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The regulation of insulin production by pancreatic p cells is mediated by a number of 
circulating nutrients and hormones, of which glucose is the predominant physiological 
stimulus. Over short periods of 1-2 h glucose regulates. insulin biosynthesis mainly at the 
level of translation (Permutt & Kipnis, 1972). This is in keeping with the requirement to 
rapidly replenish insulin stores, secreted in response to elevated circulating glucose levels 
following food intake. In addition to the acute effect on translation, glucose also affects 
insulin mRNA production and stability over longer periods (Brundstedt & Chan, 1982; 
Nielsen et al. 1985; Welsh et al. 1985). Here we will describe some recent experiments, 
which have increased our understanding of how these transcriptional and translational 
processes respond to external stimuli. 

T H E  METABOLIC CONTROL OF INSULIN G E N E  EXPRESSION 

There is substantial evidence that expression of the insulin gene is regulated by metabolic 
stimuli. Indirect evidence was provided by the observation that Actinomycin D, an 
inhibitor of RNA synthesis, inhibited the late stage of glucose-stimulated insulin 
biosynthesis in isolated rat pancreatic islets (Permutt & Kipnis, 1972). Advances in 
recombinant DNA technology then permitted the direct quantification of insulin mRNA 
using hybridization methods. Thus, starvation of rats for 4 d led to a reduction in insulin 
mRNA levels. Normal mRNA levels could be restored by refeeding or injecting the 
animals with glucose (Giddings et al. 1981). Further studies showed that increased 
glucose concentrations had an effect on insulin mRNA levels (Brundstedt & Chan, 
1982), and on the rate of transcription of the insulin gene (Nielsen et al. 1985) in isolated 
pancreatic islets. The effect of glucose on insulin gene expression involved a simul- 
taneous stimulation of transcription and inhibition of insulin mRNA degradation (Welsh 
et al. 1985). Glucose-mediated effects on insulin gene transcription were subsequently 
shown to be mimicked by CAMP (Nielsen et al. 1985; Hammonds et af. 1987; Philippe & 
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Fig. 1. Organization of regulatory sequences in thc human insulin gene. The name for each sequence motif is 
given above, and the corresponding DNA binding protein below the schematic of the 5' region of the insulin 
gene. Although it is too early to form a comprehensive picture of insulin gene regulation, it is likely that the 
process involves the combinatorial action of several distinct positively and negativcly acting regulatory sites as 
indicatcd in this schcme. For further details. see Clark & Docherty (1992). 

Missotten. 1990~).  Thus, CAMP-dependent phosphorylation may be implicated in the 
control of insulin gene expression. Possible substrates for phosphorylation might include 
transcription factors which interact with DNA regulatory sequences within the insulin 
gene. 

DNA sequences involved in the regulation of insulin gene transcription are located 
within approximately 350 base pairs upstream of the transcription start site (Walker et al. 
1983; Edlund et al. 1985). Most of the studies have been performed on the rat I ,  rat I1 
(there are two insulin genes in the rat) and human insulin genes. The arrangement of 
regulatory elements in the human insulin gene is illustrated in Fig. 1. Duplication of the 
insulin genes in the rat (Soares et al. 1985) may have altered the selective pressures 
operating on transcriptional regulation. Thus, although the three genes are highly 
homologous in the 5' region and most of the identified regulatory sites are common to all 
three gcnes, the utilization of these sites may differ between genes. It should also be 
noted that these sequences in the human gene represent, for the most part? protein- 
binding sites (Boam & Docherty, 1989; Boam et al. 1990). and that some of the 
functional experiments have yet to be completed. Much of what follows on the properties 
of these sequences is, therefore, by inference, from known properties of related 
sequences in the rat I gene. 

In the rat I insulin gene mutation of either the IEBl or IEB2 motifs (see Fig. 1) 
reduced transcription by roughly 85% whilst mutation of both sequences essentially 
abolished transcription. Thus, the IEB motifs are critical elements of the enhancer, with 
other elements being important to a lesser extent (Karlsson et al. 1989). The IEB motifs 
bind a transcription factor which is present in a wide variety of cells. cDNAs encoding 
this factor have been cloned and sequenced (Nelson et al. 1990; Shibasaki et al. 1990; 
Walker er a/. 1990). Designated Pan, this factor is identical to a factor (E12/E47) 
involved in the control of immunoglobulin gene expression. Pan is a member of a family 
of transcription factors which contain a dimerization domain composed of two (Y helices 
joined by a loop structure, i.e. helix loop helix (HLH) domain. HLH proteins can be 
divided into those that are tissue-specific and those that are present in many cell types. 
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Heterodimers form between ubiquitous and tissue-specific HLH proteins, e.g. MYOD 
and E12/E47 in muscle cells (Murre etaf .  1989). One might conclude that a p cell-specific 
HLH protein has yet to be described, and that this protcin will dimerize with Pan to play 
a major role in controlling insulin gene expression, and possibly also in determining islet 
cell development. 

The three CT motifs (see Fig. 1) which are located adjacent to the IEB motifs and at an 
upstream site (-313) bind a p cell-specific factor. Designated IUF-1 (Boam & Docherty, 
1989), this factor is probably different to Isl-1 (Karlsson et al. 1990; Scott et (11. 1991). 
Paradoxically, the CT motifs, which contain no enhancer activity on their own, are the 
only sequences to bind a p cell-specific factor. The CT boxes, however, will potentiate 
the activity of the IEB motifs (Karlsson et af. 1989). An upstream negative regulatory 
element (NKE), which functions in p cells, is located 258 base pairs upstream of the 
transcription start site in the human, and probably the rat 11, insulin genes. Its activity is 
modulated by the presence of an adjacent positive-acting element (A. R.  Clark and K. 
Docherty, unpublished results). Although not definitively mapped, the positive element 
is likely to  include the enhancer core and CT3 motifs. Other sequences which have yet to 
be assigned a function includc the GGl  and GG2 motifs, the Spl motif, and the 
insulin-linked polymorphic region (ILPR), the latter of which is present only in the 
human insulin gene. 

The current findings are compatible with the view that the process of insulin gene 
regulation involves the combinatorial action of several distinct positively and negatively 
acting regulatory sites. Identified regulatory sites bind several proteins, not all of which 
are restricted to insulin-secreting cells, and not all of which are necessarily involved in 
the regulation of transcription. It is clear that the IEB motifs represent the dominant 
tissue-specific regulatory sequences, with the other indicated motifs (see Fig. 1) involved 
in: (1) maintaining the gene in a transcriptionally inactive state in non-p cells, (2) 
programming the activity of gene expression at particular stages of development, (3) 
mediating the transcriptional response of the insulin gene to metabolic stimuli. How 
these sequences respond to nutritional stimulation is not well understood, but some 
potential mechanisms have been investigated. 

The CAMP-response element (CRE) (see Fig. 1) is likely to be involved in the 
response of the insulin gene to CAMP. Mutagenesis of this sequence at critically 
important nucleotides abolishes the response of the insulin promoter to CAMP (Philippe 
& Missotten, 1990a). Furthermore, this sequence binds a ubiquitous factor which 
exhibits a molecular size of 43 000 (Philippe & Missotten, 1990a), the approximate size 
of the CRE-binding protein (CREB). However, it has recently been demonstrated that 
sequences in addition to those containing the CRE responded to glucose when 
transfected into rat islets (German, etal. 1990). These sequences have yet to be mapped. 
Interestingly, a reduced response to glucose was observed in the presence of the 
Ca2+-channel blocker verapamil (German et al. 1990). This suggests that Ca2+- 
dependent second messenger systems may play a role in modulating the activity of the 
insulin gene. Finally, the observation that the insulin gene is coordinately regulated with 
the gene for glucokinase (EC 2.7.1.2) may be important in understanding how these 
genes respond to external stimuli. A marked parallel decrease in mRNA levels for 
insulin and glucokinase was observed in exercise-trained rats (Koranyi et al. 1991). 
Similar transcription factors, reponsive to metabolic changes in the p cell may, therefore, 
interact with regulatory sequences in both genes. 
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THE, T R A N S L A T I O N A L  C O N T R O L  O F  I N S U L I N  H I O S Y N T H E S I S  

Glucose metabolism appears to be essential for its effect on insulin biosynthesis. 
However, the mechanisms linking glucose metabolism and increased translation of 
insulin mRNA are not well understood. In one study, theophylline, an inhibitor of 
cAMP degradation, increased the rate of initiation of insulin mRNA in isolated islets 
(Welsh et al. 1987). This implicated cAMP in the stimulation of insulin biosynthesis. 
However, in the hamster p cell line, HIT T15, neither forskolin nor IBMX affected 
glucose-stimulated insulin biosynthesis (Gold et af. 198S), suggesting that cAMP was not 
a stimulator of insulin biosynthesis in these cells. In  the same study, dexamethasone 
inhibited insulin biosynthesis in HIT T15 cells, but this effect is likely to result from the 
ability of dexamethasone to destabilize insulin mRNA (Philippe & Missotten, 19906). 
Changes in intracellular Ca2+ are unlikely to be involved, since Ca2 + depletion does not 
alter basal or glucose-stimulated insulin biosynthesis (Guest et al. 1989). Thus, the extent 
to which insulin secretion (Ashcroft, 1980) and biosynthesis are regulated in parallel 
remains to be established. 

The effect of glucose on protein biosynthesis in p cells is not restricted to insulin. Thus, 
glucose stimulated the biosynthesis of growth hormone in isolated pancreatic islets from 
transgenic mice carrying a metallothionein-growth hormone gene fusion (Welsh et al. 
1986~) .  Glucose also stimulated the biosynthesis of a number, but not all, of the proteins 
present in the insulin secretory granule. Chromogranin A and the insulin-granule 
membrane protein SGMllO, were stimulated by glucose, but the biosynthesis of 
carboxypeptidase H was unaffected (Grimaldi et al. 1987; Guest et al. 1989). In fact the 
majority of insulin granule constituents are coordinately regulated in response to glucose 
(Guest et al. 1991). 

There are several examples of translational control of eukaryotic protein biosynthesis, 
where the mechanisms at least in part, have been characterized. These may provide 
insights into the differential translational response to stimuli in p cells. Translation of the 
yeast transcription factor GCN4 is stimulated in response to amino acid starvation. The 
5' region of the GCN4 mRNA contains four open reading frames (ORF), only one of 
which will generate a functional protein. The selection of a particular ORF is dependent 
on the amino acid content of the yeast culture media (Hinnesbusch, 1988). Similarly, 
translation of yeast CPAl mRNA, which encodes a subunit of an enzyme involved in 
arginine biosynthesis is repressed by arginine. This repression involves translation of an 
upstream ORF of the CPAl mRNA, which encodes a twenty-five amino acid peptide. 
Another example is provided by the effect of iron on the translation of ferritin and trans- 
ferrin receptor mRNA. Both mRNA contain common sequence motifs which can form 
stem loop structures. A specific factor will bind to this stem loop structure or Fe-response 
element (IRE) at times of low cellular Fe, blocking initiation of translation of ferritin 
mRNA, or increasing stability of transferrin receptor mRNA (Rouault et al. 1990). 

Thus, translational control can be mediated through selective use of upstream ORF, or 
through interaction of a factor with stem loop structures within the 5' or 3' untranslated 
regions of the mRNA. It is of interest, therefore, that the rate of initiation of insulin 
rnRNA, as shown by the transfer of cytoplasmic KNA to a fraction co-scdimenting with 
ribosomes, is stimulated by glucose (Welsh et af. 19866). Examination of the sequence of 
the mRNA encoding insulin demonstrates that there are no upstream ORF, but 
application of appropriate algorithms capable of predicting KNA structures indicates 
that a stem loop structure exists in the 5' untranslated region. On the basis that the stem 
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loop structure may represent the binding site for a specific protein or translation factor, 
we investigated the binding of proteins to various sequences corresponding to regions of 
the insulin mRNA 5' untranslated region. Two discrete binding sites were localized 
(Knight & Docherty, 1991). The role of proteins binding at these sites in glucose- 
stimulated initiation of translation is presently being assessed. 

In addition to its effect on the rate of initiation of insulin mRNA, it was also shown 
that glucose stimulated a movement of pre-initiated mRNA from a soluble to a 
membrane-associated pool (Itoh & Okamoto, 1980; Welsh et al. 1986b). Presumably this 
involves a signal recognition particle (SRP)-mediated arrest of translation; possibly with 
resultant stacking of ribosomes on the mRNA (Wolin & Walter, 1988). There appears to 
be some specificity in this process, since it is clear that of all the proteins translocated 
across the endoplasmic reticulum in p cells, the majority are not affected by glucose in a 
similar manner (Guest et af. 1991). This tempts speculation that the sequence encoding 
the signal peptide or the signal peptide itself may be important in the translational 
response to glucose 

Finally, evidence was also presented that glucose stimulated the rate of elongation of 
preproinsulin on pre-initiated mRNA. At low concentrations cycloheximide will slow 
down polypeptide chain elongation such that initiation of translation will become 
rate-limiting. Thus, the observation that cycloheximide at appropriate low concen- 
trations had no effect on glucose-stimulated proinsulin biosynthesis in isolated rat islets, 
suggested that glucose affected the rate of proinsulin polypeptide chain elongation 
(Welsh et af. 1986b: Itoh, 1990). 
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