steady detonation velocity D, with the z coordinate oriented along
the tube. The equations governing the flow of the reacting gas are then

dH ___ I dp

=3 + U • V(O = CO-VU + P
dt (2 1)

where
H=^\Vu\2+p/p + E. (2.2)

These equations form an equivalent system to the standard Euler equations.
Here n,oi,p,p,E and A are the fluid velocity relative to the moving frame,
vorticity (= V x M), density, pressure, specific internal energy and reaction
progress variable respectively. The progress variable varies between zero and
one, being zero when the gas is unreacted and one when it is fully reacted.
The reaction rate is denoted by R and the parameter k is a rate multiplier
whose reciprocal is a characteristic reaction time. The parameter y is the
specific heat ratio for the gas. For a polytropic gas,

E = (y-l)-ip/p-qX, (2.3)

where q is the specific heat of reaction of the gas.
The reaction-zone is preceded by a shock, which we shall assume is strong

(i.e. has Mach number >> 1). Let us denote the position of this leading
shock by z = zs and denote the state immediately behind the shock by a
subscript s. Then the jump conditions for a strong shock (Steward and Bdzil
[6]) give the boundary conditions

dusldz = - [D[{y - l)/(y + 1) + |Vz5|
2] - 2/(y + 1) dzs/dt) /F,

Ps =

for the reaction-zone, where

F = [l + |Vz5|2] (2.5)

and po is the density of the quiescent gas ahead of the shock.
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If we define 8 to be the ratio of a length characteristic of the reaction-zone
to a length characteristic of the overall flow, then by assumption, 6 is small
and serves as a basic perturbation parameter. By solving (2.1) to (2.5) using
a perturbation series in 5, Stewart and Bdzil [6] found that the propagation
of the flame front is governed by the parabolic equation

= aV2zs + i/>c/|Vzs!2 - D2..i/>c/|Vzs! D2.. (2.6)

where V is the scaled gradient operator in the plane tangent to the direction
of steady propagation, the derivatives being with respect to the new scaled
coordinate

C = Sx. (2.7)

This new variable is a boundary layer coordinate for the (thin) reaction-zone.
Furthermore,

T = S2t, (2.8)

+ ..., (2.9)

a = y{y+\)G, (2.10)

where
2yD2

CJ f 0 ( l + 0 ) d 0
J ( J

The term DCJ is the one-dimensional steady Chapman-Jouguet detonation
velocity, given by

DCJ = [2q(y2 - 1)]1/2 (2.12)

and Z>2 is the (negative) correction to this velocity due to the effect of the
curved front. The parameter a is a measure of the amount of heat released
by the reaction.

To complete the description of the flame front, boundary conditions are
needed for equation (2.6). The analysis of the boundary layer at the tube
wall is a difficult and, as yet, incompletely solved problem. However, work
by Bdzil [1] for steady detonation shows that if the time dependence of the
flow in the boundary layer occurs on the slow time scale T = 82t, then the
boundary condition

(2.13)

holds at the tube wall, where n is the normal to the tube wall and L is an 0(1)
constant which accounts for the adjustment in the streamline curvature be-
tween the interior flow and the flow at the tube wall. This boundary condition
will be the one used in the present work.
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Equation (2.6) together with the boundary condition (2.13) can be set into
non-dimensional form by introducing the new variables

With these new variables, (2.6) becomes

dZ/dx = V2Z + |VZ|2 + 1 (2.15)

together with the boundary condition

n-VZ = -W (2.16)

on the tube walls. Here V is now the gradient operator for derivatives with
respect to £. This equation is a Ricatti-type equation in VZ and can be
transformed to a linear parabolic equation using the transformation

Z = logy (2.17)

Equation (2.15) together with boundary condition (2.16) then become

dy//dT = V2y/ + y/ (2.18)

with
B.-'2.yr+Wy = 0 (2.19)

on the walls. Since (2.18) is a linear equation, it can be solved using stan-
dard techniques. As yet, Z>2> the correction to the steady one-dimensional
Chapman-Jouguet velocity has not been determined. This quantity is de-
termined from the condition that (2.18) has a steady solution. Some exact
solutions of (2.18) and (2.19) will be found in the next section.

The original dimensional flame front equation (2.6) has a simple physical
interpretation. From Steward and Bdzil [6], the propagation velocity of the
flame front along its normal, V, is given by

V = DCJ + d2 \dzs/dT + D2 - ^DCj\Vzs\
2] . (2.20)

Also the sum of the principal curvatures of the front is

s. (2.21)
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Hence from (2.6),
V = DCJ - aK. (2.22)

Therefore the front propagates such that its normal velocity is equal to the
steady Chapman-Jouguet velocity minus a constant times curvature. This
simple interpretation is the basis of the numerical solution of (2.6) and (2.13)
in section 4.

The above asymptotic analysis breaks down in the so-called simpie de-
peletion limit in which the length of the reaction zone becomes large. For
example, if the rate law

fW=(l-X)v,0<u < 1 (2.23)

is assumed, simple depletion occurs in the limit v —* 1. In this limit, a-»oo
as the integral (2.11) does not converge. By separately analysing this limit,
Stewart and Bdzil [6] showed that

V = DCj + 0KlogK + 2PK [log(0/DCJ) - 3], (2.24)

where
fi = [yDCj/(y + i)]2k-1. (2.25)

As the simple depletion limit will not be considered further here, the front
velocity relation (2.24) will not be used in this work.

3. Analytical solutions

It was shown in the previous section that the propagation of a flame front
in a tube is governed by the linear parabolic equation (2.18) with bound-
ary condition (2.19). For simple geometries, this equation can be solved
using either separation or variables of Laplace transforms in x. We shall now
consider the two specific examples of a one dimensional straight duct and a
cylindrical tube. For simplicity, we shall consider the initial condition

Z = 0 a t r = 0, (3.1)

so that
y/ = 1 at T = 0. (3.2)

Let us first consider a flame front in a one dimensional duct, so that y/ —
y/(£, T) where £ is the cross coordinate. Let us take the walls of the duct to be
at £ = ±b. It can easily be found using separation of variables that equation
(2.18), together with boundary condition (2.19) and initial condition (3.2),
has the solution

^2sinyTTI^> _, T n—r-. ,, ,,

n=0
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where Xn is a solution of

tan y/YThb = W/y/TTxi,. (3.4)

We still have not fully determined the solution of (2.18) as Z>2 has not yet
been determined. This quantity is determined by the requirement that (2.18)
has a steady state solution. For a steady solution to exist, we require XQ - 0,
so that from (3.4),

W = tanb, (3.5)

which gives, on using (2.14)

where the dimensional position of the walls is at £ = ±£o- This expression
(implicitly) determines D2. The steady part (n = 0) of the solution (3.3) was
also found in Stewart and Bdzil [6].

The propagation of a flame front in a cylindrical tube can similarly be de-
termined. In this case, the solution is circularly symmetric with y/ = y/(p, T),
where p is the radial coordinate for cylindrical polar coordinates in £. In the
tube has radius p = b, then it can be found that (2.18) together with (2.19)
and (3.2) has the solution

2W J°M + V l w Jo(ViTTnp) x^

where

and
W = Jl(b)/J0(b). (3.9)

As for the planar case, condition (3.9) was determined by requiring there to
be a steady state solution of (2.18). Using the non-dimensionalisation (2.14),
Di can be determined from (3.9).

In a similar manner to the above cases, further analytical solutions of
(2.18) for simple geometries can be found. In the next section, we shall
consider numerical solutions of (2.6).

When the flame front has reached a steady state and is propagating at a
constant velocity, we see from (2.18) and (2.19) that it is governed by

0 inZ (3.10)

with
= 0 on dZ. (3.11)
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(a)

I S 0 - 3 0 0 . 4 5 0 . 6 0 0 . 7 5 0 - 9 0 1 - 0 5 1 - 2 0 1 - 3 5 1 . 5 0

(b)

• 2 0 . 4 0 - 6 0 . 8 1 . 0 1 . 2 1 . 4 1 . 6 1 . 8 2 .

FIGURE 1. Comparison of exact values of W, —, and approximate values of W,
(a) one dimensional duct,
(b) a cylindrical tube.
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Here Z is the region in which the flame front propagates and d"L is the bound-
ary of the region. Equation (3.10) is Helmholtz's equation with eigenvalue
1. Courant and Hilbert (1953) give that this eigenvalue is determined by the
Rayleigh quotient

^ ^ + AffirriW

where the minimum is taken over all functions y/r satisfying the boundary
condition (3.11). The Rayleigh quotient gives a simple method of estimating
W and hence estimating the correction Dj to the Chapman-Jouguet velocity.

As an example consider the propagation of a flame front in a one-dimen-
sional duct, for which the domain Z is the interval -b < £, < b. A simple
function y/r which satisfies the boundary conditions (3.11) is

(3.13)

where A is a constant. From (3.12), we find that

l

A comparison of this approximation to W to the exact value given by (3.5)
is shown in Figure l(a). It can be seen that the approximation (3.14) is good
even though the approximating function (3.13) is relatively simple.

The propagation of a flame front in a cylindrical tube, for which the do-
main 1. is 0 < p < b,Q < 6 < 2n, can be similarly treated. In this case, an
approximating function \fiT satisfying the boundary condition (3.11) is

y/T = Ap2-2Ab/W-Ab2, (3.15)

A being a constant. It can then be found from (3.12) that

^ - 4 + [16-M/3]/
2b-b2/3 * ( }

Figure l(b) shows a comparison between this approximation to W and the
exact value given by (3.9). We again see that the approximation (3.16) is
good even though the approximating function (3.15) is relatively crude. The
Rayleigh quotient (3.12) should then give good approximations to W for
domains Z for which there are no analytic solutions of (3.10) and (3.11).

4. Numerical solutions

It was noted in section 2 that equation (2.6) governing the propagation of
the front has the simple interpretation (2.22) that the front propagates along
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its normals at a speed dependent on the curvature. This observation allows
a simple numerical solution of (2.6) to be developed. The numerical scheme
described here is based on the scheme of Henshaw, Smyth and Schwendeman
[4] which was developed for geometrical shock dynamics. In geometrical
shock dynamics, a shock is propagated along its normals at a speed dependent
on the local area (arclength in two dimensions) of the shock. The application
of this method to the propagation of a flame front will now be outlined. Fuii
details are given in Henshaw, Smyth and Schwendeman. In the present work,
we shall consider two dimensional problems only.

Let us approximate the flame front by a discrete set of points x_t{t),' =
1, . . . , N and let Ki{t) and n^t) be the approximate front curvature and nor-
mal respectively at the point x,(0- Then from (2.22)

37*.(0 = {DCj - aKi^it) i = 2,...,N-\. (4.1)

This system of equations is solved using the two-step leap-frog scheme

x,{t + At) = x((t - At) + 2At(DCJ - a # , « ) « , ( 0 , i = 2,...,N-l (4.2)

where At is the time step. This scheme is explicit and second order accurate
in time. The positions of the points x_x and x#, which lie on the tube walls,
are determined from those of x2 and x_N_x respectively so that the boundary
condition (2.13) is satisfied.

To implement (4.2), both the approximate normal nt(t) and approximate
curvature Ki{t) need to be determined. These are determined by differentiat-
ing two cubic splines to the data {s}{t),Xj{t)) and (Sj(t),Zj(t)),j = l,...,N,
where Sj(t) is the discrete arclength given by

- , ( f ) + | * , ( 0 - * , - , ( 0 l J = 2,...,N (4<3)

Let us denote these cubic spline interpolants by X(s) and ~z{s). The normal
Hj{t) and curvature Kt(t) are then given by

i=l,...,N

where primes denote differentiation with respect to s.
While the front is started with a uniform point spacing at t = 0, as the

front propagates, the point spacing tends to become non-uniform. This is
especially so when the region in which the front propagates is not straight.
To maintain a fairly even point spacing, points are inserted in expansive
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[11] Propagation of flame fronts 395

regions and deleted in compressive regions of the front. This is done by
checking the point spacing As,(/) periodically and requiring

A - 11\

= Oi{t) < d2, (4.5)
aSavg

where d\ < 1 and d2 > 1. If er,(/) < d\, then the point is removed and if
<Ji(t) > d2, a new point *.,_i(0 is added using the cubic spline interpolant
evaluated at J(J ,-(0 +Sj-i(t)). The values d\ =0.25 and ^2 = 1.5 were used
for the numerical results presented in this section.

Two examples are considered in the present work; a flame front propagat-
ing in a channel with a hump and a flame front propagating around a 90°
circular bend. In both of these examples, the initial condition is taken to be
a straight front and the boundary condition (2.13) is taken as

= - 1 . (4.6)

Also, the Chapman-Jouguet velocity DCJ is taken to be 2 and the curvature
coefficient 1.

Figure 2(a) shows a flame front propagating in a duct with a circular hump
in it. It can be seen that the front settles to a steady state from the straight
initial condition, is perturbed by the hump, then again settles to a steady
state.

(a)

(b)

FIGURE 2. (a) Front in a duct of width 2 with a circular hump of height 2 - v/3, subtending
an angle of 60°.

(b) Front propagating around a 90° circular bend of inner radius 1 and outer radius 3.
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Figure 2(b) shows a flame front propagating around a 90° circular bend in a
channel. The expansion of the front around the bend can be seen. Further-
more, it can be seen that the front settles to a steady state when it enters the
straight portion after the bend.

The above examples are for two dimensional problems, and as such are
rather limited in applicability. However, the numerical scheme can be ex-
tended to fully three dimensional problems. Propagating a flame front along
its normals at a speed given by (2.22) is fast to perform numerically as it is a
two dimensional problem in three dimensions. Solving the full set of equa-
tions (2.1) to (2.5) in three dimensions is a much more involved problem.

References

[ 1 ] J. B. Bdzil, "Steady-state two-dimensional detonation", J. Fluid Mech. 108 (1981) 195-226.
[2] E. Ben-Jacob, N. Goldenfeld, J. S. Langer and G. Schon, "Boundary- layer model of pattern

formation in solidification," Phys. Rev. A 29(1) (1984) 330-340.
[3] R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I (John Wiley and Sons,

Inc., New York, 1953).
[4] W. D. Henshaw, N. F. Smyth and D. W. Schwendeman, "Numerical shock propagation

using geometrical shock dynamics," J. Fluid Mech. Ill (1986) 519-545.
[5] J. W. Miles, "Diffraction of solitary waves", Z. Agnew. Math. Phys. 28 (1977) 889-901.
[6] D. S. Stewart and J. B. Bdzil, "The shock dynamics of stable multidimensional detonation",

Comb. andFlamell (1988) 311-323.
[7] G. B. Whitham, "A new approach to problems of shock dynamics. Part I Two-dimensional

problems", J. Fluid Mech. 2 (1957) 145-171.
[8] G. B. Whitham, "A new approach to problems of shock dynamics. Part II Three-dimen-

sional problems", J. Fluid Mech. 5 (1959) 369-386.
[9] G. B. Whitham, Linear and Nonlinear Waves (J. Wiley and Sons Inc., New York, 1974).

https://doi.org/10.1017/S0334270000006743 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006743

