THE ALGEBRA OF STABLE OPERATIONS FOR p-LOCAL COMPLEX K-THEORY

BY
KEITH JOHNSON

Abstract

The multiplicative structure of the algebra of stable operations for p-local complex K-theory is studied, and the units and zero divisors are identified.

This paper is devoted to studying the structure of the algebra of stable degree 0 operations of complex K-theory localized at a prime p. This algebra is large, in fact uncountable, as was shown in [2], and its additive structure is that of the dual of a free $Z_{(p)}$ module. We will be concerned with its multiplicative structure.

Our results are:
Theorem 1.
(i) The stable degree 0 operation α is a unit iff the homomorphism

$$
\alpha_{*}: \pi_{*}(K) \rightarrow \pi_{*}(K)
$$

is an isomorphism.
(ii) The only zero divisors in the algebra of stable operations of degree 0 are those arising from the Adams splitting of K if p is odd or from the relation

$$
\left(\Psi^{1}+\Psi^{-1}\right)\left(\Psi^{1}-\Psi^{-1}\right)=0 \text { if } p=2
$$

Here Ψ^{i} denotes the i-th Adams operation. It follows from the second part of this theorem that in the corresponding algebra for unlocalized K-theory the only zero divisors are those described above for the case $p=2$, a result due to Geoff Mess [5].

Corollary 2. For p an odd prime the algebra of stable operations of degree 0 of one of the Adams summands of K is an integral domain and a local ring with residue field $Z / p Z$.

The proof of this theorem is contained in section 2 . Section 1 is devoted to recalling some known results about complex K-theory which are required in the proof.
§1. Let us denote by K the spectrum representing complex K-theory localized at a prime p. The main result in [2] was established by showing that $K^{0} K$ is the Hopf algebra

Received by the editors May 23, 1985, and, in revised form, March 5, 1986.
AMS Subject Classification (1980): 55S25.
(C) Canadian Mathematical Society 1985.
dual to $K_{0} K$ (i.e. $\left.\operatorname{Hom}\left(K_{0} K, Z_{(p)}\right)\right)$. This later Hopf algebra had been investigated previously in [1]. There, the unlocalized analog of $K_{0} K$ was described as the Hopf algebra of Laurent polynomials in one variable over Q satisfying a certain integrality condition. Since that description is the starting point for our results we begin by recalling its p-local version and fixing some notation.

Theorem 3. The natural map

$$
K_{0} K \rightarrow K_{0} K \otimes Q \cong Q\left[w, w^{-1}\right]
$$

is injective, and its image consists of the set of Laurent polynomials $f(w)$ satisfying the condition that for any integer k prime to $p, f(k) \in Z_{(p)}$

Notation 4. Let us denote by C this Hopf algebra of Laurent polynomials and by B the intersection of C with $Q[w]$ (the coproduct for these Hopf algebras is determined by the formula $\psi(w)=w \otimes w)$. Also, let us denote by A the Hopf algebra consisting of those polynomials $f(w) \in Q[w]$ with the property that $f(k) \in Z_{(p)}$ for all $k \in Z$.

We may, therefore, represent a stable degree 0 cohomology operation by a homomorphism $\alpha \in \operatorname{Hom}\left(C, Z_{(p)}\right)=C^{*}$. In [4], theorem 1, it was shown that for such an α the numbers $\alpha\left(w^{n}\right), n \in Z$, (which correspond to the action of α on $\pi_{2 n}(K)$) satisfy certain congruences. Furthermore a set of congruences was constructed which is complete in the sense that a squence $\left\{\lambda_{n} \mid n \in Z\right\}$ satisfying these congruences equals $\left\{\alpha\left(w^{n}\right) \mid n \in Z\right\}$ for a unique operation α. This allows us to construct stable operations by specifying the numbers λ_{n}. We will exploit this to identify the units in $K^{0} K$.

To investigate the zero divisors in $K^{0} K$ we will also need to know how the Adams splitting of K is reflected in the algebraic description of $K_{0} K$ above.

Notation 5. Let us denote $C \cap Q\left[w^{p-1}, w^{-(p-1)}\right]$ by C_{0} and $B \cap Q\left[w^{p-1}\right]$ by B_{0}.
Proposition 6. ([3], Lemma 1.1).
(i) $B \cong \oplus_{j=1}^{p-2} w^{j} \cdot B_{0}$
(ii) $C \cong \oplus_{j=1}^{p-2} w^{j} \cdot C_{0}$
§2. The first part of the theorem 1 will follow from:
Theorem 7. $\alpha \in C^{*}$ is a unit iff $\alpha\left(w^{n}\right) \in Z_{(p)}^{*}$ for all n.
Proof. We first note that the product in C^{*} is given by $\left(\alpha_{1} \cdot \alpha_{2}\right)\left(w^{n}\right)=$ $\alpha_{1}\left(w^{n}\right) \cdot \alpha_{2}\left(w^{n}\right)$. Thus we will be done if we can show that the numbers

$$
\left\{1 / \alpha\left(w^{n}\right) \mid n=\ldots,-2,-1,0,1,2, \ldots\right\}
$$

satisfy the appropriate congruences of theorem 1 of [4].
Since $\alpha(1) \in Z_{(p)}^{*}$ we may assume, by dividing if necessary, that $\alpha(1)=1$. Also, by replacing α by α^{p-1} if necessary, we may assume that $\alpha\left(w^{n}\right) \equiv 1(\bmod p)$ for all n. Thus we may write $\alpha=1+\bar{\alpha}$ with $\bar{\alpha}\left(w^{n}\right) \equiv 0(\bmod p)$.

Let us define $\beta_{n}=\sum_{i=0}^{n}(-1)^{i} \bar{\alpha}^{i}$. Then $\beta_{n} \alpha=1 \pm \bar{\alpha}^{n+1}$ and so we have:

$$
\beta_{n} \alpha\left(w^{n}\right) \equiv 1\left(\bmod p^{n+1}\right)
$$

Since β_{n} is a well defined element of C^{*} the numbers $\lambda_{m}=\beta_{n}\left(w^{m}\right)$ satisfy the congruences of theorem 1 of [4], and also $\lambda_{m} \equiv 1 / \alpha\left(w^{m}\right)\left(\bmod p^{m+1}\right)$. Choosing $n>$ $\gamma_{p}(k!)$ we see that the numbers $1 / \alpha\left(w^{m}\right)$ satisfy the first k of these congruences. Since we are free to choose n arbitrarily large, the result follows.

Based on this theorem we see that C_{0}^{*} is a local ring. Indeed, writing $x=w^{p-1}$, the set of non-units consists of those α for which $\alpha\left(x^{m}\right)$ is p-divisible in $Z_{(p)}$ for some m, and so for all m since $(x-1) / p \in C_{0}$. This clearly forms an ideal.

To describe the zero divisors among the stable operations it suffices, by proposition 6 , to describe those in B_{0}^{*} and C_{0}^{*}. This is accomplished by:

Theorem 8. If $\alpha, \beta \in B_{0}^{*}$ or C_{0}^{*} are such that $\alpha \cdot \beta=0$ then:
(i) if p is odd, then either $\alpha=0$ or $\beta=0$ or both.
(ii) if $p=2$ then either $\alpha=0$ or $\beta=0$ or

$$
\begin{aligned}
2 \alpha & =\bar{\alpha}\left(\Psi^{1} \pm \Psi^{-1}\right) \\
\text { and } 2 \beta & =\bar{\beta}\left(\Psi^{-1} \pm \Psi^{\prime}\right)
\end{aligned}
$$

The proof of this theorem will occupy the remainder of the paper and rests on the following proposition concerning the possibilities for the kernel of elements of C_{0}^{*} and B_{0}^{*} :

Proposition 9. If $\alpha \in B_{0}^{*}$ or C_{0}^{*} is such that $\alpha\left(x^{i}\right)=0$ if $n \mid i$ then
(i) if p is odd or $p=2$ and n is odd, then $\alpha=0$.
(ii) if p, n are both even, then $\alpha\left(x^{2 i}\right)=0$ for all i.

Proof. We will establish the result for $\alpha \in B_{0}^{*}$ first, and deduce the general result from this. Let $n=p^{a} b,(b, p)=1$. Since $\left(x^{p^{m}}-1\right) / p^{m+1} \in B$ for any m, we have, for all i :

$$
\alpha\left(x^{i}\right) \equiv \alpha\left(x^{i+p^{m}}\right)\left(\bmod p^{m+1}\right)
$$

Thus, given i such that $p^{a} \mid i$ we may find k, l such that $k n-l p^{m}=i, k, l>0$ and so have:

$$
\begin{aligned}
\alpha\left(x^{i}\right) & =\alpha\left(x^{i+l p^{m}}\right) \\
& \equiv \alpha\left(x^{k n}\right) \\
& =0\left(\bmod p^{m+1}\right)
\end{aligned}
$$

Since this is true for any m, we see that $\alpha\left(x^{i}\right)=0$ if $p^{a} \mid i$ and so we may assume with out loss of generality that $b=1$. In particular, if n is relatively prime to p we are finished.

Remark 10. The preceding argument would be sufficient to prove the analogous theorem concerning unlocalized K-theory. We would simply choose p so that $p(p-1)$ is relatively prime to n.

Notation 11. Let $B_{a}=B_{0} \cap Q\left[x^{p^{a}}\right]$ and $C_{a}=C_{0} \cap Q\left[x_{ \pm}^{p^{a}}\right]$.

It will be sufficient for us to show that for all a

$$
\operatorname{Hom}\left(B_{0} / B_{a}, Z_{(p)}\right)=0
$$

if p is odd and

$$
\operatorname{Hom}\left(B_{1} / B_{a}, Z_{(p)}\right)=0
$$

if $p=2$, and the corresponding result for C.
First, let us suppose that p is odd. Since any polynomial in B_{0} can be expressed in the form $g((x-1) / p)$ with $g \in A$, the polynomial $(x-1) / p$ plays a distinguished role in our proof. We will begin by showing that it can be approximated modulo p^{m} in each B_{a}.

Lemma 12. For any positive integer m there exists $f_{m}(x) \in B_{a}$ such that for any integer k,

$$
f_{m}(1+k p) \equiv k\left(\bmod p^{m}\right)
$$

Proof. We construct the polynomials f_{m} inductively. To begin, let $f_{1}(x)=$ $\left(x^{p^{m}}-1\right) / p^{m+1}$. We then have, for any integer k :

$$
f_{1}(1+k p)=k+p \cdot g_{1}(k)
$$

where $g_{1} \in Z_{(p)}[x]$, and so $g_{1}(k+l p) \equiv g_{1}(k)(\bmod p)$.
Suppose now that we have constructed $f_{m}(x)$ in such a way that for any integer k :

$$
f_{m}(1+k p)=k+p^{m} \cdot g_{m}(k)
$$

with $g_{m}(x) \in Z_{(p)}[x]$. Let us define:

$$
f_{m+1}(x)=f_{m}(x)-p^{m} \cdot g_{m}\left(f_{1}(x)\right)
$$

Certainly $f_{m+1} \in B_{a}$ and $g_{n}\left(f_{1}(1+k p)\right) \equiv g_{n}(k)(\bmod p)$ so we have:

$$
\begin{aligned}
f_{m+1}(1+k p) & =\left(k+p^{m} g_{m}(k)\right)-p^{m} g_{m}\left(f_{1}(1+k p)\right) \\
& =k\left(\bmod p^{m+1}\right)
\end{aligned}
$$

If we let $g_{m+1}(x)=\left(g_{m}(x)-g_{m}\left(x+p g_{1}(x)\right)\right) / p$ then

$$
f_{m+1}(1+k p) \equiv k+p^{m+1} \cdot g_{m+1}(k)
$$

and it is easily checked, using the binomial theorem, that $g_{m+1} \in Z_{(p)}[x]$.
Using this lemma, we will now show that B_{0} / B_{a} is p-divisible. This will imply that the first Hom group mentioned above is zero. Suppose that $f \in B_{0}$, that $g \in A$ is such that $f(x)=g(x-1 / p)$ and that m is an integer large enough that if $k \equiv k^{\prime}\left(\bmod p^{m}\right)$ then $g(k) \equiv g\left(k^{\prime}\right)(\bmod p)$. Consider

$$
f(x)-g\left(f_{m}(x)\right)=g(x-1 / p)-g\left(f_{m}(x)\right)
$$

From the way we chose m, it follows that for any integer $k, f(1+k p) \equiv g\left(f_{m}(1+\right.$ $k p))(\bmod p)$ and so that $f(x)-g\left(f_{m}(x)\right)$ is divisible by p in B_{0}. It is also clear that $g\left(f_{m}(x)\right) \in B_{a}$, since $f_{m}(x)$ is. Thus B_{0} / B_{a} is p-divisible.

For the case $p=2$ the polynomial $(x-1) / p$ must be replaced by $\left(x^{2}-1\right) / 2^{3}$. This is because:

Lemma 13. If $f(x) \in B_{1}$ then f can be expressed in the form $f(x)=g\left(\left(x^{2}-1\right) / 2^{3}\right)$ with $g(x) \in A$.

Proof. Since f is even, we can certainly express it in the form above for some polynomial $g(x)$. The question is whether $g(x) \in A$. If $x=1+2 k$, then $\left(x^{2}-1\right) / 2^{3}$ $=k(k+1) / 2$ and so $g(k(k+1) / 2) \in Z(2)$ for any integer k. To see that this implies that $g(x) \in A$, choose n large enough that $2^{n} g(x) \in Z_{(2)}[x]$. If $k \equiv k^{\prime}\left(\bmod 2^{n}\right)$ and $g(k)$ $\in Z(2)$ then $g\left(k^{\prime}\right) \in Z_{(2)}$ and so it will suffice to show that the congruence

$$
x(x+1) \equiv 2 k\left(\bmod 2^{n}\right)
$$

is solvable for any k. Using the quadratic formula we see that this is equivalent to showing that $1+8 k$ is a quadratic residue $\bmod 2^{n}$. This is well known.

Lemma 14. For any integer m there exists a polynomial $f_{m}(x) \in B_{a}$ such that for any integer k,

$$
f_{m}(1+2 k) \equiv k(k+1) / 2\left(\bmod 2^{m}\right)
$$

Proof. As in the case of p odd, we construct the polynomials $f_{m}(x)$ inductively, starting with:

$$
f_{1}(x)=\left(x^{2 a}-1\right) / 2^{a+2}
$$

which we check has the property that

$$
f_{1}(1+2 k)=k(k+1) / 2+2 g_{1}(k(k+1) / 2)
$$

with $g_{1}(x) \in Z_{(2)}[x]$. We then suppose that we have constructed $f_{m}(x)$ such that

$$
f_{m}(1+2 k)=k(k+1) / 2+2^{m} g_{m}(k(k+1) / 2)
$$

with $g_{m}(x) \in Z_{(2)}[x]$ and define

$$
f_{m+1}(x)=f_{m}(x)-2^{m} g_{m}\left(f_{1}(x)\right)
$$

Certainly $f_{m+1}(x) \in B_{a}$, and we can check that $f_{m+1}(1+2 k)$ has the required form in the same way as for odd p.

We may now show that B_{1} / B_{a} is infinitely 2-divisible. If $f(x) \in B_{1}$ with $f(x)=$ $g\left(\left(x^{2}-1\right) / 2^{3}\right)$ as in lemma 13, then $f(x)-g\left(f_{m}(x)\right)$ is 2-divisible, if we choose m large enough, and $g\left(f_{m}(x)\right) \in B_{a}$.

We have now established proposition 9 for $\alpha \in B_{0}^{*}$. Suppose next that $\alpha \in C_{0}^{*}$ is such that $\alpha\left(x^{i}\right)=0$ if $n \mid i$ and that $g(x) \in C_{0}\left(\in C_{1}\right.$ if $\left.p=2\right)$ is such that $\alpha(g) \neq 0$. If we define $\alpha^{-}(f)=\alpha\left(x^{-p m_{n}} f\right)$ with m chosen large enough that $x^{p^{m_{n}}} g(x) \in B_{0}$, then $\alpha^{-} \in$ $B_{0}^{*}, \alpha^{-}\left(x^{i}\right)=0$ if $n \mid i$ and $\alpha^{-}(g) \neq 0$, a contradiction.
Finally, we return to the proof of theorem 8. First suppose that p is odd, and that $\alpha \beta=0$. Fix a positive integer m, and suppose that there exists an integer k with $1<k<p^{m}-1$ and $\beta\left(x^{k+j p^{m}}\right) \neq 0$ for all j. We claim that this implies that $\alpha=0$.

To see this note that we have $\alpha\left(x^{k+j p^{m}}\right)=0$ for all j. If we define $\alpha^{\prime} \in B_{0}$ or C_{0} by $\alpha^{\prime}\left(x^{r}\right)=\alpha\left(x^{r+k}\right)$ then α^{\prime} satisfies the hypothesis of proposition 9(i) with $n=p^{m}$ and so $\alpha^{\prime}=0$. In the case $\alpha \in C_{0}$ this shows that $\alpha\left(x^{r}\right)=0$ for all integers r, and so that $\alpha=0$. In the case $\alpha \in B_{0}$ we have $\alpha\left(x^{r}\right)=0$ if $r>k$. Since $\left(x^{p^{s}}-1\right) / p^{s+1} \in B_{0}$ for any s, we have $\alpha(1) \equiv 0\left(\bmod p^{s+1}\right)$ for any s, and so $\alpha(1)=0$. An application of proposition 9 (i) with $n=2 k$ now shows that $\alpha=0$ in this case also.
We may, therefore, assume that, given k as above, there exists k^{\prime} such that $k \equiv k^{\prime}\left(\bmod p^{m}\right)$ and $\beta\left(x^{k^{\prime}}\right)=0$. Since $\left(x^{p^{m}}-1\right) / p^{m+1} \in B_{0}, \beta\left(x^{k}\right) \equiv \beta\left(x^{k^{\prime}}\right)\left(\bmod p^{m+1}\right)$ and so $\beta\left(x^{k}\right) \equiv 0\left(\bmod p^{m+1}\right)$. Since this is true for all $m, \beta=0$.

Next suppose that $p=2$, that $\alpha \beta=0$, and that $\alpha \neq 0$. As before choose a positive integer m, and let $k=0,1,2, \ldots, 2^{m}-1$. Using proposition 9 we can show that we can find j such that $\beta\left(x^{k+2^{m j}}\right)=0$

Case 1. for all n, k.
Case 2. for all n, for all even k.
Case 3. for all n, for all odd k.
In case 1 we can show as for p odd that $\beta=0$. In case 2 we can show that $\beta\left(x^{2 i}\right)=0$ and $\alpha\left(x^{2 i+1}\right)=0$ for all i. Case 3 is the reverse of case 2 .

REFERENCES

1. J.F. Adams, Stable Homotopy and Generalized Homology, The University of Chicago Press, Chicago, 1974.
2. J.F. Adams and F. Clarke, Stable Operations on Complex K-theory, III. Jour. Math. 21 (1977), pp. 826-829.
3. P. Hoffman and G. Mess, Generators for $K_{0} K$ and $K^{0} K$, Publ. Sec. Mat. Univ. Autonoma Barcelona 27 (1983), pp. 19-36.
4. K. Johnson, The Action of the Stable Operations of Complex K-theory on Coefficient Groups, Ill. Jour. Math. 28 (1984), pp. 57-63.
5. G. Mess, Algebraic Properties of $K^{\circ} K$, (to appear).

Department of Mathematics, Statistics and Computing Science
Dalhousie University
Halifax, Nova Scotia

