THE ALGEBRA OF STABLE OPERATIONS FOR *p*-LOCAL COMPLEX *K*-THEORY

ΒY

KEITH JOHNSON

ABSTRACT. The multiplicative structure of the algebra of stable operations for p-local complex K-theory is studied, and the units and zero divisors are identified.

This paper is devoted to studying the structure of the algebra of stable degree 0 operations of complex *K*-theory localized at a prime *p*. This algebra is large, in fact uncountable, as was shown in [2], and its additive structure is that of the dual of a free $Z_{(p)}$ module. We will be concerned with its multiplicative structure.

Our results are:

THEOREM 1. (i) The stable degree 0 operation α is a unit iff the homomorphism

$$\alpha_*: \pi_*(K) \to \pi_*(K)$$

is an isomorphism.

(ii) The only zero divisors in the algebra of stable operations of degree 0 are those arising from the Adams splitting of K if p is odd or from the relation

$$(\Psi^{1} + \Psi^{-1})(\Psi^{1} - \Psi^{-1}) = 0$$
 if $p = 2$.

Here Ψ^i denotes the *i*-th Adams operation. It follows from the second part of this theorem that in the corresponding algebra for unlocalized *K*-theory the only zero divisors are those described above for the case p = 2, a result due to Geoff Mess [5].

COROLLARY 2. For p an odd prime the algebra of stable operations of degree 0 of one of the Adams summands of K is an integral domain and a local ring with residue field Z/pZ.

The proof of this theorem is contained in section 2. Section 1 is devoted to recalling some known results about complex *K*-theory which are required in the proof.

§1. Let us denote by K the spectrum representing complex K-theory localized at a prime p. The main result in [2] was established by showing that K^0K is the Hopf algebra

Received by the editors May 23, 1985, and, in revised form, March 5, 1986.

AMS Subject Classification (1980): 55S25.

[©] Canadian Mathematical Society 1985.

K. JOHNSON

dual to K_0K (i.e. $Hom(K_0K, Z_{(p)})$). This later Hopf algebra had been investigated previously in [1]. There, the unlocalized analog of K_0K was described as the Hopf algebra of Laurent polynomials in one variable over Q satisfying a certain integrality condition. Since that description is the starting point for our results we begin by recalling its *p*-local version and fixing some notation.

THEOREM 3. The natural map

$$K_0K \to K_0K \otimes Q \cong Q[w, w^{-1}]$$

is injective, and its image consists of the set of Laurent polynomials f(w) satisfying the condition that for any integer k prime to p, $f(k) \in Z_{(p)}$

NOTATION 4. Let us denote by C this Hopf algebra of Laurent polynomials and by B the intersection of C with Q[w] (the coproduct for these Hopf algebras is determined by the formula $\psi(w) = w \otimes w$). Also, let us denote by A the Hopf algebra consisting of those polynomials $f(w) \in Q[w]$ with the property that $f(k) \in Z_{(p)}$ for all $k \in Z$.

We may, therefore, represent a stable degree 0 cohomology operation by a homomorphism $\alpha \in Hom(C, Z_{(p)}) = C^*$. In [4], theorem 1, it was shown that for such an α the numbers $\alpha(w^n)$, $n \in Z$, (which correspond to the action of α on $\pi_{2n}(K)$) satisfy certain congruences. Furthermore a set of congruences was constructed which is complete in the sense that a squence $\{\lambda_n | n \in Z\}$ satisfying these congruences equals $\{\alpha(w^n) | n \in Z\}$ for a unique operation α . This allows us to construct stable operations by specifying the numbers λ_n . We will exploit this to identify the units in K^0K .

To investigate the zero divisors in K^0K we will also need to know how the Adams splitting of K is reflected in the algebraic description of K_0K above.

NOTATION 5. Let us denote $C \cap Q[w^{p-1}, w^{-(p-1)}]$ by C_0 and $B \cap Q[w^{p-1}]$ by B_0 .

PROPOSITION 6. ([3], Lemma 1.1). (i) $B \cong \bigoplus_{j=1}^{p-2} w^j \cdot B_0$

(ii) $C \cong \bigoplus_{j=1}^{p-2} w^j \cdot C_0$

§2. The first part of the theorem 1 will follow from:

THEOREM 7. $\alpha \in C^*$ is a unit iff $\alpha(w^n) \in Z^*_{(p)}$ for all n.

PROOF. We first note that the product in C^* is given by $(\alpha_1 \cdot \alpha_2)(w^n) = \alpha_1(w^n) \cdot \alpha_2(w^n)$. Thus we will be done if we can show that the numbers

$$\{1/\alpha(w^n)|n=\ldots,-2,-1,0,1,2,\ldots\}$$

satisfy the appropriate congruences of theorem 1 of [4].

Since $\alpha(1) \in Z_{(p)}^*$ we may assume, by dividing if necessary, that $\alpha(1) = 1$. Also, by replacing α by α^{p-1} if necessary, we may assume that $\alpha(w^n) \equiv 1 \pmod{p}$ for all *n*. Thus we may write $\alpha = 1 + \overline{\alpha}$ with $\overline{\alpha}(w^n) \equiv 0 \pmod{p}$.

Let us define $\beta_n = \sum_{i=0}^n (-1)^i \bar{\alpha}^i$. Then $\beta_n \alpha = 1 \pm \bar{\alpha}^{n+1}$ and so we have:

$$\beta_n \alpha(w^n) \equiv 1 \pmod{p^{n+1}}$$

Since β_n is a well defined element of C^* the numbers $\lambda_m = \beta_n(w^m)$ satisfy the congruences of theorem 1 of [4], and also $\lambda_m \equiv 1/\alpha(w^m) \pmod{p^{m+1}}$. Choosing $n > \gamma_p(k!)$ we see that the numbers $1/\alpha(w^m)$ satisfy the first *k* of these congruences. Since we are free to choose *n* arbitrarily large, the result follows.

Based on this theorem we see that C_0^* is a local ring. Indeed, writing $x = w^{p-1}$, the set of non-units consists of those α for which $\alpha(x^m)$ is *p*-divisible in $Z_{(p)}$ for some *m*, and so for all *m* since $(x - 1)/p \in C_0$. This clearly forms an ideal.

To describe the zero divisors among the stable operations it suffices, by proposition 6, to describe those in B_0^* and C_0^* . This is accomplished by:

THEOREM 8. If $\alpha, \beta \in B_0^*$ or C_0^* are such that $\alpha \cdot \beta = 0$ then: (i) if p is odd, then either $\alpha = 0$ or $\beta = 0$ or both. (ii) if p = 2 then either $\alpha = 0$ or $\beta = 0$ or

$$2\alpha = \bar{\alpha}(\Psi^{1} \pm \Psi^{-1})$$

and
$$2\beta = \bar{\beta}(\Psi^{-1} \pm \Psi^{1})$$

The proof of this theorem will occupy the remainder of the paper and rests on the following proposition concerning the possibilities for the kernel of elements of C_0^* and B_0^* :

PROPOSITION 9. If $\alpha \in B_0^*$ or C_0^* is such that $\alpha(x^i) = 0$ if n | i then (i) if p is odd or p = 2 and n is odd, then $\alpha = 0$.

(ii) if p, n are both even, then $\alpha(x^{2i}) = 0$ for all i.

PROOF. We will establish the result for $\alpha \in B_0^*$ first, and deduce the general result from this. Let $n = p^a b$, (b, p) = 1. Since $(x^{p^m} - 1)/p^{m+1} \in B$ for any *m*, we have, for all *i*:

$$\alpha(x^i) \equiv \alpha(x^{i+p^m}) \pmod{p^{m+1}}$$

Thus, given *i* such that $p^a | i$ we may find *k*, *l* such that $kn - lp^m = i$, k, l > 0 and so have:

$$\alpha(x^{i}) = \alpha(x^{i+lp^{m}})$$
$$\equiv \alpha(x^{kn})$$
$$= 0 \pmod{p^{m+1}}$$

Since this is true for any *m*, we see that $\alpha(x^i) = 0$ if $p^a | i$ and so we may assume with out loss of generality that b = 1. In particular, if *n* is relatively prime to *p* we are finished.

REMARK 10. The preceding argument would be sufficient to prove the analogous theorem concerning unlocalized K-theory. We would simply choose p so that p(p-1) is relatively prime to n.

NOTATION 11. Let $B_a = B_0 \cap Q[x^{p^a}]$ and $C_a = C_0 \cap Q[x^{p^a}]$.

1987]

It will be sufficient for us to show that for all a

$$Hom(B_0/B_a, Z_{(p)}) = 0$$

if p is odd and

$$Hom(B_1/B_a, Z_{(p)}) = 0$$

if p = 2, and the corresponding result for C.

First, let us suppose that p is odd. Since any polynomial in B_0 can be expressed in the form g((x - 1)/p) with $g \in A$, the polynomial (x - 1)/p plays a distinguished role in our proof. We will begin by showing that it can be approximated modulo p^m in each B_a .

LEMMA 12. For any positive integer m there exists $f_m(x) \in B_a$ such that for any integer k,

$$f_m(1 + kp) \equiv k \pmod{p^m}$$

PROOF. We construct the polynomials f_m inductively. To begin, let $f_1(x) = (x^{p^m} - 1)/p^{m+1}$. We then have, for any integer k:

$$f_1(1 + kp) = k + p \cdot g_1(k)$$

where $g_1 \in Z_{(p)}[x]$, and so $g_1(k + lp) \equiv g_1(k) \pmod{p}$.

Suppose now that we have constructed $f_m(x)$ in such a way that for any integer k:

$$f_m(1 + kp) = k + p^m \cdot g_m(k)$$

with $g_m(x) \in Z_{(p)}[x]$. Let us define:

$$f_{m+1}(x) = f_m(x) - p^m \cdot g_m(f_1(x))$$

Certainly $f_{m+1} \in B_a$ and $g_n(f_1(1 + kp)) \equiv g_n(k) \pmod{p}$ so we have:

$$f_{m+1}(1 + kp) = (k + p^m g_m(k)) - p^m g_m(f_1(1 + kp))$$
$$= k \pmod{p^{m+1}}$$

If we let $g_{m+1}(x) = (g_m(x) - g_m(x + pg_1(x)))/p$ then

$$f_{m+1}(1 + kp) \equiv k + p^{m+1} \cdot g_{m+1}(k)$$

and it is easily checked, using the binomial theorem, that $g_{m+1} \in Z_{(p)}[x]$.

Using this lemma, we will now show that B_0/B_a is *p*-divisible. This will imply that the first Hom group mentioned above is zero. Suppose that $f \in B_0$, that $g \in A$ is such that f(x) = g(x - 1/p) and that *m* is an integer large enough that if $k \equiv k' \pmod{p^m}$ then $g(k) \equiv g(k') \pmod{p}$. Consider

$$f(x) - g(f_m(x)) = g(x - 1/p) - g(f_m(x))$$

From the way we chose *m*, it follows that for any integer *k*, $f(1 + kp) \equiv g(f_m(1 + kp)) \pmod{p}$ and so that $f(x) - g(f_m(x))$ is divisible by *p* in B_0 . It is also clear that $g(f_m(x)) \in B_a$, since $f_m(x)$ is. Thus B_0/B_a is *p*-divisible.

[March

60

STABLE OPERATION

For the case p = 2 the polynomial (x - 1)/p must be replaced by $(x^2 - 1)/2^3$. This is because:

LEMMA 13. If $f(x) \in B_1$ then f can be expressed in the form $f(x) = g((x^2 - 1)/2^3)$ with $g(x) \in A$.

PROOF. Since f is even, we can certainly express it in the form above for some polynomial g(x). The question is whether $g(x) \in A$. If x = 1 + 2k, then $(x^2 - 1)/2^3 = k(k + 1)/2$ and so $g(k(k + 1)/2) \in Z(2)$ for any integer k. To see that this implies that $g(x) \in A$, choose n large enough that $2^n g(x) \in Z_{(2)}[x]$. If $k \equiv k' \pmod{2^n}$ and $g(k) \in Z(2)$ then $g(k') \in Z_{(2)}$ and so it will suffice to show that the congruence

$$x(x+1) \equiv 2k \pmod{2^n}$$

is solvable for any k. Using the quadratic formula we see that this is equivalent to showing that 1 + 8k is a quadratic residue mod 2^n . This is well known.

LEMMA 14. For any integer *m* there exists a polynomial $f_m(x) \in B_a$ such that for any integer *k*,

$$f_m(1 + 2k) \equiv k(k + 1)/2 \pmod{2^m}$$

PROOF. As in the case of p odd, we construct the polynomials $f_m(x)$ inductively, starting with:

$$f_1(x) = (x^{2^a} - 1)/2^{a+2}$$

which we check has the property that

$$f_1(1 + 2k) = k(k + 1)/2 + 2g_1(k(k + 1)/2)$$

with $g_1(x) \in Z_{(2)}[x]$. We then suppose that we have constructed $f_m(x)$ such that

$$f_m(1+2k) = k(k+1)/2 + 2^m g_m(k(k+1)/2)$$

with $g_m(x) \in Z_{(2)}[x]$ and define

$$f_{m+1}(x) = f_m(x) - 2^m g_m(f_1(x))$$

Certainly $f_{m+1}(x) \in B_a$, and we can check that $f_{m+1}(1 + 2k)$ has the required form in the same way as for odd p.

We may now show that B_1/B_a is infinitely 2-divisible. If $f(x) \in B_1$ with $f(x) = g((x^2 - 1)/2^3)$ as in lemma 13, then $f(x) - g(f_m(x))$ is 2-divisible, if we choose *m* large enough, and $g(f_m(x)) \in B_a$.

We have now established proposition 9 for $\alpha \in B_0^*$. Suppose next that $\alpha \in C_0^*$ is such that $\alpha(x^i) = 0$ if n|i and that $g(x) \in C_0$ ($\in C_1$ if p = 2) is such that $\alpha(g) \neq 0$. If we define $\alpha^-(f) = \alpha(x^{-p^{m_n}}f)$ with *m* chosen large enough that $x^{p^{m_n}}g(x) \in B_0$, then $\alpha^- \in B_0^*$, $\alpha^-(x^i) = 0$ if n|i and $\alpha^-(g) \neq 0$, a contradiction.

Finally, we return to the proof of theorem 8. First suppose that p is odd, and that $\alpha\beta = 0$. Fix a positive integer m, and suppose that there exists an integer k with $1 < k < p^m - 1$ and $\beta(x^{k+ip^m}) \neq 0$ for all j. We claim that this implies that $\alpha = 0$.

1987]

To see this note that we have $\alpha(x^{k+ip^m}) = 0$ for all *j*. If we define $\alpha' \in B_0$ or C_0 by $\alpha'(x^r) = \alpha(x^{r+k})$ then α' satisfies the hypothesis of proposition 9(i) with $n = p^m$ and so $\alpha' = 0$. In the case $\alpha \in C_0$ this shows that $\alpha(x^r) = 0$ for all integers *r*, and so that $\alpha = 0$. In the case $\alpha \in B_0$ we have $\alpha(x^r) = 0$ if r > k. Since $(x^{p^s} - 1)/p^{s+1} \in B_0$ for any *s*, we have $\alpha(1) \equiv 0 \pmod{p^{s+1}}$ for any *s*, and so $\alpha(1) = 0$. An application of proposition 9(i) with n = 2k now shows that $\alpha = 0$ in this case also.

We may, therefore, assume that, given k as above, there exists k' such that $k \equiv k' \pmod{p^m}$ and $\beta(x^{k'}) = 0$. Since $(x^{p^m} - 1)/p^{m+1} \in B_0$, $\beta(x^k) \equiv \beta(x^{k'}) \pmod{p^{m+1}}$ and so $\beta(x^k) \equiv 0 \pmod{p^{m+1}}$. Since this is true for all $m, \beta = 0$.

Next suppose that p = 2, that $\alpha\beta = 0$, and that $\alpha \neq 0$. As before choose a positive integer *m*, and let $k = 0, 1, 2, ..., 2^m - 1$. Using proposition 9 we can show that we can find *j* such that $\beta(x^{k+2^{m_j}}) = 0$

Case 1. for all n, k.

Case 2. for all n, for all even k.

Case 3. for all n, for all odd k.

In case 1 we can show as for p odd that $\beta = 0$. In case 2 we can show that $\beta(x^{2i}) = 0$ and $\alpha(x^{2i+1}) = 0$ for all i. Case 3 is the reverse of case 2.

REFERENCES

1. J.F. Adams, *Stable Homotopy and Generalized Homology*, The University of Chicago Press, Chicago, 1974.

2. J.F. Adams and F. Clarke, Stable Operations on Complex K-theory, III. Jour. Math. 21 (1977), pp. 826–829.

3. P. Hoffman and G. Mess, *Generators for* K_0K and K^0K , Publ. Sec. Mat. Univ. Autonoma Barcelona **27** (1983), pp. 19–36.

4. K. Johnson, *The Action of the Stable Operations of Complex K-theory on Coefficient Groups*, Ill. Jour. Math. **28** (1984), pp. 57–63.

5. G. Mess, Algebraic Properties of $K^{\circ}K$, (to appear).

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCE DALHOUSIE UNIVERSITY HALIFAX, NOVA SCOTIA