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PLUCKER FORMULAE FOR THE ORTHOGONAL GROUP

KICHOON YANG

Plucker formulae for horizontal curves in SO(ro)-flag manifolds are derived. These formu-
lae are seen to generalise the usual Plucker formulae for projective space curves. They also
have applications in the theory of minimal surfaces in Euclidean sphere and the complex
hyperquadric.

INTRODUCTION

Pliicker formulae for projective space curves give relationships between an intrinsic
invariant (the genus) and a set of extrinsic invariants (associated degrees and ramifi-
cation indices). On the other hand the method of moving frames allows us to think
of projective curves (whether compact or not) as horizontal curves in the complex flag
manifold SU(n -\- 1)/T. This gives a new interpretation of the Plucker formulae and
indeed one can derive the formulae for horizontal curves in any G/T, where G is a
connected compact simple Lie group, and T a maximal torus in G. {G/T is called
the G-flag manifold.) We note that the resulting formulae have interesting applications
to the theory of harmonic maps of real surfaces into Riemannian homogeneous spaces,
especially type 1 inner symmetric spaces (see [1, Section 4]).

In this paper we derive explicitly the formulae for horizontal curves in S0(m)/T.
We do this for compact curves so as to obtain directly the integrated form of the
formulae. The cases of G = SU(n), Sp(n) have been dealt with in [4, 5]. It would also
be interesting to write down the exceptional Plucker formulae.

1. HORIZONTAL CURVES IN G-FLAG MANIFOLDS

In this section we give an overview of the theory of horizontal curves in G-flag
manifolds and indicate how the Plucker formulae are derived in general. It should
be pointed out that the derivation depends essentially only upon the Maurer-Cartan
structure equations of G. Horizontal curves form a small subset of a large class of
maps called pseudocomplex maps (they are maps from an almost complex manifold to
a homogeneous space of the form G/H, where G is a compact semisimple Lie group
and H is a closed subgroup of maximal rank) and a detailed account of them is given
in [4]. In particular the proofs of results collected in this section can be found there.
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As a motivational example we give a brief discussion of projective curves (see [3,
Chapter II]). Consider a projective algebraic curve, that is, a holomorphic map

/ = f0 : M - CPn = SU(n + 1)/S{U(1) x U(n)),

where M = Mg is a compact Riemann surface of genus g. There are the associated
curves

fi:M->CGn+hi+1cCPN,

where N = (^) - 1, 0 < t ^ n - 1. Let di denote the degree of fi(M) C CPN as
an algebraic curve and also let # j denote the total ramification index of fi. We then
have

2g-2-#i = di-t - 2di 4- di+u 0 < i < n - 1,

where d_\ = dn = 0. Let ds^ denote the normalised Fubini-Study metric on CPN.
Assume that / is nondegenerate, that is f{M) does not lie in a lower dimensional
projective subspace. Then each f?da2

N is a singular metric (also called a pseudo-
metric, for a definition see [4, p.81]) on M and can be written as fWi for some local
type (1, 0) form ipi on M. The zeros of <pi (which are globally defined) define an
integral divisor on M and its degree equals $i.

Now condiser SU(n + 1)/T, where T = S(U(1) J is a maximal torus. Fix an
invariant complex structure on SU(n -f \)/T. This amount to fixing a system of posi-
tive roots of SU(n + 1) relative to T. There are exactly n simple roots of SU(n + 1)
and the corresponding root spaces generate a rank n holomorphic subbundle, called
the horizontal bundle, of the holomorpliic tangent bundle of SU(n + 1)/T. The inclu-
sion T C H = (SU(1) x U(n)) induces the projection w: SU{n + l)/T -» CPn. On
CPn we use the complex structure coming from the one on SU(n + 1)/T so that n is
holomorphic. We then have

THEOREM. Let f: At —> CP" be a noiidegenerate holomorphic curve. TTien its
Frenet lifting gives rise to a holomorphic horizontaJ (tangential to the horizontal bundle)
curve $/:M—* SU(n + 1)/T which is nondegenerate in the sense that the image does
not lie in any G'/T D G', with G' a closed subgroup of lower rank. Conversely, given
a holomorphic horizontal nondegenerate curve F: M —> SU(n + 1)/T the composition
•K o F is a nondegenerate holomorphic curve in CPn.

PROOF: See [4, p.84-85] for the proof. D

Hereafter, G will denote a compact connected simple Lie group of rank n and,
T a maximal torus in G. By a horizontal curve in G/T we will mean a holomorphic
horizontal map / : M —* G/T, where M — Mg is a compact Riemann surface of genus
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g. We say / is nondegenerale if f(M) does not lie in any G' /T D G' for G', a closed

subgroup of lower rank.

Consider a nondegenerate horizontal curve / : M -> G/T. Let H C Tlfi(G/T) ->

G/T denote the horizontal bundle over G/T. "H decomposes as

U = Lx © . . . © Ln,

where Li —> G/T is the holomorphic line bundle generated by the root space corre-
sponding to the i-lh simple root (Order the set of simple roots.) On G/T we fix an
invariant metric ds^,j,. Let

(,),- = the restriction of ds2QjT to L{.

The nondegeneracy assumption of / implies that /,*(,) is a singular metric on M for
every i. Put /,*(,) = fWii f° r some local type (1, 0) form <pi on M. Let Di denote
the zero divisor of <pi and put # ; = deg Di. Also let Aj denote the Kahler form of
(Al, <p<Pi). Ai defined on the support of <pi<Pi, hence on all of M except for a finite
set. Put di = JM Aj, 1 < i < n . So rfj is the area of (M, >Pi<Pi)- Observe that if
G = SU(n + 1) then </,• is the degree of the i-th associated surve of / by Wirtinger's
theorem.

We now indicate how the general derivation of Pliicker formulae goes. Choose a
G-frame e: U C Al —* G, iroe — f,n: G—» G /T. By its very construction we can
write ifii as e*fli, where Hi is a left-invariant form on G. Now

dfi = -u>iA<pi,

where w; is the complex connection form. On the other hand

dipt = de*ili = e*dili

which we can compute using the Maurer-Cartan structure equations of G. This allows
us to write w; as the pull back of left-invariant forms. Exterior differentiation of both
sides of the equations thus obtained gives relations amongst the curvature forms, the
Gaussian curvatures, and the Kahler forms, which give the infinitesimal form of the
Pliicker formulae. Integration over M finally yields the formulae.

Remarks . Combining the above theorem on projective curves with the well-known
result that any compact Riemann surface can be holomorphically embedded in CP 3 we
can show that any compact Riemann surface can be holomorphically and horizontally
embedded in SU(4)/T. In light of this it would be interesting to establish the following
conjecture: any compact Riemann surface can be holomorphically and horizontally
embedded in G/T, where G is any connected compact simple Lie group of rank 3.
Another interesting problem is to describe the structure of the moduli of horizontal
curves. It seems that the set of compact horizontal curves in any G/T forms at least a
complex analytic space.
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2. P L U C K E R FORMULAE FOR 5O(2n)

Let G = SO(2n) = {X € GL(2n;R) \ *XX = 1, det X = 1} and also let
T = {diag(£>1, . . . , £>„) | D{ = (c;~c*). where c = cos27ra;i, a = sin2nxi} = SO{2)n.

T is a maxximal torus in G and

= F2ti 2 n ( R 2 n ) ,

the full oriented even flags in R 2 n .

N o t a t i o n . We will identify 5 0 ( 2 ) with (7(1) and write etx (or exp(ix)) instead of

We note that the standard injection U(n) —• S0(2n) projects down to a totally
geodesic embedding U(n)/U(l)n —> G/21. For this reason one should consider the study
of horizontal maps in SO(2n)/SO(2)n to be more general in scope than that in the
complex flag manifold.

There is the Lie algebra decomposition g = t © m, where m is the orthogonal
vector space complement of t (the Lie algebra of T) with respect to the Killing form.

Let En = [emn], F{j - [/mn], E'y = [e'mn] and F'{j = [f'mn] be 2n x 2n matrices
with all entries zero except for

^2i-l,2j-l = e2t,2; = —e2;-l,2t-l = — e2j, 2i = 1)

-f2i-l,2j = /2i,2;-l = ~f2j-l,2i = f2j,2i-l = 1,

e2i-l,2j-l — ~e2i,2j = ~c2j-l,2t-l = e2j,2i = 1>

J2i-l,2j = J2i,2j-1 ~ ~J2j-l,2i = ~J2j,2i-l = ••••

Then

where V£j- = R - span{.Ey, Fi ;} and V/; = R - span{JB!J., F^} .
For 1 = diag(Z71, . . . , Dn) € T, v = e^y + yFy € Vi;- and w1 = xE^ £

we compute that

Adt: v <-> x + iy i—> exp (27ri(a;i — x^)) • (x + it/),

v V i + i t / n exp (27ri(a;i + Xj)) • (x + iy),

where we use the complex notation to write v, v' relative to their respective bases.
It follows that the root spaces of G are V\j, V'/7- and the corresponding roots are
A = { ± { x i - X J ) , ± { x i + X J ) \ 1 ^ i < j ^ n } .

P u t 6ij = X{ - Xj , 0[j = Xi + Xj .
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Write A = A+ U A_ , where A + = {8{j, 0'ij: 1 ^ i < j < n } . A + forms a system
of positive roots and the resulting simple roots are

A , = {012, #23, • • • , 8n-l,n, Qn-l,n}-

ft = m ° J , 1 ^ a,f3 < 2n, denotes the o(2n)-valued Maurer-Cartan form of G.

The Maurer-Cartan structure equations are

= -n« A

Let J denote the invariant complex structure on G/T arising from the choice, A+ ,
of positive roots. For 1 ^ i < j ^ n, put

The type (1, 0) forms on G/T are given by C-linear combinations of the pullbacks of
Qij f QHj .

For an invariant metric on G/T we take the puUback of

\

ds2
G,T will denote the above metric.

The horizontal bundle H C Tl'°(G/T) is given by the following Pfaffian system
on G/T:

= {0ij = 0 unless j = i + 1; 0lij = 0 unless (i,j) = (n - 1, n)},

where 0 '̂ = e*0^ and e is a local section of G -* G/T, etcetera. Write

H = Li © . . . © Ln,

where for 1 ^ ii ^ n — 1 £,• is the holomorphic line bundle over G/T generated by the
root space T ,̂f+i and Ln is the line bundle generated by V^l_l n.

Consider a horizontal curve (that is, horizontal holomorphic map from a compact
Riemann surface of genus g) f: M —» G/T. Let e: U C M —* G be a local lifting of
/ . The holomorphy of / is reflected by the fact that the forms e'e*-*, e*&ij are all of
type (1,0) on M.
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N o t a t i o n . e*Bij = 9ij , e*ft| = w | .

The horizontality of / implies that

(1) {9^ = 0 for j•>£ i + 1, 0(i>' = 0 for (i, j) ^ (n - 1, n)} .

So the surviving type (1 , 0) forms on M are

(2) Vi = 8i*+\ 1 < i < n - l , and <?„ = fl"1"1'".

As in Section 1 let (,)j denote ds^,T restricted to the line bundle L{. Then we

have

Each fi<Pi defines a singular metric on M. In particular, ipi has only isolated zeros
of finite multiplicity. ( / is nondegenerate if and only if none of the <fi 's is identically
zero. See [4, p.64 and p.76]). Put

D{ = the zero divisor of fi on M,

#i = deg Di.

Away from the zeros of <pi we have

(3) d<pi — —u>i A ifi,

where u>i is the complex connection form, du>i is the curvature form, Ki is the Gaussian

curvature, and Aj denotes the Kahler form of (M, y«^i)-

Differentiating both sides of the equations ill (1) we obtain

w2-"1 = w2i- w2i = —w2'"1 1 < i < n - 2

Using (5) we can rewrite the equations in (2) as follows.
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Using (3), (6) and the Maurer-Cartan structure equations we differentiate both

sides of the equations in (2) and obtain

Using the Maurer-Cartan structure equations, (2), and the definition of the A,'s
we also obtain

du2^-1 = -2A<_! + 2A,-, 1 < i ^ n - 2, Ao = 0,

(8) du>Zll = - 2 A n _ 2 + 2(An_! + An),

dw%- * = - 2 A n _ ! + 2An.

Exterior differentiation of the equations in (7), using (8) together with (4), now

gives

KiAi = -2Aj_i +4Aj - 2Ai + 1, 1 ^ i < n - 3, Ao = 0,

Kn_2An-2 = - 2 A n _ 3 + 4An_2 - 2An_! - 2An,

Kn-iK-i = - 2 A n _ 2 + 4A,,.!,

where we assume G = S0(2n) with n ^ 5.

For n = 4 we get

KiAi = 4 A i - 2 A 2 ,

K2k2 = -2AX + 4A2 - 2A3 - 2A4,

# 4 A 4 = -2A 2 + 4A4.

For n = 3 we get

K^Ai = 4Aj - 2 A 2 - 2 A 3 ,

K2A2 = -2AX +4A 2 ,

ii:3A3 = -2Aj +4A 3 .

Finally for n - 2,

KxAx = 4 A , t

K2A2 = 4 A 2 .
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The generalised Gauss-Bonnet-Chern theorem ([3, p.144] or [4, p.81]) states that

/ dut = 2m • [2g - 2 - #,),
JM

where g is the genus of M. This allows us to integrate the left hand sides of the
equations in (9). Also put

di — — / Ai = the area of (M, >^>CPi)-

Upon integration over M the equations in (9) yields

2g - 2 - #i = di-! - 2di + 2di+i, 1 < i < n - 3, d0 = 0,

2g - 2 - # n _ 2 = <£n_3 - 2dn_2 + dn-! + dn,

2<7-2-#n_! = dn_2-2dB_i,

2g-2-#n = </n_2 - 2dn.

3. PLUCKER FORMULAE FOR S0(2n + 1)

For the rest of the paper we let G = SO(2n + 1). Include SO(2n) in SO(2n + 1)
via g i-> (J- J) . For a maximal torus in G we use T in Section 2 included in G which
we again denote by T. Generally speaking we will identify an object in S0(2n) (or in
o(2n)) with its counterpart in S0(2n + 1) (or in o(2n + 1)).

As the root structure of S0(2n + 1) is different from that of S0(2n) it is necessary
that we treat this case separately. Nevertheless the computations involved are similar
and will mostly be suppressed.

As before we have the Lie algebra decomposition g — t © m, m = t x . Let Eij,
Fij, E\j, F[j be as in Section 2 except that they are now interpreted to be vectors in
g = o(2n + 1). Let Ey = [e^] be the (2n + 1) X (2n -f 1) matrix with all entries zero
except for e7l2n+i = - e 2 n + 1 | 7 = 1. Then

m = J2 VH © Vij ®Vi = o(2n) © ̂  K<(1 < i < j < n, 1 < t < n),

where V{ = R-span {^2t-i, En} and Vjy, V^ as before.

For t = diag (Di, . . . , Dn, 1) e T and v = xE^i-i +yE2i — (r) we compute that

Adt: v <-» x + ty —» exp (27rtx;) • (x + iy).

This together with the earlier computation shows that Vij, V-j, V\ are the root spaces
of G relative to T. The roots are
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Put 9ij = Xi - XJ , 9\j = X{ + Xj, Oi = Xi.

For positive roots we take A+ = {Oij, 6'-, 0{\ 1 < i < j ^ n}. The resulting simple

r o o t s a r e A , = {612, 023, ••-, 9n-i,n, 9n}.

ft = U\°\, 1 ^ a, /? < 2n + 1, denotes the o(2n + l)-valued Maurer-Cartan form

of G. For 1 < i < j < n put

The pullbacks of 0 ^ , 0'^', 0 ' to G/T are all of type (1, 0) with respect to the

invariant complex structure J determined by A+ .

For an invariant metric on G/T we take the pullback of

\ EKn&i)1 + (n;j)" + (ng-i)1 + (n^1)1 + 2(n»£1)
1 + 2(ftrn+1)

2].

We consider a horizontal curve f: M —* G/T. Letting e : U C M —* G be a local
lifting of / we write e*ft = w, e*Q = 9. Then the horizontality of / implies that

(!') {9ij = 0 unless j = i + l;9'ij for 1 < i < j ^ n; 9{ = 0 unless i = n}.

The surviving type (1, 0) forms on M are

(2') Vi = 9{'i+1, l^i^n-l;<pn = 9n= w2
2^l + iu\l+1.

As before put

; = the degree of the zero divisor of tpi,

di = —I Ki for 1 < i < n - 1,

where A;(l ^ i ^ n) denotes the Kalder form of (M, Vi^)- Going through a derivation
similar to the one already given in Section 2 we obtain

(10') 2g-2-#i = di_! - 2d{ + di+1, l ^ i ^ n ,

where d0 — U, dn+1 = dn.
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Remark. Let H = SO(2)xSO(2n - 2), G/H = Q2n-2 C CP2""1 , the hyperquadric.

An inclusion T C H induces a projection G/T —> G/H. Then a horizontal curve

in G/T projects down to a harmonic map into G/H by Bryant's theorem. Also if

G = SO(2n + l) then we can take H = S0(2n) and produce harmonic maps into

S2n = G/H from horizontal curves. It is not difficult to show that every minimal two-

sphere in S2n arises as a horizontal curve. Thus our formulae in this section represent

a generalisation of the similar formulae given by Chern in [2].
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