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Amsterdam Properties of C p(X) Imply
Discreteness of X

D. J. Lutzer, J. van Mill, and V. V. Tkachuk

Abstract. We prove, among other things, that if C p(X) is subcompact in the sense of de Groot, then the

space X is discrete. This generalizes a series of previous results on completeness properties of function

spaces.

Introduction

Historically, completeness properties were designed to represent some facets of com-

pactness in non-compact spaces, so all of them are primarily generalizations of com-

pactness. The real line gives a clear idea of the fact that local compactness also has

strong completeness properties. Other generalizations, which nowadays are classical,

are Čech-completeness and the Baire property.

However, there are plenty of important spaces (pseudocompact ones or products

of the real lines, for example) which are not necesarily Čech-complete but still have

some intuitively clear completeness properties. To capture the quintessence of com-

pleteness in products, Oxtoby [Ox] introduced the notion of pseudocompleteness; its

importance can be seen from the facts that it is preserved by arbitrary products and

that a metrizable space is pseudocomplete if and only if it has a dense Čech-complete

subspace. Choquet [Ch] used strategies of topological games to define two classes of

complete spaces (called nowadays Choquet spaces and strong Choquet spaces); these

classes are productive and have many other nice categorical properties; in particular,

all Choquet spaces are Baire.

The school of de Groot, on the other hand, tried to express in more general terms

the fact that, apart from completeness, any Čech-complete space is an absolute Gδ ;

this, evidently, required properties stronger than pseudocompleteness. After proving

to be very useful, they were baptized Amsterdam properties (the reader can find all

definitions and technicalities in Section 1).

Next, all well-known classes of spaces were to be checked for some (or all) com-

pleteness properties. The turn of spaces Cp(X) came in 1980 when Lutzer and McCoy

[LM] characterized the Baire property in Cp(X) and proved that Čech-completeness

of Cp(X) takes place if and only if X is countable and discrete. It turned out that

pseudocompleteness of Cp(X) does not imply discreteness of X but does imply that
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each countable subset of X is closed and discrete. They also gave equivalences of

pseudocompleteness of Cp(X) for wide classes of spaces.

However, if Cp(X) is homeomorphic to some power of the reals, then X is discrete

[Tk1]. It is folklore (and easy to see) that if Cp(X) is complete as a uniform space or

is a continuous linear image of a power of the real line, then X is also discrete.

Additional results on discreteness of X have been proved given some completeness

property of Cp(X). For example, if Cp(X) is an Fσ-subset of R
X or Gδ or even Gδσ in

R
X , then X is discrete (see [LM, DGLM, vM]). The space X also must be discrete if

Cp(X) is a closed continuous image of R
X (see [Tk3]) or if it is pseudocomplete and

realcompact (see [Tk2]).

Following the mentioned line of research in this paper, we prove that if Cp(X) is

subcompact, then X is discrete; since subcompactness is the weakest of the Amster-

dam properties, every one of those in Cp(X) implies discreteness of X. This result

shows that it is time to see what happens if Cp(X) has a dense complete subspace.

It is not even clear whether X has to be discrete if Cp(X) contains a dense copy of a

power of the real line. This was formulated as an open question in [Tk3]. We only

succeeded in proving that, under Martin’s axiom, if Cp(X) contains some dense copy

of R
κ for κ < c, then X is discrete.

1 Notation and Terminology

All spaces are assumed to be Tychonoff. If X is a space, then τ(X) is its topology

and τ∗(X) = τ(X) \ {∅}. The set R is the real line with its usual topology and

I = [0, 1] ⊂ R. Given Tychonoff spaces X and Y , the symbol Cp(X,Y ) stands for

the set of all continuous functions from X to Y endowed with the pointwise conver-

gence topology; if Y = R, then we write Cp(X) instead of Cp(X,Y ). See [Ar] for a

systematic presentation.

A space Y is called pseudocomplete if it has a sequence {Bn : n ∈ ω} of π-bases

such that for any family {Bn : n ∈ ω} with Bn ∈ Bn and Bn+1 ⊂ Bn for each n ∈ ω,

we have
⋂

n∈ω Bn 6= ∅. Two sets A, B ⊂ Y are said to be completely separated if there

exists a continuous function f : Y → R such that f (a) ≤ 0 for any a ∈ A while

f (b) ≥ 1 for each b ∈ B; we consider that the empty set is completely separated from

any subset of Y .

A family U ⊂ τ∗(Y ) is called a regular filterbase if, for any U ,V ∈ U there is

W ∈ U such that W ⊂ U ∩ V . A space Y is subcompact if it has a base B ⊂ τ∗(Y )

such that every regular filterbase U ⊂ B has non-empty intersection. The space Y is

base-compact if it has a base B such that
⋂
{U : U ∈ U} 6= ∅ for any family U ⊂ B

with the finite intersection property. If
⋂
{U : U ∈ U} 6= ∅ for any U ⊂ B such

that {U : U ∈ U} has the finite intersection property, then Y is called regularly co-

compact. Regular co-compactness, base compactness and subcompactness are also

called Amsterdam properties.1

The rest of our notation is standard and follows [En, AL].

1There is another property, called co-compactness, that is usually included in the list of Amsterdam
properties. Every regularly co-compact space is co-compact, but the Sorgenfrey line shows that the con-
verse is false. The Sorgenfrey line also shows that co-compactness does not imply base-compactness.

https://doi.org/10.4153/CMB-2008-056-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2008-056-9


572 D. J. Lutzer, J. van Mill, and V. V. Tkachuk

2 Amsterdam Properties in Function Spaces

It turns out that even subcompactness of Cp(X) implies that X is discrete. We will

also establish that it is consistent that if Cp(X) contains a dense copy of R
ω1 , then it is

homeomorphic to R
ω1 .

Theorem 2.1 Suppose that there is a subcompact subspace C ⊂ Cp(X) with the fol-

lowing properties:

(i) if f , g ∈ C, then f · g ∈ C and max{ f , g} ∈ C;

(ii) if A and B are completely separated subspaces of X, then there exists f ∈ C such

that f (A) ⊂ {0} and f (B) ⊂ {1}.

Then the space X is discrete.

Proof Let B be a base which witnesses subcompactness of C. Given a function g ∈
C, a finite set F ⊂ X, and ǫ > 0, let O(g, F, ǫ) = {h ∈ C : |h(x)−g(x)| < ǫ for any x ∈
F}; the sets O(g, F, ǫ) form a local base at g in the space C. Denote by C+ the set of

all non-negative functions from C. Our plan is to prove first that any two disjoint

countable sets are completely separated and then establish the same for all pairs of

disjoint sets of higher cardinalities. The reasonings are similar but, unfortunately,

there are some technical obstacles which do not allow us to give the same proof for

all cardinalities at once.

Lemma 2.2 With hypotheses and notation as in Theorem 2.1, suppose that Q is a

countable subset which is completely separated from any finite subset of X \ Q. Then Q

is completely separated from any countable subset of X \ Q.

Proof Observe that the set Q may be finite in which case it is trivially completely

separated from any finite subset of X \ Q.

Note that to say that Q is completely separated from each finite subset of X \ Q is

equivalent to saying that Q is a closed subset of X, because X is completely regular.

Our formulation of Lemma 2.2 is chosen to emphasize the analogy between Lemma

2.2 and the uncountable cases considered below.

So take any countably infinite set P ⊂ X \ Q and let {pn : n ∈ ω} be a faithful

enumeration of P. Let us also fix some enumeration {qn : n ∈ ω} (with repetitions

if Q is finite) of the set Q. There is a function f0 ∈ C such that f0(p0) = 1 and

f0(Q) ⊂ {0}; passing from f0 to ( f0)2 if necessary, we can assume that f0 ∈ C+. Pick

any U0 ∈ B with f0 ∈ U0; there exist a finite set F0 ⊂ X and ǫ0 ∈ (0, 1) such that

{p0, q0} ⊂ F0 and O( f0, F0, ǫ0) ⊂ U0.

Choose g0 ∈ C for which g0(F0 \ Q) ⊂ {1} and g0(Q) ⊂ {0}; again, there is no

loss of generality to assume that g0 ∈ C+. Fix a set V0 ∈ B with g0 ∈ V0; there exists

a finite set H0 ⊂ X such that F0 ⊂ H0 and O(g0, H0, η0) ⊂ V0 for some η0 ∈ (0, 1).

Suppose that n ∈ ω and we have chosen elements U0,V0, . . . ,Un,Vn of the base

B together with finite subsets F0, H0, . . . , Fn, Hn of the space X as well as functions

f0, g0, . . . , fn, gn ∈ C+ and real positive numbers ǫ0, η0, . . . , ǫn, ηn with the following

properties:

(i) O( fk, Fk, ǫk) ⊂ Uk and O(gk, Hk, ǫk) ⊂ Vk for every k ≤ n;

(ii) Hk ⊂ Fk+1, Uk+1 ⊂ O( fk, Fk, ǫk), and Vk+1 ⊂ O(gk, Hk, ηk) whenever k < n;
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(iii) {p0, q0, . . . , pk, qk} ⊂ Fk ⊂ Hk and ǫk, ηk ∈ (0, 2−k) for every k ≤ n;

(iv) fk+1((Hk \ Fk) \ Q) ⊂ {1} for every k < n;

(v) fk(Q) ⊂ {0}, gk(Q) ⊂ {0} and gk((Fk \ Hk−1) \ Q) ⊂ {1} (where H−1 = ∅)

for every k ≤ n;

(vi) fk+1|Fk = fk and gk+1|Hk = gk for every k < n.

Apply property (i) of the set C (see Theorem 2.1) to find a function ϕ0 ∈ C+ such

that ϕ0((Hn \ Fn) \ Q) ⊂ {1} and ϕ0(Q) ⊂ {0}. There exists a function ϕ1 ∈ C+

such that ϕ1(Fn) ⊂ {0} and ϕ1((Hn \ Fn) \ Q) ⊂ {1}. The function ϕ0 · ϕ1 is equal

to zero on Fn ∪Q and equals 1 on (Hn \ Fn) \Q. We will also need a function ϕ ∈ C+

such that ϕ(Fn) ⊂ {1} and ϕ((Hn \ Fn) \ Q) ⊂ {0}.

It is clear that the function fn+1 = max{ fn · ϕ, ϕ0 · ϕ1} ∈ C is non-negative and

fn+1|Fn = fn while fn+1((Hn \ Fn) \ Q) ⊂ {1} and fn+1(Q) ⊂ {0}. Take Un+1 ∈
B such that fn+1 ∈ Un+1 ⊂ O( fn, Fn, ǫn). There exist a finite set Fn+1 ⊂ X and

a number ǫn+1 ∈ (0, 2−n−1) such that Hn ∪ {p0, q0, . . . , pn+1, qn+1} ⊂ Fn+1 and

O( fn+1, Fn+1, ǫn+1) ⊂ Un+1.

Analogously, we can construct a function gn+1 ∈ C+ such that gn+1|Hn = gn while

gn+1((Fn+1 \ Hn) \ Q) ⊂ {1} and gn+1(Q) ⊂ {0}. Take Vn+1 ∈ B such that gn+1 ∈
Vn+1 ⊂ O(gn, Hn, ηn). There exists a finite set Hn+1 ⊂ X and a number ηn+1 ∈
(0, 2−n−1) such that Fn+1 ⊂ Hn+1 and O(gn+1, Hn+1, ηn+1) ⊂ Vn+1.

It is straightforward that after step n + 1 we still have all properties (i)–(vi) for the

relevant sets and functions, so our inductive procedure gives us sequences

{ fn, gn : n ∈ ω} ⊂ C, {Un,Vn : n ∈ ω} ⊂ B

as well as families {Fn, Hn : n ∈ ω} and {ǫn, ηn : n ∈ ω} for which the properties

(i)–(vi) hold for all n ∈ ω.

It follows from the properties (i) and (ii) that the families U = {Un : n ∈ ω} and

V = {Vn : n ∈ ω} are regular filterbases so we can pick f ∈
⋂

U and g ∈
⋂

V. The

properties (i)–(vi) imply that P ⊂ f −1(1) ∪ g−1(1) and Q ⊂ f −1(0) ∩ g−1(0), so P

and Q are completely separated.

Lemma 2.3 With hypotheses and notation as in Theorem 2.1, any two countable dis-

joint subsets of X are completely separated.

Proof Let P be a finite subset of X; since it is completely separated from any finite

Q ⊂ X \ P, we can apply Lemma 2.2 to see that it is completely separated from any

countable subset of X \ P. This means that any countable subset of X is completely

separated from any finite set from its complement. Applying Lemma 2.2 once more,

we conclude that any two disjoint countable subsets of X are completely separated.

For any set A ⊂ X and f ∈ C, let G(A, f ) = {g ∈ C : g|A = f |A}; if A = ∅, then

we consider that G(A, f ) = C for any f ∈ C.

Lemma 2.4 With hypotheses and notation as in Theorem 2.1, for any f ∈ C, if V ⊂ B

and f ∈
⋂

V, then there exists a regular filterbase V ′ ⊂ B such that |V ′| ≤ |V| · ω
while V ⊂ V ′ and f ∈

⋂
V ′.
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Proof The proof can be easily derived from the fact that for any U ,V ∈ V, there is

W ∈ B for which f ∈ W ⊂ W ⊂ U ∩V .

Lemma 2.5 With hypotheses and notation as in Theorem 2.1, suppose that U ⊂ B

and f ∈
⋂

U. Then for any set A ⊂ X, we can find a set A ′ ⊂ X with A ⊂ A ′ and a

regular filterbase U′ ⊂ B with U ⊂ U′ such that max{|U′|, |A ′|} ≤ |A| · |U| · ω and⋂
U

′
= G(A ′, f ).

Proof Let µ = |A| · |U| ·ω; since the sets O( f , F, ǫ) form a local base at f , for any B ∈
B with f ∈ B there is a finite F(B) ⊂ X and n(B) ∈ N for which O( f , F(B), 1

n(B)
) ⊂ B.

For every finite F ⊂ A, the set O( f , F, 1
n

) is an open neighbourhood of f in the

space C for each n ∈ N. Therefore there exists a set W (F, n) ∈ B such that f ∈
W (F, n) ⊂ O( f , F, 1

n
).

Let A0 = A; the family U0 = U ∪ {W ({y}, k) : y ∈ A0, k ∈ N} ⊂ B contains

f in its intersection and |U0| ≤ µ. Proceeding inductively, assume that we have a set

An ⊂ X and a family Un ⊂ B such that |An| · |Un| ≤ µ and f ∈
⋂

Un. By Lemma 2.4

there exists a regular filterbase F ⊂ B such that f ∈
⋂

F while |F| ≤ µ and Un ⊂ F.

Let An+1 =

⋃
{F(B) : B ∈ F} and Un+1 = F ∪ {W ({y}, k) : y ∈ An+1, k ∈ N}. It

is easy to see that |An+1|·|Un+1| ≤ µ, so our inductive construction gives us increasing

sequences {An : n ∈ ω} and {Un : n ∈ ω}. If we let A ′
=

⋃
{An : n ∈ ω} and

U′
=

⋃
{Un : n ∈ ω}, then A ′ and U′ are as promised.

Lemma 2.6 With hypotheses and notation as in Theorem 2.1, suppose that κ is an

uncountable cardinal, any two disjoint subsets of X of cardinality < κ are completely

separated, and a set P ⊂ X of cardinality ≤ κ is completely separated from any Q ⊂
X \ P with |Q| < κ. Then P is completely separated from any set R ⊂ X \ P with

|R| = κ.

Proof Fix R ⊂ X \ P of cardinality κ and take a faithful enumeration {zα : α < κ}
of the set R. We can also choose an increasing family P = {Pα : α < κ} of subsets of

P such that |Pα| ≤ |α| · ω for any α < κ and
⋃

P = P. Observe first that

(i) if A ⊂ X \ P and |A| < κ, then for any f ∈ C+ there exists g ∈ C+ such that

g|A = f |A and g(P) ⊂ {0}.

Indeed, take any ϕ ∈ C such that ϕ(P) ⊂ {0} and ϕ(A) ⊂ {1}; then the function

g = ϕ2 · f is as promised in (i). Our following step is to prove that

(ii) for any disjoint sets A, B ⊂ X \ P with |A| < κ and |B| < κ, if f ∈ C+, then

there is g ∈ C+ such that g|(A ∪ P) = f |(A ∪ P) and g(B) ⊂ {1}.

By property (ii) of the set C (see Theorem 2.1), there exists a function ϕ0 ∈ C

such that ϕ0(B) ⊂ {1} and ϕ0(P) ⊂ {0}. By the same reason we can find a function

ϕ1 ∈ C such that ϕ1(B) ⊂ {1} and ϕ1(A) ⊂ {0}. If ϕ = (ϕ0 · ϕ1)2, then ϕ ∈ C+

while ϕ(B) ⊂ {1} and ϕ(A ∪ P) ⊂ {0}. Analogously, there exists a function δ ∈ C+

such that δ(B ∪ P) ⊂ {0} and δ(A) ⊂ {1}. Fix a function µ ∈ C with µ(P) ⊂ {1}
and µ(A ∪ B) ⊂ {0}. Then the function ν = max{µ2, δ} belongs to C+ while

ν(A ∪ P) ⊂ {1} and ν(B) ⊂ {0}.

The function h = f ·ν ∈ C+ coincides with f on the set A∪P and h(B) ⊂ {0}, so

g = max{h, ϕ} is equal to 1 on B and coincides with f on A ∪ P, i.e., (ii) is proved.
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Define f0 and g0 to be the functions which are identically zero on X; it follows from

property (ii) of the set C (see Theorem 2.1) that { f0, g0} ⊂ C+. Let E0 = F0 = ∅; we

will also need empty families U0, V0 ⊂ B.

Proceeding by transfinite induction, assume that β < κ and we have constructed

a set { fα, gα : α < β} ⊂ C+, a β-sequence {Uα, Vα : α < β} of regular filterbases

contained in B, and a family {Eα, Fα : α < β} of subsets of X with the following

properties:

(iii) |Eα ∪ Fα| ≤ |α| · ω and |Uα ∪ Vα| ≤ |α| · ω for any α < β;

(iv) Eγ ⊂ Eα, Uγ ⊂ Uα and Fγ ⊂ Fα, Vγ ⊂ Vα if γ < α < β;

(v) fα|Eγ = fγ, gα|Fγ = gγ and Fγ ⊂ Eα ⊂ Fα whenever γ < α < β;

(vi) {zγ} ∪ Pγ ⊂ Eα whenever γ < α < β;

(vii) Eα \ P ⊂ f −1
α (1) ∪ g−1

α (1) and P ⊂ f −1
α (0) ∩ g−1

α (0) for all α < β;

(viii)
⋂

Uα = G(Eα, fα) and
⋂

Vα = G(Fα, gα) for any α < β.

If β is a limit ordinal, then let Eβ =

⋃
α<β Eα and Fβ =

⋃
α<β Fα; observe that

it follows from (v) that Eβ = Fβ . If Uβ =

⋃
α<β Uα and Vβ =

⋃
α<β Vα, then it

follows from (iv) that both Uβ and Vβ are regular filterbases, so there exist f ∈
⋂

Uβ

and g ∈
⋂

Vβ . An immediate consequence of (v) and (viii) is that we have
⋂

Uβ =

G(Eβ, f ) and
⋂

Vβ = G(Fβ, g). Apply property (i) of the set C (see Theorem 2.1) to

find functions fβ, gβ ∈ C+ such that fβ|(Eβ \P) = f |(Eβ \P), gβ |(Fβ \P) = g|(Fβ \P)

while fβ(P) ⊂ {0} and gβ(P) ⊂ {0}. It follows from the properties (v) and (vii) that

f (Eβ ∩ P) ⊂ {0} and g(Fβ ∩ P) ⊂ {0}; therefore fβ|Eβ = f |Eβ and gβ |Fβ = g|Fβ

which shows that the properties (vii) and (viii) hold for α = β. It is evident that the

conditions (iii)–(vi) are also satisfied for all α ≤ β.

Now, assume that β = λ + 1 and let γ < κ be the minimal ordinal such that

zγ /∈ Eλ. If F ′

λ = (Fλ \ Eλ) \ P, then the set F ′

λ ∪ {zγ} ⊂ X \ (P ∪ Eλ) has cardinality

less than κ so we can apply property (ii) of the set C (see Theorem 2.1) to find a

function fβ ∈ C+ such that fβ|(P ∪ Eλ) = fλ|(P ∪ Eλ) and fβ(F ′

λ ∪ {zγ}) ⊂ {1}.

Apply Lemma 2.5 to find a set Eβ ⊂ X and a regular filterbase Uβ ⊂ B such that

Uλ ⊂ Uβ , Fλ ∪{zγ}∪Pλ ⊂ Eβ ,
⋂

Uβ = G(Eβ , fβ) and, besides, |Uβ | · |Eβ | ≤ |β| ·ω.

Apply property (ii) of the set C (see Theorem 2.1) to find gβ ∈ C+ such that

gβ |(Fλ ∪ P) = gλ|(Fλ ∪ P) while gβ((Eβ \ Fλ) \ P) ⊂ {1}. By Lemma 2.5 there is a

set Fβ ⊂ X and a regular filterbase Vβ ⊂ B such that Eβ ⊂ Fβ and Vλ ⊂ Vβ while⋂
Vβ = G(Fβ , gβ) and |Fβ | · |Vβ | ≤ |β| · ω. It is easy to see that the properties (iii)–

(viii) are satisfied for the relevant families for all α ≤ β. Therefore our inductive

procedure can be continued to obtain a set { fα, gα : α < κ} ⊂ C+, a κ-sequence

{Uα, Vα : α < κ} of regular filterbases contained in B and a family {Eα, Fα : α < κ}
of subsets of X for which the properties (iii)–(viii) hold for all β < κ.

It is easy to see that both families U =

⋃
α<κ Uα and V =

⋃
α<κ Vα are regular

filterbases so there are functions f ∈
⋂

U and g ∈
⋂

V. It follows from (v), (vi) and

(viii) that f (P) ⊂ {0} and g(P) ⊂ {0}.

Let E =

⋃
α<κ Eα; the properties (v) and (vii) show that E \ P ⊂ f −1(1)∪ g−1(1).

Property (vi) guarantees that R ⊂ E \ P so P and R are completely separated.

To finally establish that X is discrete, it suffices to prove that any two disjoint sub-

sets A, B ⊂ X are completely separated (actually, it suffices to show that any point is

completely separated from its complement). We already saw that this is true if A and
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B are countable. Suppose that κ is a cardinal and we have proved that any disjoint

A, B ⊂ X with |A| < κ, |B| < κ are completely separated. If A ⊂ X and |A| < κ,

then A is completely separated from any B ⊂ X \ A with |B| < κ, so we can apply

Lemma 2.6 to see that A is completely separated from any B ⊂ X \ A with |B| ≤ κ.

Thus, every set A of cardinality ≤ κ is completely separated from any disjoint set B

of cardinality < κ. This shows that we can apply Lemma 2.6 again to conclude that

A is completely separated from any disjoint set of cardinality ≤ κ. In other words,

any two disjoint sets of cardinality at most κ are completely separated, so our induc-

tive proof can go on to establish that any two disjoint subsets of X are completely

separated and hence X is discrete.

Corollary 2.7 If Cp(X) is subcompact, then X is discrete.

Corollary 2.8 If Cp(X, [0, 1]) is subcompact, then X is discrete.

Proof It is easy to see that the set C = Cp(X, [0, 1]) satisfies the conditions (i) and

(ii) of Theorem 2.1.

Corollary 2.9 If either Cp(X) or Cp(X, [0, 1]) is regularly co-compact or base-

compact, then X is discrete.

Proof This is because subcompactness is the weakest of our list of Amsterdam prop-

erties, so Corollaries 2.7 and 2.8 do the rest.

Proposition 2.10 Under MA+¬CH, if κ < c is a cardinal, then no space can contain

two disjoint dense copies of R
κ.

Proof We can identify R
κ with the subspace (0, 1)κ of the compact space I

κ. If

πα : I
κ → I is the projection of I

κ onto its α-th factor for any α < κ, then the

set I
κ \ (0, 1)κ

=

⋃
{π−1

α ({0, 1}) : α < κ} is the union of κ-many compact subsets

of I
κ. It is standard to show that this implies that R

κ is a Gκ-subset of any space which

contains it as a dense subspace.

Now assume that C and D are disjoint dense homeomorphic copies of R
κ in a

space Y . By our observation there exist families K and L of compact subsets of βY

such that |K| ≤ κ and |L| ≤ κ while βY \C =

⋃
K and βY \ D =

⋃
L.

It is evident that K′
= K∪L is a family of at most κ-many nowhere dense subsets

of βY such that
⋃

K′
= βY . However, c(βY ) ≤ c(D) = ω (recall that the space D

is dense in βY and homeomorphic to R
κ), so Martin’s axiom is applicable to βY to

conclude that it cannot be represented as a union of < c-many nowhere dense sets, a

contradiction.

Theorem 2.11 Under Martin’s axiom and the negation of CH, if Cp(X) has a dense

subspace homeomorphic to R
κ for some cardinal κ < c, then X is discrete.

Proof If Cp(X) has a dense copy of R
κ and X is not discrete, then take a discontin-

uous function ϕ on the set X. Then ϕ + Cp(X) is a dense disjoint copy of Cp(X) in

R
X so we also have two dense disjoint copies of R

κ in R
X which contradicts Proposi-

tion 2.10.
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3 Open Questions

We give below the list of questions we could not solve while working on this paper.

They might be simple or difficult, but they will all require new methods for their

solution.

Question 1: Is it consistent with ZFC that there exists a Tychonoff space X such that

X = X0 ∪ X1 where every Xi is dense in X, homeomorphic to R
ω1 , and X0 ∩ X1 = ∅?

Question 2: Is it true in ZFC that if Cp(X) contains a dense copy of R
ω1 , then X is

discrete?

Question 3: Suppose that Cp(X) has a dense regularly co-compact subspace. Must

X be discrete?

Question 4: Suppose that Cp(X) has a dense base-compact subspace. Must X be

discrete?

Question 5: Suppose that Cp(X) has a dense subcompact subspace. Must X be dis-

crete?

Question 6: Suppose that X is a zero-dimensional space such that Cp(X, {0, 1}) is

subcompact. Must X be discrete?

Question 7: Assume that Cp(X) is a countable union of its closed subcompact sub-

spaces. Must X be discrete?

Question 8: Assume that Cp(X) is a countable union of its closed base-compact sub-

spaces. Must X be discrete?

Question 9: Suppose that Cp(X, [0, 1]) has a dense base-compact subspace. Must X

be discrete?

Question 10: Suppose that Cp(X, [0, 1]) is a countable union of its closed base-

compact subspaces. Must X be discrete?
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