Centralizers and Twisted Centralizers: Application to Intertwining Operators

Xiaoxiang Yu

Abstract

The equality of the centralizer and twisted centralizer is proved based on a case-by-case analysis when the unipotent radical of a maximal parabolic subgroup is abelian. Then this result is used to determine the poles of intertwining operators.

1 Introduction

The purpose of this paper is to prove the equality of the centralizer and twisted centralizer (defined in Section 2.1, originally defined by Shahidi [8]), when the unipotent radical of a maximal parabolic subgroup is abelian. In that case it is known that the adjoint action of the Levi subgroup on the Lie algebra of the unipotent radical has a finite number of orbits, the union of which is an open dense subset $[4,11]$. Then it allows the treatment in [8] of determining the poles of intertwining operators.

To be more precise, let F be a non-archimedean local field of characteristic zero and \bar{F} its algebraic closure. Suppose G is a split connected reductive algebraic group over F, T a maximal split torus of G. Let Δ be a set of simple roots, $\theta=\Delta \backslash\{\alpha\}$, where α is a simple root. Let $P=M N=M_{\theta} N$ be a maximal parabolic subgroup of G. Denote by $\left\{n_{i}\right\}$ a set of representatives for the corresponding open orbits of M in N under the adjoint action of M on $\mathfrak{N}=\operatorname{Lie}(N)$. Let N^{-}be the opposite of N and suppose one can write $w_{0}^{-1} n_{i}=m_{i} n_{i}^{\prime} n_{i}^{-}$where $m_{i} \in M, n_{i}^{\prime} \in N, n_{i}^{-} \in N^{-}$and w_{0} is a representative for $\widetilde{w_{0}}$, the longest element in the Weyl group of A_{0} (the maximal split torus of T in G) modulo that of A_{0} in M.

Define

$$
\begin{gathered}
M_{n_{i}}=\left\{m \in M \mid \operatorname{Int}(m) \circ n_{i}=n_{i}\right\} \\
M_{m_{i}}^{t}=\left\{m \in M \mid w_{0}(m) m_{i} m^{-1}=m_{i}\right\}
\end{gathered}
$$

Observe that $M_{n_{i}} \subset M_{m_{i}}^{t}(c f$. [8]).
It is clear that each n_{i} determines m_{i} uniquely (as well as n_{i}^{\prime} and n_{i}^{-}). But the converse with respect to m_{i} is not true: several n_{i} could have the same m_{i}. The primary result of this paper proves this converse if N is abelian. This is the case where the number of open orbits $\left\{n_{i}\right\}$ is finite [11]. The main result of Section 3 is:

Theorem 1.1 If N is abelian, then $M_{n_{i}}=M_{m_{i}}^{t}$.

[^0]Our proof of the main theorem is based on a case-by-case analysis; all the cases where N can be abelian have been listed and proved. For the exceptional groups G_{2}, F_{4} and E_{8}, there is no maximal parabolic subgroup P such that its unipotent subgroup N is abelian. So these groups are not listed nor considered.

The method we adopt to prove this theorem is an extension of Gaussian elimination. Namely, for each orbit, we find a representative for it under $\operatorname{Ad}(M)$, which is a single element from a one dimensional subgroup corresponding to a positive root in N or a product of two elements from two unipotent subgroups, attached to the longest and shortest roots in N, respectively. Explicitly computing the Bruhat decomposition and using the uniqueness of this decomposition, we can show that $M_{n_{i}}=M_{m_{i}}^{t}$.

This result is crucial in determining the poles of intertwining operators in [8]. To be more precise, let $X(\mathbf{M})_{F}$ be the group of F-rational characters of \mathbf{M}. Denote by A the split component of the center of \mathbf{M}. Then $\mathbf{A} \subset \mathbf{A}_{0}$. Let

$$
\left.\mathfrak{a}=\operatorname{Hom}\left(X(\mathbf{M})_{F}\right), \mathbb{R}\right)=\operatorname{Hom}\left(X(\mathbf{A})_{F}, \mathbb{R}\right)
$$

be the real Lie algebra of \mathbf{A}. Set $\mathfrak{a}^{*}=X(\mathbf{M})_{F} \otimes_{\mathbb{Z}} \mathbb{R}$ and $\mathfrak{a}_{\mathbb{C}}^{*}=\mathfrak{a}^{*} \otimes_{\mathbb{R}} \mathbb{C}$ to denote its real and complex dual.

For $\nu \in \mathfrak{a}_{\mathbb{C}}^{*}$ and σ an irreducible admissible representation of M, let

$$
I(\nu, \sigma)=\operatorname{Ind}_{M N \uparrow G} \sigma \otimes q^{\left\langle\nu, H_{P}(\cdot)\right\rangle} \otimes 1
$$

where H_{P} is the extension of the homomorphism $H_{M}: M \rightarrow \mathfrak{a}=\operatorname{Hom}\left(X(\mathbf{M})_{F}, \mathbb{R}\right)$ to P, extended trivially along N, defined by $q^{\left\langle\chi, H_{P}(m)\right\rangle}=|\chi(m)|_{F}$ for all $\chi \in X(\mathbf{M})_{F}$. Let $V(\nu, \sigma)$ be the space of $I(\nu, \sigma)$, for $h \in V(\nu, \sigma)$, let

$$
A(\nu, \sigma, w) h(g)=\int_{N_{\bar{w}}} h\left(w^{-1} n g\right) d n
$$

where $N_{\tilde{w}}=U \cap w N^{-} w^{-1}$, be the standard intertwining operator from $I(\nu, \sigma)$ into $I(w(\nu), w(\sigma))$.

Determining the reducibility of $I(\nu, \sigma)$ at $\nu=0$ is equivalent to determining the pole of $\int_{N} h\left(w_{0}^{-1} n\right) d n$ at $\nu=0$ for any h in $V(\nu, \sigma)$ which is supported in $P N^{-}$, $c f$. [6-8]. For the purpose of computing the residue we may assume that there exists a Schwartz function ϕ on \mathfrak{M}^{-}, the Lie algebra of N^{-}, such that $h\left(\exp \left(\mathfrak{n}^{-}\right)=\right.$ $\phi\left(\mathfrak{n}^{-}\right) h(e)$, where $\mathfrak{n}^{-} \in \mathfrak{N}^{-}$. Let $n_{i}^{-}=\exp \left(\mathfrak{n}_{i}^{-}\right)$with $\mathfrak{n}_{i}^{-} \in \mathfrak{N}^{-}$. Given a representation σ, let $\psi(m)$ be among the matrix coefficients of σ, i.e, choose an arbitrary element \tilde{v} in the contragredient space of σ, let $\psi(m)=\langle\sigma(m) h(e), \tilde{v}\rangle$.

With these notations and by Theorem 2.2, $M_{m_{i}}^{t} / M_{n_{i}}=1$, (not merely finite as suggested in [8]). Proposition 2.4 [8] can be refined as:

Proposition 1.2 Let σ be an irreducible admissible representation of M. Then the poles of $A\left(\nu, \sigma, w_{0}\right)$ are the same as those of

$$
\sum_{\mathfrak{n}_{i} \in O_{i}} \int_{M / M_{n_{i}}} q^{\left\langle\nu, H_{M}\left(w_{0}(m) m_{i} m^{-1}\right)\right\rangle} \phi\left(\operatorname{Ad}\left(m^{-1}\right) \mathfrak{n}_{i}^{-}\right) \psi\left(w_{0}(m) m_{i} m^{-1}\right) d \dot{m}
$$

where O_{i} runs through a finite number of open orbits of \mathfrak{N} under $\operatorname{Ad}(M), \mathfrak{n}_{i}$ is a representative of O_{i} under the correspondence that $w_{0}^{-1} n_{i}=m_{i} n_{i}^{\prime} n_{i}^{-}$with $n_{i}=\exp \left(\mathfrak{n}_{i}\right)$, $n_{i}^{-}=\exp \left(\mathfrak{n}_{i}^{-}\right)$. Furthermore dm is the measure on $M / M_{n_{i}}$ induced from $d^{*} n_{i}$.

Let \tilde{A} be the center of M. Then there exists a function $f \in C_{c}^{\infty}(M)$ such that $\psi(m)=\int_{\tilde{A}} f(a m) \omega^{-1}(a) d a$, where ω is the central character of σ.

Define

$$
\theta: M \rightarrow M, \theta(m)=w_{0}^{-1} m w_{0}, \forall m \in M
$$

Given $f \in C_{c}^{\infty}(M)$ and $m_{0} \in M$, define the θ-twisted orbit integral for f at m_{0} by:

$$
\phi_{\theta}\left(m_{0}, f\right)=\int_{M / M_{\theta, m_{0}}} f\left(\theta(m) m_{0} m^{-1}\right) d \dot{m}
$$

where

$$
M_{\theta, m_{0}}=M_{\theta, m_{0}}(F)=\left\{m \in M(F) \mid \theta(m) m_{0} m^{-1}=m_{0}\right\}
$$

is the θ-twisted centralizer of m_{0} in $M(F), d \dot{m}$ is the measure on $M / M_{\theta, m_{0}}$ induced from $d m$.

Applying Theorem 2.2, we can restate Theorem 2.5 of [8] as:
Proposition 1.3 Assume σ is supercuspidal and $w_{0}(\sigma) \cong \sigma$. The intertwining operator $A\left(\nu, \sigma, w_{0}\right)$ has a pole at $\nu=0$ if and only if

$$
\sum_{i} \int_{Z(G) / Z(G) \cap w_{0}(\tilde{A}) \tilde{A}^{-1}} \phi_{\theta}\left(z m_{i}, f\right) \omega^{-1}(z) d z \neq 0
$$

for f as above. Here $Z(G)$ is the center of G and

$$
\phi_{\theta}\left(z m_{i}, f\right)=\int_{M / M_{n_{i}}} f\left(z \theta(m) m_{i} m^{-1}\right) d \dot{m}
$$

is the θ-twisted orbital integral for f at $z m_{i}$, where m_{i} corresponds to the representatives $\left\{n_{i}\right\}$ for the open orbits in N under $\operatorname{Int}(M)$ with $w_{0}^{-1} n_{i}=m_{i} n_{i}^{\prime} n_{i}^{-}$as n_{i} runs through the finite number of open orbits in N.

2 Preliminaries

Let F be a non-Archimedean local field of characteristic zero. Denote by \mathcal{O} its ring of integers and let \mathcal{P} be the unique maximal ideal of \mathcal{O}. Let q be the number of elements in $\mathcal{O} / \mathcal{P}$ and fix a uniformizing element ϖ for which $|\varpi|=q^{-1}$, where $|\cdot|=|\cdot|_{F}$ denotes an absolute value for F normalized in this way. Let \bar{F} be the algebraic closure of F.

Let \mathbf{G} be a split connected reductive algebraic group over F. Fix an F-Borel subgroup \mathbf{B} and write $\mathbf{B}=\mathbf{T} \mathbf{U}$, where \mathbf{U} is the unipotent radical of \mathbf{B} and \mathbf{T} is a maximal torus there. Let \mathbf{A}_{0} be the maximal split torus of \mathbf{T} and let Δ be the set of simple roots of \mathbf{A}_{0} in the Lie algebra of \mathbf{U}.

Denote by $\mathbf{P}=\mathbf{M N}$ a maximal parabolic subgroup of \mathbf{G} in the sense that $\mathbf{N} \subset \mathbf{U}$. Assume $\mathbf{T} \subset \mathbf{M}$ and let $\theta=\Delta \backslash\{\alpha\}$ such that $\mathbf{M}=\mathbf{M}_{\theta}$. As usual, we use $W=$ $W\left(\mathbf{A}_{0}\right)$ to denote the Weyl group of \mathbf{A}_{0} in \mathbf{G}. Given $\tilde{w} \in W$, we use w to denote a representative for \tilde{w}. Particularly, let \tilde{w}_{0} be the longest element in W modulo the Weyl group of \mathbf{A}_{0} in \mathbf{M}.

We use $G, P, M, N, B, T, U, A_{0}$ to denote the subgroups of F-rational points of the groups $\mathbf{G}, \mathbf{P}, \mathbf{M}, \mathbf{N}, \mathbf{B}, \mathbf{T}, \mathbf{U}, \mathbf{A}_{\mathbf{0}}$, respectively. We also use $\tilde{G}, \tilde{P}, \tilde{M}, \tilde{N}, \tilde{B}, \tilde{T}, \tilde{U}, \tilde{A_{0}}$ to denote the \bar{F} points of $\mathbf{G}, \mathbf{P}, \mathbf{M}, \mathbf{N}, \mathbf{B}, \mathbf{T}, \mathbf{U}, \mathbf{A}_{\mathbf{0}}$, respectively.

For any $g \in \mathbf{G}$, we will use $\operatorname{Int}(g)$ to denote the inner morphism of \mathbf{G} induced by g, i.e., for any $u \in \mathbf{G}, \operatorname{Int}(g) \circ u=g u g^{-1}$. Let $\mathfrak{g}=\operatorname{Lie}(G)$, the Lie algebra of G. We will use $\operatorname{Ad}(g)$ to denote the adjoint action on \mathfrak{g} induced from $\operatorname{Int}(g)$.

Suppose R is the root system of G. For each root $\beta \in R$ we choose a root vector \mathfrak{g}_{β} in \mathfrak{g}. For $\beta \in R$, let U_{β} be the one dimensional root subgroup of β and for $x \in F$, let $U_{\beta}(x)=\exp \left(x g_{\beta}\right)$.

Let $\mathfrak{N}=\operatorname{Lie}(N)$, the Lie algebra of N. Then $\mathfrak{N}=\bigoplus \mathfrak{N}_{i}$, where \mathfrak{N}_{i} is graded according to α. M acts on \mathfrak{N} by adjoint action. In particular, each \mathfrak{N}_{i} is invariant under $\operatorname{Ad}(M)$.

For each root $\beta \in R$, there is a one dimensional subtorus $H_{\beta}(F)$, dual to β, such that the subgroup generated by H_{β}, U_{β} and $U_{-\beta}$ is a simply connected group of rank one which is split over F. So it is isomorphic to $S L_{2}(F)$. Let Φ_{β} be the isomorphism from $S L_{2}(F)$ to the subgroup generated by H_{β}, U_{β} and $U_{-\beta}$. Then for any $\gamma \in R$ and $t \in F^{*}$,

$$
\gamma\left(\Phi_{\beta}\left(\begin{array}{cc}
t & 0 \\
0 & t^{-1}
\end{array}\right)\right)=t^{\langle\gamma, \beta\rangle}
$$

Lemma 2.1 ([10, Proposition 8.2.3]) Let $\beta, \gamma \in R$, with $\beta \neq \gamma$. Then there exist constants $C_{\beta, \gamma ; i, j} \in \bar{F}$, such that

$$
\left(U_{\beta}(x), U_{\gamma}(y)\right)=\prod_{\substack{i \beta+j \notin R \\ i, j>0}} U_{i \beta+j \gamma}\left(C_{\beta, \gamma ; i, j} x^{i} y^{j}\right)
$$

where the order of the factors in the right side are prescribed by a fixed ordering of R. Actually, the constants $C_{\beta, \gamma ; i, j}$ can be normalized so that $C_{\beta, \gamma ; i, j} \in \mathbb{Z}$. Moreover, if γ is the longer element in the two dimensional root space spanned by β and γ. Then $C_{\beta, \gamma ; i, j}$ can be normalized such that $C_{\beta, \gamma ; 1,1}=1$ if $\beta+\gamma \in R$. (Then $C_{\gamma, \beta, 1,1}=-1$).

2.1 Centralizer and Twisted Centralizer

Let $n_{1} \in N$, suppose $w_{0}^{-1} n_{1} \in P N^{-}$, and write $w_{0}^{-1} n_{1}=p_{1} n_{1}^{-}=m_{1} n_{1}^{\prime} n_{1}^{-}$with $m_{1} \in M, n_{1}^{\prime} \in N$ and $n_{1}^{-} \in N^{-}$. Let $\operatorname{Cent}_{M}\left(n_{1}\right)=M_{n_{1}}$ be the centralizer of n_{1} in M, i.e.,

$$
M_{n_{1}}=\left\{m \in M \mid \operatorname{Int}(m) \circ n_{1}=n_{1}\right\}
$$

and let $M_{n_{1}^{\prime}}=\operatorname{Cent}_{M}\left(n_{1}^{\prime}\right)$ and $M_{n_{1}^{-}}=\operatorname{Cent}_{M}\left(n_{1}^{-}\right)$, respectively. Let $M_{m_{1}}^{t}=\operatorname{Cent}_{m_{1}}^{t}=$ $\left\{m \in M \mid w_{0}(m) m_{1} m^{-1}=m_{1}\right\}$ be the twisted (by means of w_{0}) centralizer of m_{1} in M. Then by the uniqueness of $P N^{-}$decomposition of $w_{0}^{-1} n_{1}$, it is not hard to see
that the groups $M_{n_{1}}, M_{n_{1}^{-}}$and $M_{n_{1}}^{\prime}$ are all equal and are all contained in $M_{m_{1}}^{t}, c f$. [8]. Let $n_{i}=\exp \left(\mathfrak{n}_{i}\right), \mathfrak{n}_{i} \in \mathfrak{N}$, and assume the set $\left\{\mathfrak{n}_{i}\right\}$ generates a dense subset of \mathfrak{N} under the action of M.

The main result in this paper is the following:
Theorem 2.2 Let $n_{1}=\exp \left(\mathfrak{n}_{1}\right)$, where $\mathfrak{n}_{1} \in\left\{\mathfrak{n}_{i}\right\}$ is one of the generators of a dense subset of \mathfrak{M} under the action of M. Then $M_{n_{1}}=M_{m_{1}}^{t}$.

From the above notations, we have:

$$
\begin{equation*}
w_{0}^{-1} n_{1}=m_{1} n_{1}^{\prime} n_{1}^{-} . \tag{2.1}
\end{equation*}
$$

If $m \in M_{m_{1}}^{t}$, then

$$
\begin{align*}
w_{0}^{-1} m n_{1} m^{-1} & =\left(w_{0}(m) m_{1} m^{-1}\right)\left(m n_{1}^{\prime} m^{-1}\right)\left(m n_{1}^{-} m^{-1}\right) \tag{2.2}\\
& =m_{1}\left(m n_{1}^{\prime} m^{-1}\right)\left(m n_{1}^{-} m^{-1}\right)
\end{align*}
$$

For convenience of notation, Let

$$
n_{2}=\operatorname{Int}(m) \circ n_{1}, \quad n_{2}^{\prime}=\operatorname{Int}(m) \circ n_{1}^{\prime}, \quad n_{2}^{-}=\operatorname{Int}(m) \circ n_{1}^{-}
$$

Then equation (2.2) will be changed to:

$$
\begin{equation*}
w_{0}^{-1} n_{2}=m_{1} n_{2}^{\prime} n_{2}^{-} \tag{2.3}
\end{equation*}
$$

Multiplying the inverse of equation (2.3) by equation (2.1), we have:

$$
\begin{equation*}
n_{2}^{-1} n_{1}=\left(n_{2}^{-}\right)^{-1}\left(n_{2}^{\prime}\right)^{-1} n_{1}^{\prime} n_{1}^{-} \tag{2.4}
\end{equation*}
$$

Let

$$
\begin{gathered}
s_{1}=n_{2}^{-1} n_{1} \in N, \quad s_{1}^{-}=\left(n_{1}^{-}\right)^{-1} \in N^{-} \\
s_{2}^{-}=\left(n_{2}^{-}\right)^{-1} \in N^{-}, \quad s_{2}=\left(n_{2}^{\prime}\right)^{-1} n_{1}^{\prime} \in N .
\end{gathered}
$$

Then equation (2.4) becomes

$$
\begin{equation*}
s_{1} s_{1}^{-}=s_{2}^{-} s_{2} \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{aligned}
n_{1} & =\exp \left(\mathfrak{n}_{1}\right), & n_{2} & =\exp \left(\mathfrak{n}_{2}\right) \\
s_{1} & =\exp \left(r_{1}\right), & s_{2} & =\exp \left(r_{2}\right) \\
s_{1}^{-} & =\exp \left(r_{1}^{-}\right), & s_{2}^{-} & =\exp \left(r_{2}^{-}\right)
\end{aligned}
$$

Then $\mathfrak{n}_{2}=\operatorname{Ad}(m) \circ \mathfrak{n}_{1}$ is one of the generators of a dense orbit of \mathfrak{M} under $\operatorname{Ad}(M)$ since \mathfrak{n}_{1} is. Similarly it is not hard to see that both r_{1}^{-}and r_{2}^{-}are generators of a dense orbit of \mathfrak{M}^{-}.

Our goal is to prove:
Claim Under the assumption in Theorem 2.2, we must have: $s_{1}^{-}=s_{2}^{-}$.

Once this has been proved, it implies $n_{1}^{-}=n_{2}^{-}$, which will lead to $n_{1}=n_{2}$ by the uniqueness of $P N^{-}$decomposition. Since $m \in M_{m_{1}}^{t}$ and $n_{2}=\operatorname{Int}(m) \circ n_{1}$, we get $m \in M_{n_{1}}$ if $m \in M_{m_{1}}^{t}$. So $M_{m_{1}}^{t} \subset M_{n_{1}}$. But we already have $M_{n_{1}} \subset M_{m_{1}}^{t}$,cf. [8]. So $M_{n_{1}}=M_{m_{1}}^{t}$ as desired.

Remark We can always assume that $s_{2}^{-} \neq 1$, since otherwise there is nothing that needs to be done. We are going to prove the claim according to the type of Dynkin diagram of G since the Gaussian elimination essentially depends on the structure of the root system.

Strategy of Proof Except for some simple cases (like A_{l}, C_{l}), our proof relies on Gaussian elimination for \mathfrak{R}. Namely, \mathfrak{N} can be generated by \mathfrak{g}_{β} with β a positive root in N, or by $\mathfrak{g}_{\beta}, \mathfrak{g}_{\gamma}$ under $\operatorname{Ad}(M)$, where $\mathfrak{g}_{\beta}, \mathfrak{g}_{\gamma}$ are root vectors attached to the shortest and longest roots in N. Thus by acting with a suitable $m \in M$ on both sides of equation (2.5), we can always assume that $s_{2}=U_{\beta}\left(a_{1}\right) U_{\gamma}\left(a_{2}\right)$ or $U_{\beta}\left(a_{1}\right)$.

We will multiply both sides of equation (2.5) by $U_{\beta}(x) U_{\gamma}(y)$ from the right, where x, y are variables. Then the M-parts of $s_{1} s_{1}^{-} U_{\beta}(x) U_{\gamma}(y)$ and $s_{2}^{-} s_{2} U_{\beta}(x) U_{\gamma}(y)$ can be calculated and compared explicitly since they are in the simplest form. We can then conclude that their M-parts will never be equal unless $s_{1}^{-}=s_{2}^{-}$.

3 Proof of the Main Theorem

Now suppose N is abelian, then $\operatorname{Ad}(M)$ acts on \mathfrak{N} having finite number of orbits, cf. $[4,11]$.

3.1 Roots in Unipotent Radical

Lemma 3.1 Suppose N is abelian. If

$$
\beta=c \alpha+\sum_{\alpha_{i} \neq \alpha} c_{i} \alpha_{i}
$$

is a positive root of N where α_{i} 's are simple roots from θ, then $c=1$.
Proof Using [3, Corollary of Lemma A $\S 10.2$], β can be written in the form $\beta_{1}+$ $\beta_{2}+\cdots+\beta_{k}$ with $\beta_{i} \in \Delta\left(\beta_{i}\right.$ not necessary distinct $)$ such that each partial sum $\beta_{1}+\beta_{2}+\cdots+\beta_{j}$ is a root $(1 \leq j \leq k)$. Suppose $c \geq 2$, then there is j such that $\beta_{j}=\alpha$ and in the remaining partial sum $\beta_{1}+\beta_{2}+\cdots+\beta_{j-1}$, there is still one α. Let $\gamma=\beta_{1}+\beta_{2}+\cdots+\beta_{j-1}$, then $\mathfrak{g}_{\gamma}, \mathfrak{g}_{\beta_{j}} \in \mathfrak{N}$, and $\left[\mathfrak{g}_{\gamma}, \mathfrak{g}_{\beta_{j}}\right]=\mathfrak{g}_{\beta_{1}+\beta_{2}+\cdots+\beta_{j}} \neq 0$. This is a contradiction to \mathfrak{M} being abelian.

If

$$
P=\sum_{\substack{\alpha_{i} \in \Delta \\ i=1}}^{k} c_{i} \alpha_{i}
$$

is a root, choose k points in a plane representing each α_{i} and draw a line connecting α_{i}, α_{j}, if $\left\langle\alpha_{i}, \hat{\alpha_{j}}\right\rangle \neq 0$. Then the graph obtained is obviously a subgraph of the Dynkin diagram and is composed of several connected pieces. For each connected piece C_{i} of this graph, we set

$$
P_{i}=\sum_{\alpha_{i} \in C_{i}} c_{i} \alpha_{i}
$$

Then

$$
P=\sum_{i}^{m} P_{i}
$$

where m is the number of connected pieces. All the C_{i} 's are disjoint. We call P_{i} a connected piece of P. Call P_{i} positive if each c_{i} is positive, and negative if each c_{i} is negative. In particular, we call P a connected root if P is composed of only one connected piece.

Lemma 3.2 Every positive root is connected.
Proof Let

$$
r=\sum_{i=1}^{k} P_{i}
$$

be a positive root with all P_{i} 's being positive connected and disjoint with each other. Then by [3, Corollary of Lemma A §10.2], r can be written as

$$
r=\sum_{i=1}^{n} \alpha_{i}
$$

such that every partial sum

$$
r_{s}=\sum_{i=1}^{s} \alpha_{i}, \quad 1 \leq s \leq n
$$

is a root. If $k>1$, then there must be one $s, s>1$, and one $i, 1 \leq i \leq k$, such that in the sum for r_{s}, there is only one element, say $\alpha_{j}, 1 \leq j \leq s$, which comes from P_{i}. Then for all $\alpha_{i}, 1 \leq i \leq s, i \neq j,\left\langle\alpha_{i}, \hat{\alpha_{j}}\right\rangle=0$ since α_{i}, α_{j} are not in the same connected piece. So

$$
S_{\alpha_{j}}\left(r_{s}\right)=r_{s}-\left\langle r_{s}, \widehat{\alpha_{j}}\right\rangle \alpha_{j}=\sum_{i=1}^{s} \alpha_{i}-2 \alpha_{j}=\sum_{\substack{i=1 \\ i \neq j}}^{s} \alpha_{i}-\alpha_{j},
$$

where $S_{\alpha_{j}}$ is the reflection about α_{j} in the Weyl group of G. Since none of the α_{i} 's in the sum

$$
\sum_{i=1, i \neq j}^{s} \alpha_{i}
$$

can be α_{j}, and all α_{i} are simple roots, $S_{\alpha_{j}}\left(r_{s}\right)$ is not a root. This is a contradiction to $S_{\alpha_{j}}\left(r_{s}\right)$ being a root since r_{s} is a root.

3.2 Type A_{l}

Equation (2.5) implies $\exp \left(r_{1}\right) \exp \left(r_{1}^{-}\right)=\exp \left(r_{2}^{-}\right) \exp \left(r_{2}\right)$.
Since $r_{1}^{2}=r_{2}^{2}=\left(r_{1}^{-}\right)^{2}=\left(r_{2}^{-}\right)^{2}=0$, we have:

$$
\begin{equation*}
r_{1}+r_{1}^{-}+r_{1} r_{1}^{-}=r_{2}^{-}+r_{2}+r_{2}^{-} r_{2} . \tag{3.1}
\end{equation*}
$$

Choose $t \in T$ and let $\operatorname{Ad}(t)$ act on both sides of equation (3.1). We get

$$
\alpha(t) r_{1}+\alpha^{-1}(t) r_{1}^{-}+r_{1} r_{1}^{-}=\alpha^{-1}(t) r_{2}^{-}+\alpha(t) r_{2}+r_{2}^{-} r_{2}
$$

Since this is true for all $t \in T$, we must have $r_{1}=r_{2}, r_{1}^{-}=r_{2}^{-}$. Consequently, $s_{1}^{-}=s_{2}^{-}$.

3.3 Type B_{l}

In this case, we may assume that T can be chosen to be the set of matrices of the form:

$$
\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{l}, x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{l}^{-1}, 1\right)
$$

since the unipotent subgroups remain unchanged in every adjoint action.
The Dynkin diagram of G is:

Let $e_{i} \in \operatorname{Hom}\left(T, F^{*}\right), 1 \leq i \leq l$ such that $e_{i}(T)=x_{i}$. Then $\alpha_{i}=e_{i}-e_{i+1}, 1 \leq$ $i \leq l-1 ; \alpha_{l}=e_{l}$. The only case when N can be abelian is $\alpha=\alpha_{1}$. Then the positive roots in N are: $\left\{e_{1} \pm e_{i} \mid 2 \leq i \leq l\right\} \cup\left\{e_{1}\right\}$.

We choose a root vector for each positive root in G as follows:

$$
\begin{aligned}
\mathfrak{g}_{e_{i}-e_{j}} & =E_{i, j}-E_{l+j, l+i}, & & 1 \leq i<j \leq l \\
\mathfrak{g}_{e_{i}+e_{j}} & =E_{i, l+j}-E_{j, l+i}, & & 1 \leq i<j \leq l \\
\mathfrak{g}_{e_{i}} & =E_{i, 2 l+1}-E_{2 l+1, l+i}, & & 1 \leq i \leq l .
\end{aligned}
$$

We also choose a root vector for each negative root in G as follows:

$$
\begin{aligned}
\mathfrak{g}_{-e_{i}+e_{j}} & =E_{j, i}-E_{l+i, l+j}, & & 1 \leq i<j \leq l, \\
\mathfrak{g}_{-e_{i}-e_{j}} & =E_{l+j, i}-E_{l+i, j}, & & 1 \leq i<j \leq l, \\
\mathfrak{g}_{-e_{i}} & =E_{l+i, 2 l+1}-E_{2 l+1, i}, & & 1 \leq i \leq l,
\end{aligned}
$$

where the $E_{i, j}$'s are elementary matrices in $M_{(2 l+1) \times(2 l+1)}$ such that its (i, j) entry is 1 , all other entries are 0 .

Lemma 3.3 Given any nonzero element

$$
r=\sum_{i=2}^{l} a_{i} \mathfrak{g}_{e_{1}-e_{i}}+\sum_{i=2}^{l} b_{i} \mathfrak{g}_{e_{1}+e_{i}}+c \mathfrak{g}_{e_{1}} \in \mathfrak{N}
$$

there is an $m \in M$, such that $\operatorname{Ad}(m) \circ r=c_{0} \mathfrak{g}_{e_{1}-e_{2}}+c_{1} g_{e_{1}+e_{2}}$ with $c_{0} \neq 0$.

Proof This is [9, Lemma 4.2].
Lemma 3.4 For an element $r=c_{0} \mathfrak{g}_{e_{1}-e_{2}}+c_{1} \mathfrak{g}_{e_{1}+e_{2}} \in \mathfrak{N}$ from Lemma 3.3 with $c_{1} \neq 0$, there is $m \in \tilde{M}$ such that $\operatorname{Ad}(m) \circ r=a \mathfrak{g}_{e_{1}}$ with $a \neq 0$.

Proof Choose $x \in \bar{F}$ such that $\frac{1}{2} c_{0} x^{2}=c_{1}$. Let $m=U_{-e_{2}}\left(\frac{1}{x}\right) U_{e_{2}}(x)$. Then $\operatorname{Ad}(m) \circ$ $r=-c_{0} x g_{e_{1}}$. Setting $a=-c_{0} x$ finishes the proof.

We start with equation (2.5). If $s_{2}=1$, then it immediately follows $s_{1}^{-}=s_{2}^{-}$, and there is nothing to do. So suppose $s_{2} \neq 1$. By the above two lemmas, applying a suitable $\operatorname{Int}(m), m \in \tilde{M}$ on both sides if necessary, we can assume $s_{2}=U_{e_{1}}(a)$ or $U_{e_{1}-e_{2}}(a)$ with $a \neq 0$. By taking a suitable finite extension of F, we can always assume that $m \in M$ and consequently $a \in F$. Without loss of generality, we assume $s_{2}=U_{e_{1}}(a)$.

Suppose

$$
\begin{aligned}
& s_{1}^{-}=\prod_{k=2}^{l} U_{-e_{1}-e_{k}}\left(a_{k}\right) \prod_{k=2}^{l} U_{-e_{1}+e_{k}}\left(b_{k}\right) U_{-e_{1}}\left(x_{0}\right) \\
& s_{2}^{-}=\prod_{k=2}^{l} U_{-e_{1}-e_{k}}\left(c_{k}\right) \prod_{k=2}^{l} U_{-e_{1}+e_{k}}\left(d_{k}\right) U_{-e_{1}}\left(y_{0}\right)
\end{aligned}
$$

Multiply both sides of (2.5) by $u=U_{e_{1}}(x) \in N$ on the right, where $x \in F$. Decompose both $s_{1} s_{1}^{-} u$ and $s_{2}^{-} s_{2} u$ into $P N^{-}$form, and compare their M part. Their M part will never be equal unless $s_{1}^{-}=s_{2}^{-}$. The reason for multiplying u is to exclude the possibility of occurrence of some Weyl group elements (when $a y_{0}=-1$).

First we have

$$
U_{-e_{1}}\left(y_{0}\right) U_{e_{1}}(a+x)=U_{e_{1}}\left(\frac{a+x}{1+y_{0}(a+x)}\right) h_{2, x} U_{-e_{1}}\left(\frac{y_{0}}{1+y_{0}(a+x)}\right)
$$

where

$$
h_{2, x}=\Phi_{e_{1}}\left(\begin{array}{cc}
\frac{1}{1+y_{0}(a+x)} & 0 \\
0 & 1+y_{0}(a+x)
\end{array}\right) \in T
$$

Set

$$
a_{x}=\frac{a+x}{1+y_{0}(a+x)} .
$$

For any $k, 2 \leq k \leq l$, by Lemma 2.1,

$$
\begin{aligned}
& U_{-e_{1}+e_{k}}\left(d_{k}\right) U_{e_{1}}\left(a_{x}\right)=U_{e_{1}}\left(a_{x}\right) U_{e_{k}}\left(d_{k} a_{x}\right) U_{-e_{1}+e_{k}}\left(d_{k}\right), \\
& U_{-e_{1}-e_{k}}\left(c_{k}\right) U_{e_{1}}\left(a_{x}\right)=U_{e_{1}}\left(a_{x}\right) U_{-e_{k}}\left(c_{k} a_{x}\right) U_{-e_{1}-e_{k}}\left(c_{k}\right)
\end{aligned}
$$

Then by recursively applying Lemma 2.1 and using the fact that N and N^{-}are normal in P and P^{-}respectively, it can be calculated that the M part of $s_{2}^{-} s_{2} u$ is:

$$
m_{2}=\prod_{k=2}^{l} U_{-e_{k}}\left(c_{k} a_{x}\right) \prod_{k=2}^{l} U_{e_{k}}\left(d_{k} a_{x}\right) h_{2, x}
$$

Similarly, if we set

$$
b_{x}=\frac{x}{1+x_{0} x} \quad \text { and } \quad h_{1, x}=\Phi_{e_{1}}\left(\begin{array}{cc}
\frac{1}{1+x_{0} x} & 0 \\
0 & 1+x_{0} x
\end{array}\right) \in T
$$

then the M part of $s_{1} s_{1}^{-} u$ is:

$$
m_{1}=\prod_{k=2}^{l} U_{-e_{k}}\left(a_{k} b_{x}\right) \prod_{k=2}^{l} U_{e_{k}}\left(b_{k} b_{x}\right) h_{1, x}
$$

From equation (2.5), $s_{1} s_{1}^{-} u=s_{2}^{-} s_{2} u$. By the uniqueness of $M N N^{-}$decomposition, we must have $m_{1}=m_{2}$. Since m_{1} and m_{2} are products of unipotent groups attached to roots in M in the same order, we must have $c_{k} a_{x}=a_{k} b_{x}$ and $d_{k} a_{x}=b_{k} b_{x}$ for almost all $x \in F$ and all $k, 2 \leq k \leq l$. These equations lead to:

$$
\begin{align*}
& \left(c_{k} x_{0}-a_{k} y_{0}\right) x^{2}+\left(c_{k} x_{0}+a c_{k} x_{0}-a_{k}-a a_{k} y_{0}\right) x+a c_{k}=0 \tag{3.2}\\
& \left(d_{k} x_{0}-b_{k} y_{0}\right) x^{2}+\left(d_{k} x_{0}+a d_{k} x_{0}-b_{k}-a b_{k} y_{0}\right) x+a d_{k}=0 \tag{3.3}
\end{align*}
$$

For equations (3.2) and (3.3) to have infinitely many solutions, one must have $a_{k}=$ $b_{k}=c_{k}=d_{k} \equiv 0, \forall k, 2 \leq k \leq l$, since $a \neq 0$ by assumption. Moreover, we have $h_{1, x}=h_{2, x}$ for almost all x, which means the equation

$$
\left(y_{0}-x_{0}\right) x+a y_{0}=0
$$

has infinitely many solutions, thus $y_{0}=0$, so $s_{2}^{-}=1$, which is a contradiction. So in order that equation (2.5) holds, we must have $s_{2}=1$, which leads to $s_{1}^{-}=s_{2}^{-}$. When $s_{2}=U_{e_{1}-e_{2}}(a)$, we can also prove that $s_{1}^{-}=s_{2}^{-}$in a similar way. That finishes the proof of the main theorem in case G is of type B_{l}.

3.4 Type C_{l}

In this case, we may assume T is the set of matrices of the form:

$$
\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{l}, x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{l}^{-1}\right)
$$

since the unipotent subgroups remain unchanged in every adjoint action.
Let $e_{i} \in \operatorname{Hom}\left(T, F^{*}\right)$ such that $e_{i}(H)=x_{i}$. Then $R=\left\{ \pm e_{i} \pm e_{j} \mid i \neq j\right\} \cup\left\{ \pm 2 e_{k}\right\}$. N is abelian only in case $\alpha=2 e_{l}$. In this case, $\Delta=\left\{e_{i}-e_{i+1} \mid 1 \leq i \leq l-1\right\} \cup\left\{2 e_{l}\right\}$. The positive roots in N are: $R^{+} \backslash \theta^{+}=\left\{e_{i}+e_{j} \mid i \neq j\right\} \cup\left\{2 e_{i} \mid 1 \leq i \leq l\right\}$. And \mathfrak{N} is all the $2 l \times 2 l$ matrices of the form:

$$
\left(\begin{array}{ll}
0 & Y \\
0 & 0
\end{array}\right)
$$

where $Y \in M_{l}(F)$ and $Y^{t}=Y$. So for each $\mathfrak{n} \in \mathfrak{N}, \mathfrak{n}^{2}=0$, and for each $\mathfrak{n}^{-} \in$ $\mathfrak{N}^{-}, \mathfrak{n}^{-2}=0$. It can be seen that the proof for the A_{l} case also applies in this case which implies $s_{1}^{-}=s_{2}^{-}$.

3.5 Type D_{l}

In this case, again T may be considered to be the set of matrices of the form:

$$
\operatorname{diag}\left(x_{1}, x_{2}, \ldots, x_{l}, x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{l}^{-1}\right)
$$

because the unipotent subgroups remain unchanged in every adjoint action.
Let $e_{i} \in \operatorname{Hom}\left(T, F^{*}\right)$ such that $e_{i}(H)=x_{i}$. Then $R=\left\{ \pm e_{i} \pm e_{j} \mid i \neq j\right\}$, $\Delta=\left\{e_{i}-e_{i+1} \mid 1 \leq i \leq l-1\right\} \cup\left\{e_{l-1}+e_{l}\right\}$. Let $\alpha_{i}=e_{i}-e_{i+1}$ for $1 \leq i \leq l-1$, and let $\alpha_{l}=e_{l-1}+e_{l}$. For N to be abelian, α must be α_{1}, α_{l-1} or α_{l}. If $\alpha=\alpha_{l-1}$, then every element $\mathfrak{n} \in \mathfrak{N}$ has the form:

$$
\left(\begin{array}{cc}
A & Y \\
0 & -A^{t}
\end{array}\right)
$$

where

$$
A=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & a_{1} \\
0 & 0 & 0 & \cdots & 0 & a_{2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & a_{l-1} \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right)
$$

and $B \in M_{l-1}(F), B=-B^{t}$. Then it is easily checked that $\mathfrak{n}^{2}=0$ and consequently for each $\mathfrak{n}^{-} \in \mathfrak{N}^{-}, \mathfrak{n}^{-2}=0$. Again we can use the same method as in A_{l} or C_{l} to prove that $s_{1}^{-}=s_{2}^{-}$.

The symmetry between α_{l} and α_{l-1} takes care of the case $\alpha=\alpha_{l}$.
If $\alpha=\alpha_{1}$, then \mathfrak{N} does not have the property that for each $\mathfrak{n} \in \mathfrak{M}, \mathfrak{n}^{2}=0$. In this case, the positive roots in N are: $\left\{e_{1}-e_{i} \mid 1<i \leq l\right\} \cup\left\{e_{1}+e_{j} \mid 1<j \leq l\right\}$.

We choose a root vector for each positive root in G as follows:

$$
\begin{array}{cl}
\mathfrak{g}_{e_{i}-e_{j}}=E_{i, j}-E_{l+j, l+i}, & 1 \leq i<j \leq l \\
\mathfrak{g}_{e_{i}+e_{j}}=E_{i, l+j}-E_{j, l+i}, & 1 \leq i<j \leq l
\end{array}
$$

We also choose a root vector for each negative root in G as follows:

$$
\begin{array}{ll}
\mathfrak{g}_{-e_{i}+e_{j}}=E_{j, i}-E_{l+i, l+j}, & 1 \leq i<j \leq l, \\
\mathfrak{g}_{-e_{i}-e_{j}}=E_{l+j, i}-E_{l+i, j}, & 1 \leq i<j \leq l,
\end{array}
$$

where the $E_{j, k}$'s are elementary matrix in $M_{2 l \times 2 l}$. Then $\left\{\mathfrak{g}_{e_{1} \pm e_{i}} \mid 1<i \leq l\right\}$ is a basis for \mathfrak{N}.

Theorem 3.5 (Gaussian Elimination) For any nonzero $r \in \mathfrak{N}$, there exist $m \in M$ and $k_{0}, k_{1} \in F$, with $k_{0} \neq 0$, such that $\operatorname{Ad}(m) \circ r=k_{0} \mathfrak{g}_{e_{1}-e_{2}}+k_{1} \mathfrak{g}_{e_{1}+e_{2}}$.

Proof Suppose

$$
r=\sum_{i=1}^{l-1} a_{i} \mathfrak{g}_{e_{1}-e_{i+1}}+\sum_{i=1}^{l-1} a_{i}^{\prime} \mathfrak{g}_{e_{1}+e_{i+1}}
$$

We first prove that by applying a suitable $m^{\prime} \in M$ on r if necessary, we can always assume that $a_{1} \neq 0$.

Assume $a_{1}=0$. Let

$$
m^{\prime}= \begin{cases}U_{-e_{2}+e_{i+1}}(1) & \exists i, 2 \leq i \leq l-1, \text { such that } a_{i} \neq 0 \\ U_{-e_{2}-e_{i+1}}(1) & \exists i, 2 \leq i \leq l-1, \text { such that } a_{i}^{\prime} \neq 0 \\ s_{e_{2}} & \text { otherwise }\end{cases}
$$

where $s_{e_{2}}$ is a representative of the Weyl group element $S_{e_{2}}$, which is the reflection about e_{2}.

By applying the formula $\operatorname{Ad}\left(\exp \left(x g_{\beta}\right)\right)=e^{\operatorname{ad}\left(x g_{\beta}\right)}$ for each root $\beta \in R$, it is easily checked that the coefficient of $\mathfrak{g}_{e_{1}-e_{2}}$ in $\operatorname{Ad}\left(m^{\prime}\right) \circ r$ is nonzero.

Let $k_{0}=a_{1}$, and

$$
m=\left[\prod_{i=3}^{l} \exp \left(\frac{a_{i-1}^{\prime}}{k_{0}} \mathfrak{g}_{e_{2}+e_{i}}\right)\right] \cdot\left[\prod_{i=3}^{l} \exp \left(\frac{a_{i-1}}{k_{0}} \mathfrak{g}_{e_{2}-e_{i}}\right)\right]
$$

Then a direct calculation shows that

$$
\operatorname{Ad}(m) \circ r=k_{0} \mathfrak{g}_{e_{1}-e_{2}}+\left(a_{l-1}^{\prime}+\sum_{i=3}^{l} \frac{a_{i-1} \cdot a_{i-1}^{\prime}}{k_{0}}\right) \mathfrak{g}_{e_{1}+e_{2}}
$$

Let k_{1} denote the coefficient of $\mathfrak{g}_{e_{1}+e_{2}}$ from the right-hand side of the above equation, then $\operatorname{Ad}(m) \circ r=k_{0} \mathfrak{g}_{e_{1}-e_{2}}+k_{1} \mathfrak{g}_{e_{1}+e_{2}}$ as desired.

Considering equation (2.5), if $s_{2} \neq 0$, by Theorem 3.5, applying an $m \in M$ on both sides, we can assume $s_{2}=U_{e_{1}-e_{2}}\left(k_{0}\right) \cdot U_{e_{1}+e_{2}}\left(k_{1}\right)$ with $k_{0} \neq 0$.

Suppose

$$
\begin{aligned}
& s_{1}^{-}=\prod_{i=2}^{l} U_{-e_{1}-e_{i}}\left(a_{i}\right) \prod_{i=2}^{l} U_{-e_{1}+e_{i}}\left(b_{i}\right) \\
& s_{2}^{-}=\prod_{i=2}^{l} U_{-e_{1}-e_{i}}\left(c_{i}\right) \prod_{i=2}^{l} U_{-e_{1}+e_{i}}\left(d_{i}\right)
\end{aligned}
$$

We will adopt the strategy we have used in the case of B_{l} : multiply both sides of (2.5) by $u=U_{e_{1}-e_{2}}(x) U_{e_{1}+e_{2}}(y) \in N$ on the right, where x, y are variables in F. Decompose both $s_{1} s_{1}^{-} u$ and $s_{2}^{-} s_{2} u$ into $P N^{-}$form and compare their M parts.

Now let us consider the $P N^{-}$decomposition of $s_{1} s_{1}^{-} u$ and $s_{2}^{-} s_{2} u$. For $s_{1}^{-} U_{e_{1}-e_{2}}(x)$, first we have:

$$
\begin{equation*}
U_{-e_{1}+e_{2}}\left(b_{2}\right) U_{e_{1}-e_{2}}(x)=U_{e_{1}-e_{2}}\left(x^{\prime}\right) h_{0, x} U_{-e_{1}+e_{2}}\left(\frac{b_{2}}{1+b_{2} x}\right) \tag{3.4}
\end{equation*}
$$

where

$$
x^{\prime}=\frac{x}{1+b_{2} x} \quad \text { and } \quad h_{0, x}=\Phi_{e_{1}-e_{2}}\left(\begin{array}{cc}
\frac{1}{1+b_{2} x} & 0 \\
0 & 1+b_{2} x
\end{array}\right) \in T
$$

For each $i, 3 \leq i \leq l$, by applying Lemma 2.1, we get:

$$
\begin{align*}
U_{-e_{1}+e_{i}}\left(b_{i}\right) U_{e_{1}-e_{2}}\left(x^{\prime}\right) & =U_{e_{1}-e_{2}}\left(x^{\prime}\right) U_{-e_{2}+e_{i}}\left(b_{i} x^{\prime}\right) U_{-e_{1}+e_{i}}\left(b_{i}\right) \tag{3.5}\\
U_{-e_{1}-e_{i}}\left(a_{i}\right) U_{e_{1}-e_{2}}\left(x^{\prime}\right) & =U_{e_{1}-e_{2}}\left(x^{\prime}\right) U_{-e_{2}-e_{i}}\left(a_{i} x^{\prime}\right) U_{-e_{1}-e_{i}}\left(a_{i}\right) \tag{3.6}
\end{align*}
$$

And $U_{e_{1}-e_{2}}$ commutes with $U_{-e_{1}-e_{2}}$.
From equations (3.5), (3.6) and using the fact that both N and N^{-}are normal in P and P^{-}, respectively, we reach the following:

$$
\begin{equation*}
s_{1}^{-} U_{e_{1}-e_{2}}(x)=U_{e_{1}-e_{2}}\left(x^{\prime}\right) \prod_{i=3}^{l} U_{-e_{2}-e_{i}}\left(a_{i} x^{\prime}\right) \prod_{i=3}^{l} U_{-e_{2}+e_{i}}\left(b_{i} x^{\prime}\right) h_{0, x_{1}}^{-\prime} \tag{3.7}
\end{equation*}
$$

for a suitable $s_{1}^{-\prime} \in N^{-}$. When $s_{2}^{-} s_{2} u=s_{2}^{-} U_{e_{1}-e_{2}}\left(k_{0}+x\right) U_{e_{1}+e_{2}}\left(k_{1}+y\right)$, a similar calculation shows that

$$
\begin{equation*}
s_{2}^{-} U_{e_{1}-e_{2}}\left(k_{0}+x\right)=U_{e_{1}-e_{2}}\left(k_{0, x}\right) \prod_{i=3}^{l} U_{-e_{2}-e_{i}}\left(c_{i} k_{0, x}\right) \prod_{i=3}^{l} U_{-e_{2}+e_{i}}\left(d_{i} k_{0, x}\right) h_{0, x}^{\prime} s_{2}^{-\prime} \tag{3.8}
\end{equation*}
$$

for a suitable $s_{2}^{-\prime} \in N^{-}$, where

$$
k_{0, x}=\frac{k_{0}+x}{1+d_{2}\left(k_{0}+x\right)} \quad \text { and } \quad h_{0, x}^{\prime}=\Phi_{e_{1}-e_{2}}\left(\begin{array}{cc}
\frac{1}{1+d_{2}\left(k_{0}+x\right)} & 0 \\
0 & 1+d_{2}\left(k_{0}+x\right)
\end{array}\right) \in T
$$

Suppose

$$
\begin{aligned}
s_{1}^{\prime \prime} & =\prod_{i=2}^{l} U_{-e_{1}-e_{i}}\left(a_{i}^{\prime}\right) \prod_{i=2}^{l} U_{-e_{1}+e_{i}}\left(b_{i}^{\prime}\right), \\
s_{2}^{-\prime} & =\prod_{i=2}^{l} U_{-e_{1}-e_{i}}\left(c_{i}^{\prime}\right) \prod_{i=2}^{l} U_{-e_{1}+e_{i}}\left(d_{i}^{\prime}\right) .
\end{aligned}
$$

Then with a similar calculation as above, by applying Lemma 2.1 recursively, we get:

$$
\begin{equation*}
\left(s_{1}^{-}\right)^{\prime} U_{e_{1}+e_{2}}(y)=U_{e_{1}+e_{2}}\left(y^{\prime}\right) \prod_{i=3}^{l} U_{e_{2}-e_{i}}\left(-a_{i}^{\prime} y^{\prime}\right) \prod_{i=3}^{l} U_{e_{2}+e_{i}}\left(-b_{i}^{\prime} y^{\prime}\right) h_{1, y} s_{1}^{-\prime \prime} \tag{3.9}
\end{equation*}
$$

with a suitable $s_{1}^{-\prime \prime} \in N^{-}$, where

$$
y^{\prime}=\frac{y}{1+a_{2}^{\prime} y} \quad \text { and } \quad h_{1, y}=\Phi_{e_{1}+e_{2}}\left(\begin{array}{cc}
\frac{1}{1+a_{2}^{\prime} y} & 0 \\
0 & 1+a_{2}^{\prime} y
\end{array}\right) \in T
$$

While

$$
\begin{equation*}
\left(s_{2}^{-}\right)^{\prime} U_{e_{1}+e_{2}}\left(k_{1}+y\right)=U_{e_{1}+e_{2}}\left(k_{1, y}\right) \prod_{i=3}^{l} U_{e_{2}-e_{i}}\left(-c_{i}^{\prime} k_{1, y}\right) \prod_{i=3}^{l} U_{e_{2}+e_{i}}\left(-d_{i}^{\prime} k_{1, y}\right) h_{1, y}^{\prime} s_{2}^{-\prime \prime} \tag{3.10}
\end{equation*}
$$

with a suitable $s_{2}^{-\prime \prime} \in N^{-}$, where

$$
k_{1, y}=\frac{k_{1}+y}{1+c_{2}^{\prime}\left(k_{1}+y\right)} \quad \text { and } \quad h_{1, y}^{\prime}=\Phi_{e_{1}+e_{2}}\left(\begin{array}{cc}
\frac{1}{1+c_{2}^{\prime}\left(k_{1}+y\right)} & 0 \\
0 & 1+c_{2}^{\prime}\left(k_{1}+y\right)
\end{array}\right) \in T
$$

Thus from (3.7), (3.9), the M-part of $s_{1} s_{1}^{-} u$ is:

$$
\begin{aligned}
m_{1}= & \prod_{i=3}^{l} U_{-e_{2}-e_{i}}\left(a_{i} x^{\prime}\right) \prod_{i=3}^{l} U_{-e_{2}+e_{i}}\left(b_{i} x^{\prime}\right) h_{0, x} \prod_{i=3}^{l} U_{e_{2}-e_{i}}\left(-a_{i}^{\prime} y^{\prime}\right) \\
& \times \prod_{i=3}^{l} U_{e_{2}+e_{i}}\left(-b_{i}^{\prime} y^{\prime}\right) h_{1, y}
\end{aligned}
$$

While from (3.8) (3.10), the M-part of $s_{2}^{-} s_{2} u$ is:

$$
\begin{aligned}
m_{2}= & \prod_{i=3}^{l} U_{-e_{2}-e_{i}}\left(c_{i} k_{0, x}\right) \prod_{i=3}^{l} U_{-e_{2}+e_{i}}\left(d_{i} k_{0, x}\right) h_{0, x}^{\prime} \prod_{i=3}^{l} U_{e_{2}-e_{i}}\left(-c_{i}^{\prime} k_{1, y}\right) \\
& \quad \times \prod_{i=3}^{l} U_{e_{2}+e_{i}}\left(-d_{i}^{\prime} k_{1, y}\right) h_{1, y}^{\prime}
\end{aligned}
$$

Because both m_{1} and m_{2} are products of one dimensional unipotent subgroups of different root vectors in the same order, for $m_{1}=m_{2}$ to be true, then $a_{i} x^{\prime}=c_{i} k_{0, x}$ and $b_{i} x^{\prime}=d_{i} k_{0, x}$ must hold for all $i, 3 \leq i \leq l$, and for almost all $x \in F$. These equations lead to:

$$
\begin{align*}
\left(c_{i} b_{2}-a_{i} d_{2}\right) x^{2}+\left(c_{i} k_{0}+c_{i} b_{2}-a_{i} d_{2} k_{0}-a_{i}\right) x+c_{i} k_{0} & =0 \tag{3.11}\\
\left(d_{i} b_{2}-b_{i} d_{2}\right) x^{2}+\left(d_{i} k_{0}+d_{i} b_{2}-b_{i} d_{2} k_{0}-b_{i}\right) x+d_{i} k_{0} & =0 \tag{3.12}
\end{align*}
$$

For equations (3.11) and (3.12) to have infinitely many solutions, since $k_{0} \neq 0$, we must have $a_{i}=b_{i}=c_{i}=d_{i} \equiv 0$ for all $i, 3 \leq i \leq l$. Moreover, we must have $h_{0, x} h_{1, y}=h_{0, x}^{\prime} h_{1, y}^{\prime}$, which implies $h_{0, x}=h_{0, x}^{\prime}$ for almost all $x \in F$, since $h_{0, x}\left(h_{0, x}^{\prime}\right), h_{1, y}\left(h_{1, y}^{\prime}\right)$ are dual to $e_{1}-e_{2}, e_{1}+e_{2}$, respectively. So $\left(d_{2}-b_{2}\right) x+d_{2} k_{0}=0$ has infinitely many solutions in F, and consequently $d_{2}=b_{2}=0$.

So $s_{1}^{-}=U_{-e_{1}-e_{2}}\left(a_{2}\right), s_{2}^{-}=U_{-e_{1}-e_{2}}\left(c_{2}\right)$. And it can be easily calculated that $m_{1}=h_{1, y}, m_{2}=h_{1, y}^{\prime}$ with $a_{2}^{\prime}=a_{2}$ in $h_{1, y}$ and $c_{2}^{\prime}=c_{2}$ in $h_{1, y}^{\prime}$. Thus for $m_{1}=m_{2}$ to be true for almost all $y \in F$, we must have $\left(c_{2}-a_{2}\right) y+c_{2} k_{1}=0$. Since $s_{2}^{-} \neq$ $0, c_{2} \neq 0$, so we must have $k_{1}=0$ and $a_{2}=c_{2}$. So $s_{2}^{-} s_{2}=U_{-e_{1}-e_{2}}\left(c_{2}\right) U_{e_{1}-e_{2}}\left(k_{0}\right)=$ $U_{e_{1}-e_{2}}\left(k_{0}\right) U_{-e_{1}-e_{2}}\left(c_{2}\right)=s_{2} s_{2}^{-}=s_{1} s_{1}^{-}$.

By the uniqueness of Bruhat decomposition, $s_{1}^{-}=s_{2}^{-}$. That finishes the proof of the main theorem for the case G is of type D_{l}.

3.6 Type E_{6}

In this case, N is abelian only when $\alpha=\alpha_{1}$ or α_{6} by Lemma 2.1. Since α_{1} is symmetric to α_{6} on the Dynkin diagram, we need only prove the claim when $\alpha=\alpha_{1}$.

Let

$$
\begin{aligned}
& \theta_{1}=\left\{\alpha_{1} ; \alpha_{1}+\alpha_{2} ; \alpha_{1}+\alpha_{2}+\alpha_{3} ; \quad \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{5} ; \quad \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} ;\right. \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6} ; \quad \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} ; \\
& \alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ; \quad \alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5} ; \\
& \left.\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ; \quad \alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6} ;\right\} \\
& \theta_{2}=\left\{\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5} ; \quad \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ;\right. \\
& \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6} ; \alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6} ; \\
& \left.\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6} .\right\}
\end{aligned}
$$

Then the positive roots in N are $R^{+} \backslash \theta^{+}=\theta_{1} \cup \theta_{2}$. Notice that for each root $\beta \in$ $\theta_{1}, \beta-\alpha_{1}$ is still a root, while for $\beta \in \theta_{2}, \beta-\alpha_{1}$ is not a root. Also notice that the coefficient of α_{2} of roots in θ_{1} is 1 , while the coefficient of α_{2} of roots in θ_{2} is 2 .

Let $\beta_{1}, \beta_{2}, \ldots, \beta_{11}$ be the roots in θ_{1} according to the order listed in θ_{1}, and let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{5}$ be the roots in θ_{2} accordingly. Let $\tau_{i}=\beta_{i}-\alpha_{1}, i=1, \ldots, 11 ; \nu_{i}=$ $\gamma_{i}-\alpha_{1}, i=1, \ldots, 5,\left(\nu_{i}\right.$ is not a root) .

The roots of N are divided into these two sets because each element in U_{β} with $\beta \in \theta_{1}, \beta \neq \alpha_{1}$ can be eliminated by an element in $U_{\alpha_{1}}$ and each element in $U_{\gamma_{i}}$ with $i \neq 5$ can be eliminated by an element in $U_{\gamma_{5}}$. Elements in $U_{\gamma_{i}}$ cannot be eliminated directly by elements in $U_{\alpha_{1}}$ since $\gamma_{i}-\alpha_{1}$ is not a root.

We will define an order on R : suppose $\beta, \gamma \in R$ and

$$
\beta-\gamma=\sum_{i=1}^{6} c_{i} \alpha_{i}
$$

If

$$
\sum_{i=1}^{6} c_{i}>0
$$

then $\beta \succ \gamma$. If

$$
\sum_{i=1}^{6} c_{i}=0
$$

and if the first nonzero coefficient is >0, then $\beta \succ \gamma$, otherwise $\beta \prec \gamma$. In particular, if $\beta \in R$ is a positive root, then $\beta \succ 0$. It is easily verified that this order is well defined and we have $\beta_{i} \prec \beta_{j}$ if $1 \leq i<j \leq 11$ and $\gamma_{i} \prec \gamma_{j}$ if $1 \leq i<j \leq 5$.

Let

$$
N_{1}=\left\{\prod_{i=1}^{11} U_{\beta_{i}}\right\} \in N, \quad N_{2}=\left\{\prod_{i=1}^{5} U_{\gamma_{i}}\right\} \in N
$$

be the subgroups (because N is abelian) of N consisting of the unipotent subgroups of roots in θ_{1}, θ_{2}, respectively. We will prove that N_{1} can be generated by $U_{\beta_{1}}=U_{\alpha_{1}}$ and N_{2} can be generated by $U_{\gamma_{5}}$ under the adjoint action of M.

For each pair of roots $\beta, \gamma \in R$, by Lemma 2.1 we know that

$$
\begin{equation*}
U_{\gamma}(x) U_{\beta}(y) U_{\gamma}(-x)=\prod_{i, j>0} U_{i \gamma+j \beta \in R}\left(C_{\gamma, \beta, i, j} x^{i} y^{j}\right) U_{\beta}(y) \tag{3.13}
\end{equation*}
$$

Suppose the structure constants are normalized as in Lemma 2.1.

Lemma 3.6 For each $u \in N$, if $u=u_{1} u_{2}, u_{i} \in N_{i}, i=1$, 2, with $u_{1} \neq 1$. Then there exists $m \in M$ such that

$$
\operatorname{Int}(m) \circ u=\prod_{i=1}^{11} U_{\beta_{i}}\left(x_{i}^{\prime}\right) \prod_{i=1}^{5} U_{\gamma_{i}}\left(y_{i}^{\prime}\right)
$$

with $x_{1}^{\prime} \neq 0$.

Proof Suppose

$$
u=u_{1} u_{2}=\prod_{i=1}^{11} U_{\beta_{i}}\left(x_{i}\right) \prod_{i=1}^{5} U_{\gamma_{i}}\left(y_{i}\right)
$$

If $x_{1} \neq 0$, then there is nothing we need to do. Otherwise, let k be the smallest i such that $x_{i} \neq 0$. Notice such i exists since $u_{1} \neq 1$, and by the assumption,

$$
u_{1}=\prod_{i=k}^{11} U_{\beta_{i}}\left(x_{i}\right)
$$

Let $m=U_{-\tau_{k}}(1)$. For any pair $\{i, j\}$ of positive integers, $i \beta_{k}+j\left(-\tau_{k}\right)$ is a root only when $i=j=1$, and $\beta_{k}+\left(-\tau_{k}\right)=\beta_{1}$. So we apply equation (3.13):

$$
\operatorname{Int}(m) \circ U_{\beta_{k}}\left(x_{k}\right)=U_{\beta_{1}}\left(x_{k}\right) U_{\beta_{k}}\left(x_{k}\right)
$$

since $C_{-\tau_{k}, \beta_{k}, 1,1}$ is normalized to be 1 .
For any $n>k, n \leq 11$, there is no pair $\{i, j\}$ of positive integers such that $i \beta_{n}+$ $j\left(-\tau_{k}\right)$ is a root. To verify this, we need only to check the coefficients of α_{1} and α_{2} in $i \beta_{n}+j\left(-\tau_{k}\right)$. Namely, since N is abelian, the coefficient of α_{1} in any root in N must be 1 , so $i=1$. Meanwhile the coefficient of α_{2} of $i \beta_{n}+j\left(-\tau_{k}\right)$ is $1-j \leq 0$, so j must be 1 , too, and if this is the case, the coefficient of α_{2} in $\beta_{n}-\tau_{k}$ is 0 . Then $\beta_{n}-\tau_{k}=\beta_{1}$, since β_{1} is the only root in N that has coefficient of α_{2} equal to 0 . But $\beta_{n} \succ \beta_{k}=\beta_{1}+\tau_{k}$, this is a contradiction. So by Lemma $2.1 \operatorname{Int}(m)$ fixes $U_{\beta_{n}}$.

Also for each n with $1 \leq n \leq 5, i \gamma_{n}+j\left(-\tau_{k}\right)$ can possibly be a root only when $i=j=1$. (Since N is abelian, i must be 1 and we can exclude the possibility $j=2$ since $\gamma_{n}+2\left(-\tau_{k}\right)$ would not be connected by just applying Lemma 3.2.) If $\gamma_{n}-\tau_{k}$ is a root, then $\gamma_{n}-\tau_{k} \succ \alpha_{1}=\beta_{1}$. So by Lemma 2.1

$$
\operatorname{Int}(m) \circ U_{\gamma_{n}} \subset \prod_{\beta \succ \beta_{1}} U_{\beta}
$$

With these facts,

$$
\operatorname{Int}(m) \circ u \in U_{\beta_{1}}\left(x_{k}\right) \prod_{\beta \succ \beta_{1}} U_{\beta}
$$

Lemma 3.7 For each $u_{2} \neq 1 \in N_{2}$, there exists an $m \in M$ such that $\operatorname{Int}(m)$ fixes $U_{\beta_{1}}$ and

$$
\operatorname{Int}(m) \circ u_{2}=\prod_{i=1}^{5} U_{\gamma_{i}}\left(y_{i}\right), \quad \text { with } y_{5} \neq 0
$$

Proof Suppose

$$
u_{2}=\prod_{i=1}^{5} U_{\gamma_{i}}\left(x_{i}\right)
$$

If $x_{5} \neq 0$, then nothing needs to be done. Otherwise, let k be the smallest i such that $x_{i} \neq 0$. So $x_{i} \neq 0$ only when $k \leq i \leq 4$. Let $\gamma=\gamma_{5}-\gamma_{k}$, and $m=U_{\gamma}(1)$.

For each pair $\{i, j\}$ of positive integers, $i \gamma+j \gamma_{k}$ can be a root only when $i=j=1$, since otherwise $i \gamma+j \gamma_{k} \succ \gamma_{5}$, and γ_{5} is the longest element in R such that its α_{1} part is nonzero. Moreover, in this case $\gamma+\gamma_{k}=\gamma_{5}$. So by applying Lemma 2.1, we have: $\operatorname{Int}(m) \circ U_{\gamma_{k}}\left(x_{k}\right)=U_{\gamma_{k}}\left(x_{k}\right) U_{\gamma_{5}}\left(C_{\gamma, \gamma_{k}, 1,1} x_{k}\right)$, where $C_{\gamma, \gamma_{k}, 1,1}$ is a structure constant, so is nonzero.

For all other q with $k<q \leq 4, i \gamma+j \gamma_{q}$ could not be a root since $i \gamma+j \gamma_{q} \succ \gamma_{5}$ for any positive integers i, j. So $\operatorname{Int}(m)$ fixes all these $U_{\gamma_{q}}$.

With these two facts, it is easily calculated that $\operatorname{Int}(m) \circ u=u U_{\gamma_{5}}\left(C_{\gamma, \gamma_{k}, 1,1} x_{k}\right)$. Now, set $y_{5}=C_{\gamma, \gamma_{k}, 1,1} x_{k}$. Then $y_{5} \neq 0$ as we have shown. Because $\gamma \subset \operatorname{span}\left\{\alpha_{3}, \alpha_{4}, \alpha_{5}\right.$, $\left.\alpha_{6}\right\}$, for each pair $\{i, j\}$ of positive integers, $i \gamma+j \beta_{1}$ cannot be a root by Lemma 3.2. So $\operatorname{Int}(m)$ fixes $U_{\beta_{1}}$ by Lemma 2.1.

Theorem 3.8 (Gaussian Elimination) For each $u \neq 1 \in N$, there exists $m \in M$ such that $\operatorname{Int}(m) \circ u=U_{\beta_{1}}\left(k_{0}\right) U_{\gamma_{5}}\left(k_{1}\right)$.

Proof We can write u as

$$
u=\prod_{\beta_{i} \in \theta_{1}} U_{\beta_{i}}\left(x_{i}\right) \prod_{\gamma_{i} \in \theta_{2}} U_{\gamma_{i}}\left(x_{i}^{\prime}\right)=u_{1} u_{2}, \quad u_{1} \in N_{1}, u_{2} \in N_{2} .
$$

If $u_{1}=1$, then just set $m_{1}=1$. If $u_{1} \neq 1$, by applying Lemma3.6 and a suitable $\operatorname{Int}\left(m^{\prime}\right)$, if necessary, we can assume $x_{1} \neq 0$.

Let

$$
m_{1}=\prod_{i=2}^{11} U_{\tau_{i}}\left(\frac{x_{i}}{x_{1}}\right)
$$

Then

$$
\operatorname{Int}\left(m_{1}\right) \circ u=\left[\prod_{\beta_{i} \in \theta_{1}} \operatorname{Int}\left(m_{1}\right) \circ U_{\beta_{i}}\left(x_{i}\right)\right] \cdot\left[\prod_{\gamma_{i} \in \theta_{2}} \operatorname{Int}\left(m_{1}\right) \circ U_{\gamma_{i}}\left(x_{i}^{\prime}\right)\right]
$$

For each fixed k, with $2 \leq k \leq 11, i \beta_{1}+j \tau_{k}$ is a root for $i, j>0$ only when $i=j=1$, and in this case $\beta_{1}+\tau_{k}=\beta_{k}$. So by applying Lemma 2.1,

$$
\operatorname{Int}\left(U_{\tau_{k}}\left(\frac{x_{k}}{x_{1}}\right)\right) \circ U_{\beta_{1}}\left(x_{1}\right)=U_{\beta_{1}}\left(x_{1}\right) \cdot U_{\beta_{k}}\left(-x_{k}\right)
$$

For each $q, 2 \leq q \leq 11, q \neq k$, and each pair of positive integers $\{i, j\}, i \beta_{q}+j \tau_{k}$ can possibly be a root only when $i=j=1$. And in this case $\beta_{q}+\tau_{k} \in \theta_{2}$ if it is a root, since the coefficient of α_{2} in $\beta_{q}+\tau_{k}$ is 2 . So

$$
\operatorname{Int}\left(U_{\tau_{k}}\left(\frac{x_{k}}{x_{1}}\right)\right) \circ U_{\beta_{q}}\left(x_{q}\right)=U_{\beta_{q}}\left(x_{q}\right) \cdot n_{q} \quad \text { with } n_{q} \in N_{2}
$$

For each pair of positive integers $\{i, j\}$, none of $i \beta_{k}+j \tau_{k}$ can be a root. So also by Lemma 2.1,

$$
\operatorname{Int}\left(U_{\tau_{k}}\left(\frac{x_{k}}{x_{1}}\right)\right) \quad \text { fixes } U_{\beta_{k}} .
$$

With these facts, one can conclude from

$$
\operatorname{Int}\left(m_{1}\right)=\prod_{i=2}^{11} \operatorname{Int}\left(U_{\tau_{i}}\left(\frac{x_{i}}{x_{1}}\right)\right)
$$

that

$$
\begin{aligned}
& \operatorname{Int}\left(m_{1}\right) \circ U_{\beta_{1}}\left(x_{1}\right)=U_{\beta_{1}}\left(x_{1}\right) \prod_{i=2}^{11} U_{\beta_{i}}\left(-x_{i}\right) \cdot n_{1} \quad \text { with } n_{1} \in N_{2} \\
& \operatorname{Int}\left(m_{1}\right) \circ U_{\beta_{i}}\left(x_{i}\right)=U_{\beta_{i}}\left(x_{i}\right) \cdot n_{i}^{\prime} \quad \text { with } n_{i}^{\prime} \in N_{2}, \forall i, 2 \leq i \leq 11
\end{aligned}
$$

By the last two equations, one can get

$$
\operatorname{Int}\left(m_{1}\right) \circ\left(u_{1}\right)=U_{\beta_{1}}\left(x_{1}\right) \cdot n^{\prime} \quad \text { where } n^{\prime}=n_{1} \cdot \prod_{i=2}^{11} n_{i}^{\prime} \in N_{2}
$$

For each $\gamma \in \theta_{2}$, none of $i \tau_{k}+j \gamma$ is a root for any pair of positive integers $\{i, j\}$, since in the decomposition of $i \tau_{k}+j \gamma_{i}$ as a summation of simple roots, the coefficient of α_{2} will be $i+2 j \geq 3$, which is not possible. So $\operatorname{Int}\left(m_{1}\right) \circ u_{2}=u_{2}$.

Now we have $\operatorname{Int}\left(m_{1}\right) \circ u=\operatorname{Int}\left(m_{1}\right) \circ\left(u_{1} u_{2}\right)=U_{\beta_{1}}\left(x_{1}\right) n^{\prime} u_{2}$. Suppose

$$
n^{\prime} u_{2}=\prod_{i=1}^{5} U_{\gamma_{i}}\left(y_{i}^{\prime}\right)
$$

If $n^{\prime} u_{2}=1$, i.e., $y_{i}=0$ for $1 \leq i \leq 5$, then we are done. Otherwise, let m_{2} be the element in m that comes from Lemma 3.7. Then

$$
\operatorname{Int}\left(m_{2} m_{1}\right) \circ u=U_{\beta_{1}} \cdot \prod_{i=1}^{5} U_{\gamma_{i}}\left(y_{i}\right), \quad \text { with } y_{5} \neq 0
$$

Now let

$$
m_{3}=\prod_{i=1}^{4} U_{\gamma_{i}-\gamma_{5}}\left(-\frac{y_{i}}{y_{5}}\right)
$$

Then by Lemma 2.1, for any fixed i,

$$
\operatorname{Int}\left(U_{\gamma_{i}-\gamma_{5}}\left(-\frac{y_{i}}{y_{5}}\right)\right) \circ U_{\gamma_{5}}\left(y_{5}\right)=U_{\gamma_{5}}\left(y_{5}\right) \cdot U_{\gamma_{i}}\left(-y_{i}\right)
$$

It can be easily shown, by checking the coefficients of α and α_{4}, that for any pair $\{j, k\}$ of positive integers, and any q, with $1 \leq q \leq 4$, none of $j\left(\gamma_{i}-\gamma_{5}\right)+k \gamma_{q}$ can be a root. (Namely, for $j\left(\gamma_{i}-\gamma_{5}\right)+k \gamma_{q}$ to be a root, k must be 1 since the coefficient of α in $j\left(\gamma_{i}-\gamma_{5}\right)+k \gamma_{q}$ is k. Then the coefficient of α_{2} in $j\left(\gamma_{i}-\gamma_{5}\right)+k \gamma_{q}$ is 2 , so $j\left(\gamma_{i}-\gamma_{5}\right)+k \gamma_{q} \in \theta_{2}$ if it is a root. Then the coefficient of α_{4} in $j\left(\gamma_{i}-\gamma_{5}\right)+k \gamma_{q}$ is
$1-j \leq 0$ which is not possible since every root in θ_{2} has its coefficient of α_{4} equal to 1.) So again by Lemma 2.1, $\operatorname{Int}\left(U_{\gamma_{i}-\gamma_{5}}\right)$ fixes all other $U_{\gamma_{q}}\left(y_{q}\right)$. Thus

$$
\begin{aligned}
& \operatorname{Int}\left(m_{3}\right) \circ U_{\gamma_{5}}\left(y_{5}\right)=U_{\gamma_{5}}\left(y_{5}\right) \prod_{i=1}^{4} U_{\gamma_{i}}\left(-y_{i}\right) \\
& \operatorname{Int}\left(m_{3}\right) \circ\left(\prod_{i=1}^{4} U_{\gamma_{i}}\left(y_{i}\right)\right)=\prod_{i=1}^{4} U_{\gamma_{i}}\left(y_{i}\right)
\end{aligned}
$$

So

$$
\operatorname{Int}\left(m_{3}\right) \circ\left(\prod_{i=1}^{5} U_{\gamma_{i}}\left(y_{i}\right)\right)=U_{\gamma_{5}}\left(y_{5}\right)
$$

Moreover, for each $i, \operatorname{Int}\left(U_{\gamma_{i}-\gamma_{5}}\right)$ fixes $U_{\beta_{1}}$ since, from the proof of Lemma 3.7, $\gamma_{i}-\gamma_{5} \subset \operatorname{span}\left\{\alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}\right\}$. Consequently, $\operatorname{Int}\left(m_{3}\right)$ fixes $U_{\beta_{1}}\left(x_{1}\right)$. Now let $m=m_{3} m_{2} m_{1}$. Then $\operatorname{Int}(m) \circ u=U_{\beta_{1}}\left(x_{1}\right) U_{\gamma_{5}}\left(y_{5}\right)$. Setting $k_{0}=x_{1}, k_{1}=y_{5}$ proves the theorem.

Returning to equation (2.5), by the above lemma and applying $\operatorname{Int}(m)$ on both sides, we can assume $s_{2}=U_{\beta_{1}}\left(k_{0}\right) U_{\gamma_{5}}\left(k_{1}\right)$. Since without loss of generality we can always assume $s_{2} \neq 1$ (otherwise nothing needs to be proved), we assume $k_{0} \neq 0$.

Now suppose

$$
\begin{aligned}
& s_{1}^{-}=\prod_{i=1}^{11} U_{-\beta_{i}}\left(a_{i}\right) \cdot \prod_{i=1}^{5} U_{-\gamma_{i}}\left(b_{i}\right) \\
& s_{2}^{-}=\prod_{i=1}^{11} U_{-\beta_{i}}\left(c_{i}\right) \cdot \prod_{i=1}^{5} U_{-\gamma_{i}}\left(d_{i}\right)
\end{aligned}
$$

Multiply both sides of (2.5) by $u=U_{\beta_{1}}(x) U_{\gamma_{5}}(y)$ on the right, where x, y are variables in F. We will decompose both $s_{1} s_{1}^{-} u$ and $s_{2}^{-} s_{2} u$ into $P N^{-}$form, and compare their M parts.

First for $s_{1} s_{1}^{-} U_{\beta_{1}}(x)$, we have:

$$
\begin{equation*}
U_{-\beta_{1}}\left(a_{1}\right) U_{\beta_{1}}(x)=U_{\beta_{1}}\left(x^{\prime}\right) h_{x} U_{-\beta_{1}}\left(\frac{a_{1}}{1+a_{1} x}\right) \tag{3.14}
\end{equation*}
$$

where

$$
x^{\prime}=\frac{x}{1+a_{1} x}, \quad \text { and } \quad h_{x}=\Phi_{\beta_{1}}\left(\begin{array}{cc}
\frac{1}{1+a_{1} x} & 0 \\
0 & 1+a_{1} x
\end{array}\right) \in T
$$

For each k with $2 \leq k \leq 11$, by Lemma 2.1 we have

$$
\begin{equation*}
U_{-\beta_{k}}\left(a_{k}\right) U_{\beta_{1}}\left(x^{\prime}\right)=U_{\beta_{1}}\left(x^{\prime}\right) U_{-\tau_{k}}\left(-a_{k} x^{\prime}\right) U_{-\beta_{k}}\left(a_{k}\right) \tag{3.15}
\end{equation*}
$$

For any k with $1 \leq k \leq 5$, and any pair $\{i, j\}$ of positive integers, none of $i \beta_{1}+j\left(-\gamma_{k}\right)$ can be a root. So by Lemma 2.1, $U_{\beta_{1}}$ commutes with $U_{-\gamma_{k}}$ for all k.

Since N^{-}is normal in $P^{-}=M N^{-}$, from equations (3.14), (3.15) and the above fact, the $P N^{-}$decomposition of $s_{1}^{-} U_{\beta_{1}}(x)$ is as follows:

$$
\begin{equation*}
s_{1}^{-} U_{\beta_{1}}(x)=U_{\beta_{1}}\left(x^{\prime}\right)\left[\prod_{i=2}^{11} U_{-\tau_{i}}\left(-a_{i} x^{\prime}\right)\right] h_{x} \cdot\left(s_{1}^{-}\right)^{\prime} \tag{3.16}
\end{equation*}
$$

with a suitable $\left(s_{1}^{-}\right)^{\prime} \in N^{-}$. Then for $s_{2}^{-} s_{2} u=s_{2}^{-} U_{\beta_{1}}\left(k_{0}+x\right) U_{\gamma_{5}}\left(k_{1}+y\right)$. Similarly, the $P N^{-}$decomposition of $s_{2}^{-} U_{\beta_{1}}\left(k_{0}+x\right)$ is:

$$
\begin{equation*}
s_{2}^{-} U_{\beta_{1}}\left(k_{0}+x\right)=U_{\beta_{1}}\left(k_{x}\right)\left[\prod_{i=2}^{11} U_{-\tau_{i}}\left(-k_{x} c_{i}\right)\right] h_{x}^{\prime}\left(s_{2}^{-}\right)^{\prime} \tag{3.17}
\end{equation*}
$$

with a suitable $\left(s_{2}^{-}\right)^{\prime} \in N^{-}$, where

$$
k_{x}=\frac{k_{0}+x}{1+c_{1}\left(k_{0}+x\right)}, \quad \text { and } \quad h_{x}^{\prime}=\Phi_{\beta_{1}}\left(\begin{array}{cc}
\frac{1}{1+c_{1}\left(k_{0}+x\right)} & 0 \\
0 & 1+c_{1}\left(k_{0}+x\right)
\end{array}\right) \in T
$$

For convenience of notation, we will set $U_{\nu_{i}} \equiv 1$ if ν_{i} is not a root. Suppose

$$
\left(s_{1}^{-}\right)^{\prime}=\prod_{i=1}^{11} U_{-\beta_{i}}\left(a_{i}^{\prime}\right) \cdot \prod_{i=1}^{5} U_{-\gamma_{i}}\left(b_{i}^{\prime}\right), \quad\left(s_{2}^{-}\right)^{\prime}=\prod_{i=1}^{11} U_{-\beta_{i}}\left(c_{i}^{\prime}\right) \cdot \prod_{i=1}^{5} U_{-\gamma_{i}}\left(d_{i}^{\prime}\right)
$$

Then with a similar discussion on roots and applying Lemma 2.1, following a similar process of calculation, we get:

$$
\begin{equation*}
\left(s_{1}^{-}\right)^{\prime} U_{\gamma_{5}}(y)=U_{\gamma_{5}}\left(y^{\prime}\right)\left[\prod_{i=1}^{11} U_{\gamma_{5}-\beta_{i}}\left(a_{i}^{\prime} y^{\prime}\right)\right]\left[\prod_{i=1}^{4} U_{\gamma_{5}-\gamma_{i}}\left(b_{i}^{\prime} y^{\prime}\right)\right] h_{y}\left(s_{1}^{-}\right)^{\prime \prime} \tag{3.18}
\end{equation*}
$$

with a suitable $\left(s_{1}^{-}\right)^{\prime \prime} \in N^{-}$, where

$$
y^{\prime}=\frac{y}{1+b_{5}^{\prime} y} \quad \text { and } \quad h_{y}=\Phi_{\gamma_{5}}\left(\begin{array}{cc}
\frac{1}{1+b_{5}^{\prime} y} & 0 \\
0 & 1+b_{5}^{\prime} y
\end{array}\right) \in T
$$

Meanwhile,

$$
\begin{equation*}
\left(s_{2}^{-}\right)^{\prime} U_{\gamma_{5}}\left(k_{1}+y\right)=U_{\gamma_{5}}\left(k_{y}\right)\left[\prod_{i=1}^{11} U_{\gamma_{5}-\beta_{i}}\left(k_{y} c_{i}^{\prime}\right)\right]\left[\prod_{i=1}^{4} U_{\gamma_{5}-\gamma_{i}}\left(k_{y} d_{i}^{\prime}\right)\right] h_{y}^{\prime}\left(s_{2}^{-}\right)^{\prime \prime} \tag{3.19}
\end{equation*}
$$

with a suitable $\left(s_{2}^{-}\right)^{\prime \prime} \in N^{-}$, where

$$
k_{y}=\frac{k_{1}+y}{1+d_{5}^{\prime}\left(k_{1}+y\right)} \quad \text { and } \quad h_{y}^{\prime}=\Phi_{\gamma_{5}}\left(\begin{array}{cc}
\frac{1}{1+d_{5}^{\prime}\left(k_{1}+y\right)} & 0 \\
0 & 1+d_{5}^{\prime}\left(k_{1}+y\right)
\end{array}\right) \in T
$$

Thus, from equations (3.16) and (3.18), the M-part of $s_{1} s_{1}^{-} u$ is:

$$
M_{1}(x, y)=\left[\prod_{i=2}^{11} U_{-\tau_{i}}\left(-a_{i} x^{\prime}\right)\right] h_{x}\left[\prod_{i=1}^{11} U_{\gamma_{5}-\beta_{i}}\left(a_{i}^{\prime} y^{\prime}\right)\right]\left[\prod_{i=1}^{4} U_{\gamma_{5}-\gamma_{i}}\left(b_{i}^{\prime} y^{\prime}\right)\right] h_{y}
$$

While from equation (3.17) and (3.19), the M-part of $s_{2}^{-} s_{2} u$ is:

$$
M_{2}(x, y)=\left[\prod_{i=2}^{11} U_{-\tau_{i}}\left(-k_{x} c_{i}\right)\right] h_{x}^{\prime}\left[\prod_{i=1}^{11} U_{\gamma_{5}-\beta_{i}}\left(k_{y} c_{i}^{\prime}\right)\right]\left[\prod_{i=1}^{4} U_{\gamma_{5}-\gamma_{i}}\left(k_{y} d_{i}^{\prime}\right)\right] h_{y}^{\prime}
$$

Notice that all $-\tau_{i}$ are distinct negative roots while all $\gamma_{5}-\beta_{i}$ and $\gamma_{5}-\gamma_{i}$ are distinct positive roots (if they are roots). For $M_{1}(x, y)=M_{2}(x, y)$, the unipotent groups of the corresponding root vector must be equal, and their T parts must be equal as well, as in the previous cases.

So we have $a_{i} x^{\prime}=k_{x} c_{i}$, for all $i, 2 \leq i \leq 11$, and almost all $x \in F$. Moreover, $h_{x}=h_{x}^{\prime}$ since $h_{x}\left(h_{x}^{\prime}\right), h_{y}\left(h_{y}^{\prime}\right)$ are dual to β_{1}, γ_{5}, respectively. As an analog of the proof in the $B_{l}\left(D_{l}\right)$ case, we get $a_{i}=c_{i} \equiv 0, \forall 1 \leq i \leq 11$. Thus from equation (3.16) and (3.17),

$$
s_{1}^{-}=s_{1}^{-\prime}=\prod_{i=1}^{5} U_{-\gamma_{i}}\left(b_{i}\right), \quad s_{2}^{-}=s_{2}^{-\prime}=\prod_{i=1}^{5} U_{-\gamma_{i}}\left(d_{i}\right)
$$

and from equations (3.18), (3.19),

$$
M_{1}(x, y)=\left[\prod_{i=1}^{4} U_{\gamma_{5}-\gamma_{i}}\left(b_{i} y^{\prime}\right)\right] h_{y}, \quad M_{2}(x, y)=\left[\prod_{i=1}^{4} U_{\gamma_{5}-\gamma_{i}}\left(d_{i} k_{y}\right)\right] h_{y}^{\prime}
$$

Since $s_{2}^{-} \neq 1$, there is one $i, 1 \leq i \leq 5$, such that $d_{i} \neq 0$. Together with the fact that $M_{1}(x, y)=M_{2}(x, y)$ for almost all $x, y \in F$, following the previous proofs, we can get $k_{1}=0$. So

$$
s_{2}^{-} s_{2}=\left[\prod_{i=1}^{5} U_{-\gamma_{i}}\left(d_{i}\right)\right] U_{\beta_{1}}\left(k_{0}\right)=U_{\beta_{1}}\left(k_{0}\right)\left[\prod_{i=1}^{5} U_{-\gamma_{i}}\left(d_{i}\right)\right]=s_{2} s_{2}^{-}=s_{1} s_{1}^{-}
$$

By the uniqueness of Bruhat decomposition, it must have $s_{1}^{-}=s_{2}^{-}$.
If at the beginning of this proof, we assume $k_{1} \neq 0$ instead of assuming $k_{0} \neq 0$, the proof will be similar.

3.7 Type E_{7}

The longest root in this case is $2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6}+\alpha_{7}$, by Lemma 3.1; N is abelian only when $\alpha=\alpha_{7}$.

Let

$$
\begin{aligned}
& \theta_{1}=\left\{\alpha ; \alpha+\alpha_{6} ; \quad \alpha+\alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{3}+\alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ;\right. \\
& \quad \alpha+\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ; \\
& \quad \alpha+\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ; \\
& \quad \alpha+\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6} ; \\
& \quad \alpha+\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6} ; \\
& \quad \alpha+\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+\alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6} ; \\
& \left.\quad \alpha+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6} ; \quad \alpha+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+\alpha_{6} ;\right\} \\
& \theta_{2}=\left\{\alpha+2 \alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6} ;\right. \\
& \\
& \alpha+\alpha_{1}+3 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6} ; \quad \alpha+\alpha_{1}+2 \alpha_{2}+4 \alpha_{3}+2 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6} ; \\
& \alpha+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+3 \alpha_{5}+2 \alpha_{6} ; \quad \alpha+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\alpha_{4}+3 \alpha_{5}+2 \alpha_{6} ; \\
& \alpha+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6} ; \quad \alpha+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+2 \alpha_{6} ; \\
& \alpha+\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+2 \alpha_{6} ; \quad \alpha+\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+2 \alpha_{6} ; \\
& \left.\alpha+\alpha_{2}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+2 \alpha_{6}\right\} .
\end{aligned}
$$

Then the positive roots in N are $R^{+} \backslash \theta^{+}=\theta_{1} \cup \theta_{2}$.
Let $\beta_{1}, \beta_{2}, \ldots, \beta_{17}$ denote the roots in θ_{1} as the order listed, $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{10}$ denote the roots in θ_{2} similarly. For any $\beta \in \theta_{1}, \beta-\alpha$ is a root (as is E_{6}); for $i=2, \ldots, 9, \gamma_{1}-$ γ_{i} is a root while $\gamma_{1}-\gamma_{10}$ is not; for each $i, 1 \leq i \leq 10, \gamma_{i}-\beta_{1}$ is not a root. Notice for each root in θ_{1}, the coefficient of α_{6} is 1 , and for each root in θ_{2}, the coefficient of α_{6} is 2 .

We will define an order on R : suppose $\beta, \gamma \in R$ and

$$
\beta-\gamma=\sum_{i=1}^{7} c_{i} \alpha_{i}
$$

If

$$
\sum_{i=1}^{7} c_{i}>0
$$

then $\beta \succ \gamma$; if

$$
\sum_{i=1}^{7} c_{i}=0
$$

and if the first nonzero coefficient is >0, then $\beta \succ \gamma$, otherwise $\beta \prec \gamma$. In particular, if $\beta \in R$ is a positive root, then $\beta \succ 0$. It is easily verified that this order is well defined and we have $\beta_{i} \prec \beta_{j}$ if $1 \leq i<j \leq 17$ and $\gamma_{i} \succ \gamma_{j}$ if $1 \leq i<j \leq 10$.

Suppose the root vectors are so chosen that the structure constants are normalized as in Lemma 2.1. Let

$$
N_{1}=\left\{\prod_{i=1}^{17} U_{\beta_{i}}\right\} \subset N, \quad N_{2}=\left\{\prod_{i=1}^{10} U_{\gamma_{i}}\right\} \subset N
$$

Every element of $u \in N$ can be written as $u=u_{1} u_{2}$ with $u_{i} \in N_{i}, i=1,2$. And we can similarly define N_{1}^{-}, N_{2}^{-}as subgroups of N^{-}. The roots of N are divided into these two sets because, as we will prove, $U_{\beta_{1}}$ generates N_{1} and $U_{\gamma_{1}}$ generates N_{2} under the adjoint action of M. Each element in $U_{\gamma_{i}}$, with $1 \leq i \leq 10$, cannot be eliminated directly by an element in $U_{\beta_{1}}$ since $\gamma_{i}-\beta_{1}$ is not a root.

Lemma 3.9 For each $u \in N$, if $u=u_{1} u_{2}, u_{i} \in N_{i}, i=1$, 2, with $u_{1} \neq 1$. Then there exists $m \in M$, such that

$$
\operatorname{Int}(m) \circ u=\left\{\prod_{i=1}^{17} U_{\beta_{i}}\left(x_{i}^{\prime}\right)\right\}\left\{\prod_{i=1}^{10} U_{\gamma_{i}}\left(y_{i}^{\prime}\right)\right\} \quad \text { with } x_{1}^{\prime} \neq 0
$$

Proof This is analogous to Lemma 3.6, since for each $i, 2 \leq i \leq 17, \beta_{i}-\beta_{1}$ is a root, the proof is almost the same as of the proof for Lemma 3.6. The indices are the only changes.

Lemma 3.10 If

$$
u_{2}=\left\{\prod_{i=1}^{10} U_{\gamma_{i}}\left(x_{i}\right)\right\} \subset N_{2}
$$

and $u_{2} \neq 1$, we can find an $m \in M$ such that $\operatorname{Int}(m) \circ u_{2}=U_{\gamma_{1}}\left(a_{2}\right)$ with $a_{2} \neq 0$ and $\operatorname{Int}(m)$ fixes every element in $U_{\beta_{1}}$.

Proof First we prove the following claim:
Claim There is $m_{1} \in M$, such that

$$
\operatorname{Int}\left(m_{1}\right) \circ u_{2}=\prod_{i=1}^{10} U_{\gamma_{i}}\left(x_{i}^{\prime}\right) \quad \text { with } x_{1}^{\prime} \neq 0, x_{2}^{\prime} \neq 0
$$

(This claim is needed because $\gamma_{1}-\gamma_{10}$ is not a root, and $U_{\gamma_{10}}$ cannot be eliminated directly through $U_{\gamma_{1}}$. So we use $U_{\gamma_{2}}$ to eliminate it.)

Let k be the smallest positive integer such that $x_{k} \neq 0$. If $k=1$, i.e., $x_{1} \neq 0$. And if $x_{2} \neq 0$, then the claim is trivial.

Case $k=1, x_{2}=0$: Let $m_{1}=U_{\gamma_{2}-\gamma_{1}}(1)$. For any $i, 3 \leq i \leq 10$, by Lemma 2.1,

$$
\operatorname{Int}\left(U_{\gamma_{2}-\gamma_{1}}(1)\right) \circ U_{\gamma_{i}}\left(x_{i}\right)=\left(\prod_{\substack{k, n>0 \\ k\left(\gamma_{2}-\gamma_{1}\right)+n \gamma_{i} \in R}} U_{k\left(\gamma_{2}-\gamma_{1}\right)+n \gamma_{i}}\left(C_{\gamma_{2}-\gamma_{1}, \gamma_{i}, k, n} x_{i}^{n}\right)\right) \cdot U_{\gamma_{i}}\left(x_{i}\right),
$$

where the $C_{\gamma_{2}-\gamma_{1}, \gamma_{i}, k, n}$'s are structure constants.
Since $\gamma_{2}-\gamma_{1} \in \operatorname{span}\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$, for any pair of positive integers $\{k, n\}$, the coefficient of α_{6} in $k\left(\gamma_{2}-\gamma_{1}\right)+n \gamma_{i}$ is $2 n$. For it to be a root, n must be 1 . Moreover, if this is the case, then $k\left(\gamma_{2}-\gamma_{1}\right)+\gamma_{i} \in \theta_{2}$.

Since $\gamma_{2}-\gamma_{1} \prec 0, k\left(\gamma_{2}-\gamma_{1}\right)+\gamma_{i} \prec \gamma_{i}$. So

$$
\operatorname{Int}\left(m_{1}\right) \circ U_{\gamma_{i}}\left(x_{i}\right) \subset \prod_{j \geq i} U_{\gamma_{j}}
$$

consequently,

$$
\operatorname{Int}\left(m_{1}\right) \circ\left(\prod_{i=3}^{10} U_{\gamma_{i}}\left(x_{i}\right)\right) \subset \prod_{i=3}^{10} U_{\gamma_{i}}
$$

And by Lemma 2.1, $\operatorname{Int}\left(m_{1}\right) \circ U_{\gamma_{1}}\left(x_{1}\right)=U_{\gamma_{1}}\left(x_{1}\right) U_{\gamma_{2}}\left(x_{1}\right)$. Therefore, $\operatorname{Int}\left(m_{1}\right) \circ u=$ $U_{\gamma_{1}}\left(x_{1}\right) U_{\gamma_{2}}\left(x_{1}\right) \cdot u^{\prime}$ with

$$
u^{\prime} \in \prod_{i=3}^{10} U_{\gamma_{i}}
$$

Set $x_{1}^{\prime}=x_{2}^{\prime}=x_{1}$, and the claim is proved.
Case $k=2$: Let $m_{1}=U_{\gamma_{1}-\gamma_{2}}(1)=U_{\alpha_{1}}(1)$. For each $i, 3 \leq i \leq 10$, and each pair $\{k, n\}$ of positive integers, the coefficient of α_{1} in $k \alpha_{1}+n \gamma_{i}$ is $k+n$. So for $k \alpha_{1}+n \gamma_{i}$ to be a root, we must have $k=n=1$. But it is easily checked that $\alpha_{1}+\gamma_{i}$ is not a root when $i \geq 3$. So by Lemma 2.1, $\operatorname{Int}\left(U_{\alpha_{1}}(1)\right) \circ U_{\gamma_{i}}\left(x_{i}\right)=U_{\gamma_{i}}\left(x_{i}\right)$. Also for any pair $\{k, n\}$ of positive integers, $k\left(\gamma_{1}-\gamma_{2}\right)+n \gamma_{2}$ can be a root only when $k=n=1$. So by applying Lemma 2.1, $\operatorname{Int}\left(U_{\alpha_{1}}(1)\right) \circ U_{\gamma_{2}}\left(x_{2}\right)=U_{\gamma_{1}}\left(x_{2}\right) U_{\gamma_{2}}\left(x_{2}\right)$, with $x_{2} \neq 0$. Then

$$
\operatorname{Int}\left(U_{\alpha_{1}}(1)\right) \circ u=U_{\gamma_{1}}\left(x_{2}\right) U_{\gamma_{2}}\left(x_{2}\right)\left[\prod_{i=3}^{10} U_{\gamma_{i}}\left(x_{i}\right)\right]
$$

Setting $x_{1}^{\prime}=x_{2}$ will prove our claim.
Case $3 \leq k<10$: Let $m_{1}=U_{\gamma_{1}-\gamma_{k}}(1) U_{\gamma_{2}-\gamma_{k}}(1)$, with a similar discussion as the second case, but this time take the coefficients of α_{1} and α_{2} into account. We can figure out that the $U_{\gamma_{1}} U_{\gamma_{2}}$ part of $\operatorname{Int}\left(m_{1}\right) \circ u$ is $U_{\gamma_{1}}\left(x_{k}\right) U_{\gamma_{2}}\left(x_{k}\right)$.

Case $k=10$: This case is handled separately because $\gamma_{1}-\gamma_{10}$ is not a root. Let $m_{1}=U_{\gamma_{2}-\gamma_{10}}(1)$, then $\operatorname{Int}\left(m_{1}\right) \circ u=\operatorname{Int}\left(m_{1}\right) \circ U_{\gamma_{10}}\left(x_{10}\right)=U_{\gamma_{2}}\left(x_{10}\right) U_{\gamma_{10}}\left(x_{10}\right)$ by Lemma 2.1, since for any positive integers k and $n, k\left(\gamma_{2}-\gamma_{10}\right)+n \gamma_{10}$ is a root only when $k=n=1$. Now it will fall into the second case which has already been proved.

Now

$$
\operatorname{Int}\left(m_{1}\right) \circ u=\prod_{i=1}^{10} U_{\gamma_{i}}\left(x_{i}^{\prime}\right) \quad \text { with } x_{1}^{\prime} \neq 0, x_{2}^{\prime} \neq 0
$$

Let

$$
m_{2}=U_{\gamma_{10}-\gamma_{2}}\left(-\frac{x_{10}^{\prime}}{x_{2}^{\prime}}\right)
$$

It can be checked for any $i \geq 3$, and any pair of positive integers $\{k, n\}$, that $k\left(\gamma_{10}-\gamma_{2}\right)+n \gamma_{i}$ is not a root. So $\operatorname{Int}\left(m_{2}\right)$ fixes all $U_{\gamma_{i}}$.

For any pair of positive integers $\{k, n\}, k \gamma_{1}+n\left(\gamma_{10}-\gamma_{2}\right)$ or $k \gamma_{2}+n\left(\gamma_{10}-\gamma_{2}\right)$ can be a root only when $k=n=1$. And $\gamma_{1}+\left(\gamma_{10}-\gamma_{2}\right)=\gamma_{9} ; \gamma_{2}+\left(\gamma_{10}-\gamma_{2}\right)=\gamma_{10}$.

By Lemma 2.1,

$$
\begin{aligned}
& \operatorname{Int}\left(m_{2}\right) \circ U_{\gamma_{2}}\left(x_{2}^{\prime}\right)=U_{\gamma_{10}}\left(-x_{10}^{\prime}\right) U_{\gamma_{2}}\left(x_{2}^{\prime}\right), \\
& \operatorname{Int}\left(m_{2}\right) \circ U_{\gamma_{1}}\left(x_{1}^{\prime}\right)=U_{\gamma_{9}}\left(\frac{x_{1}^{\prime} x_{10}^{\prime}}{x_{2}^{\prime}}\right) U_{\gamma_{1}}\left(x_{1}^{\prime}\right)
\end{aligned}
$$

Consequently,

$$
\operatorname{Int}\left(m_{2}\right) \circ\left(\prod_{i=1}^{10} U_{\gamma_{i}}\left(x_{i}^{\prime}\right)\right)=\left[\prod_{i=1}^{8} U_{\gamma_{i}}\left(x_{i}^{\prime}\right)\right] U_{\gamma_{9}}\left(x_{9}^{\prime}-\frac{x_{1}^{\prime} x_{10}^{\prime}}{x_{2}^{\prime}}\right)
$$

For convenience of notation, let the right side of the above equation be

$$
\prod_{i=1}^{9} U_{\gamma_{i}}\left(y_{i}\right)
$$

Let

$$
m_{3}=\prod_{i=2}^{9} U_{\gamma_{i}-\gamma_{1}}\left(-\frac{y_{i}}{y_{1}}\right) .
$$

By Lemma 2.1, we have:

$$
\begin{equation*}
\operatorname{Int}\left(U_{\gamma_{9}-\gamma_{1}}\left(-\frac{y_{9}}{y_{1}}\right)\right) \circ U_{\gamma_{1}}\left(y_{1}\right)=U_{\gamma_{1}}\left(y_{1}\right) U_{\gamma_{9}}\left(-y_{9}\right) \tag{3.20}
\end{equation*}
$$

Remark For all i with $i \neq 1$, and any pair $\{k, n\}$ of positive integers, the coefficient of α in $k\left(\gamma_{9}-\gamma_{1}\right)+n \gamma_{i}$ is n. So for it to be a root, n must be 1 . Then the coefficient of α_{1} in $k\left(\gamma_{9}-\gamma_{1}\right)+n \gamma_{i}$ is $n-k=1-k$. For $k\left(\gamma_{9}-\gamma_{1}\right)+n \gamma_{i}$ to be a root, $1-k=1$ or 2 which is impossible. So $\operatorname{Int}\left(U_{\gamma_{9}-\gamma_{1}}\right)$ fixes all $U_{\gamma_{i}}$ with $i \neq 1$.

So by equation (3.20) and the above remark,

$$
\operatorname{Int}\left(U_{\gamma_{9}-\gamma_{1}}\left(-\frac{y_{9}}{y_{1}}\right)\right) \circ\left(\prod_{i=1}^{9} U_{\gamma_{i}}\left(y_{i}\right)\right)=\prod_{i=1}^{8} U_{\gamma_{i}}\left(y_{i}\right)
$$

By induction, and with the same discussion on the cases of roots as in the remark, we can prove:

$$
\operatorname{Int}\left(\prod_{i=j}^{9} U_{\gamma_{i}-\gamma_{1}}\left(-\frac{y_{i}}{y_{1}}\right)\right) \circ\left(\prod_{i=1}^{9} U_{\gamma_{i}}\left(y_{i}\right)\right)=\prod_{i=1}^{j-1} U_{\gamma_{i}}\left(y_{i}\right) .
$$

And in particular when $j=1$, then

$$
\operatorname{Int}\left(m_{3}\right) \circ\left(\prod_{i=1}^{9} U_{\gamma_{i}}\left(y_{i}\right)\right)=U_{\gamma_{1}}\left(y_{1}\right)
$$

Set $m=m_{3} m_{2} m_{1}$. We can then see from the above process that $\operatorname{Int}(m) \circ u=$ $U_{\gamma_{1}}\left(y_{1}\right)$.

For any $1 \leq i, j \leq 10, \gamma_{i}-\gamma_{j} \in \operatorname{span}\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$. But for any $\gamma \in$ $\operatorname{span}\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right\}$ and any pair $\{k, n\}$ of positive integers, $k \beta_{1}+n \gamma$ cannot be a root by Lemma 3.2. So each $\operatorname{Int}\left(U_{\gamma_{i}-\gamma_{j}}\right)$ fixes $U_{\beta_{1}}$ and consequently, all $\operatorname{Int}\left(m_{1}\right)$, $\operatorname{Int}\left(m_{2}\right), \operatorname{Int}\left(m_{3}\right)$ fix $U_{\beta_{1}}$ and therefore $\operatorname{Int}(m)$ fixes $U_{\beta_{1}}$.

Theorem 3.11 (Gaussian Elimination) For any $u \in N$, there exists $m \in M$, such that $\operatorname{Int}(m) \circ u=U_{\beta_{1}}\left(a_{1}\right) U_{\gamma_{1}}\left(a_{2}\right)$, with $a_{1}, a_{2} \in F$.

Proof Write $u=u_{1} u_{2}$, where

$$
u_{1}=\prod_{i=1}^{17} U_{\beta_{i}}\left(x_{i}\right) \in N_{1}, \quad u_{2}=\prod_{i=1}^{10} U_{\gamma_{i}}\left(y_{i}\right) \in N_{2}
$$

If $u_{1}=1$, then it is the case of Lemma 3.10.
If $u_{1} \neq 1$, by applying a suitable $\operatorname{Int}(m)$ on u from Lemma 3.9, we can assume $x_{1} \neq 1$. Let

$$
m_{1}=\prod_{i=2}^{17} U_{\beta_{i}-\beta_{1}}\left(\frac{x_{i}}{x_{1}}\right)
$$

then $\beta_{i}-\beta_{1}$ is a positive root and the coefficient of α_{6} in $\beta_{i}-\beta_{1}$ is 1 .
For any fixed j, with $2 \leq j \leq 17$, and for each pair of positive integers $\{k, n\}$, the coefficient of α_{6} in $k\left(\beta_{i}-\beta_{1}\right)+n \beta_{j}$ is $k+n \geq 2$, so $k\left(\beta_{i}-\beta_{1}\right)+n \beta_{j} \in \theta_{2}$ if it is a root. Moreover, for any $\gamma \in \theta_{2}$, the coefficient of α_{6} in $k\left(\beta_{i}-\beta_{1}\right)+n \gamma$ is $k+2 n \geq 3$, so $k\left(\beta_{i}-\beta_{1}\right)+n \gamma$ cannot be a root, hence $\operatorname{Int}\left(U_{\beta_{i}-\beta_{1}}\right)$ fixes every element in N_{2}.

So by Lemma 2.1, we have:

$$
\operatorname{Int}\left(U_{\beta_{i}-\beta_{1}}\left(\frac{x_{i}}{x_{1}}\right)\right) \circ U_{\beta_{j}}\left(x_{j}\right)=U_{\beta_{j}}\left(x_{j}\right) \cdot n_{i, j}, \quad \text { with } n_{i, j} \in N_{2}
$$

Consequently, $\operatorname{Int}\left(m_{1}\right) \circ U_{\beta_{j}}\left(x_{j}\right)=U_{\beta_{j}}\left(x_{j}\right) n_{j}$ with

$$
n_{j}=\prod_{i=2}^{17} n_{i, j} \in N_{2}
$$

and

$$
\operatorname{Int}\left(m_{1}\right) \circ U_{\beta_{1}}\left(x_{1}\right)=U_{\beta_{1}}\left(x_{1}\right) \cdot \prod_{i=2}^{17} U_{\beta_{i}}\left(-x_{i}\right) \cdot n_{1} \quad \text { with } n_{1} \in N_{2}
$$

So

$$
\operatorname{Int}\left(m_{1}\right) \circ u_{1}=\operatorname{Int}\left(m_{1}\right) \circ\left(\prod_{i=1}^{17} U_{\beta_{i}}\left(x_{i}\right)\right)=U_{\beta_{1}}\left(x_{1}\right) \cdot n \text { where } n=\prod_{i=1}^{17} n_{i} \in N_{2}
$$

Now let $u_{2}^{\prime}=n \cdot u_{2}$ and apply Lemma 3.10 to u_{2}^{\prime}. There exists $m_{2} \in M$ such that $\operatorname{Int}\left(m_{2}\right) \circ u_{2}^{\prime}=U_{\gamma_{1}}\left(a_{2}\right)$ and $\operatorname{Int}\left(m_{2}\right) \circ U_{\beta_{1}}\left(x_{1}\right)=U_{\beta_{1}}\left(x_{1}\right)$. Let $m=m_{2} m_{1}$ and $a_{1}=x_{1}$. Then $\operatorname{Int}(m) \circ u=U_{\beta_{1}}\left(a_{1}\right) U_{\gamma_{1}}\left(a_{2}\right)$.

Now start from $s_{1} s_{1}^{-}=s_{2}^{-} s_{2}$ acting on $\operatorname{Int}(m)$ on both sides, we can assume $s_{2}=$ $U_{\beta_{1}}\left(a_{1}\right) U_{\gamma_{1}}\left(a_{2}\right)$. The proof of the main theorem is almost the same as that of E_{6}. We need only make a small justification of the fact that $\gamma_{1}-\gamma_{10}$ is not a root, but this does not make much difference. Each step in the proof of the E_{6} case can be paralleled to finish the proof in the E_{7} case.

4 Application to Intertwining Operators

Now by Theorem 2.2, $M_{m_{i}}^{t}=M_{n_{i}}$. This can be used to refine the main results in [8]. To be more precise, let $X(\mathbf{M})_{F}$ be the group of F-rational characters of \mathbf{M}. Denote by \mathbf{A} the split component of the center of \mathbf{M}. Then $\mathbf{A} \subset \mathbf{A}_{0}$. Let

$$
\left.\mathfrak{a}=\operatorname{Hom}\left(X(\mathbf{M})_{F}\right), \mathbb{R}\right)=\operatorname{Hom}\left(X(\mathbf{A})_{F}, \mathbb{R}\right)
$$

be the real Lie algebra of \mathbf{A}. Set $\mathfrak{a}^{*}=X(\mathbf{M})_{F} \otimes_{\mathbb{Z}} \mathbb{R}$ and $\mathfrak{a}_{\mathbb{C}}^{*}=\mathfrak{a}^{*} \otimes_{\mathbb{R}} \mathbb{C}$ to denote its real and complex duals.

For $\nu \in \mathfrak{a}_{\mathbb{C}}^{*}$ and σ an irreducible admissible representation of M, let $I(\nu, \sigma)=$ $\operatorname{Ind}_{M N \uparrow G} \sigma \otimes q^{\left\langle\nu, H_{P}(\cdot)\right\rangle} \otimes 1$, where H_{P} is the extension of the homomorphism $H_{M}: M \rightarrow \mathfrak{a}=\operatorname{Hom}\left(X(\mathbf{M})_{F}, \mathbb{R}\right)$ to P, extended trivially along N, defined by $q^{\left\langle\chi, H_{P}(m)\right\rangle}=|\chi(m)|_{F}$ for all $\chi \in X(\mathbf{M})_{F}$. Let $V(\nu, \sigma)$ be the space of $I(\nu, \sigma)$, for $h \in V(\nu, \sigma)$, and let

$$
A(\nu, \sigma, w) h(g)=\int_{N_{\bar{w}}} h\left(w^{-1} n g\right) d n
$$

where $N_{\tilde{w}}=U \cap w N^{-} w^{-1}$, be the standard intertwining operator from $I(\nu, \sigma)$ into $I(w(\nu), w(\sigma))$.

Let $I(\sigma)=I(0, \sigma)$ and $V(\sigma)=V(0, \sigma)$ be the induced representation and its space at $\nu=0$, respectively. Since $w_{0}(M)=M, I(\sigma)$ is irreducible if and only if $A\left(\nu, \sigma, w_{0}\right)$ has a pole at $\nu=0(c f .[6-8])$. By [7, Lemma 4.1], it is enough to determine the pole of $\int_{N} h\left(w_{0}^{-1} n\right) d n$ at $\nu=0$ for any h in $V(\nu, \sigma)$ which is supported in $P N^{-}$.

For $n_{i} \in N$, suppose n_{i} is inside an open orbit under $\operatorname{Int}(M)$, with $w_{0}^{-1} n_{i} \in P N^{-}$. Write $w_{0}^{-1} n_{i}=m_{i} n_{i}^{\prime} n_{i}^{-}$as before, define $d^{*} n_{i}=q^{\left\langle\rho, H_{M}\left(m_{i}\right)\right\rangle} d n$ where ρ is half the summation of the positive roots in N. Then by [8, Lemma 2.3], the measure $d^{*} n_{i}$ is an invariant measure on $M / M_{n_{i}}$ and thus induces a measure on the quotient $M / M_{n_{i}}$.

For the purpose of computing the residue we may assume that there exists a Schwartz function ϕ on \mathfrak{N}^{-}, the Lie algebra of N^{-}, such that

$$
h\left(\exp \left(\mathfrak{n}^{-}\right)\right)=\phi\left(\mathfrak{n}^{-}\right) h(e)
$$

where $\mathfrak{n}^{-} \in \mathfrak{N}^{-}$. Let $n_{i}^{-}=\exp \left(\mathfrak{n}_{i}^{-}\right)$, with $\mathfrak{n}_{i}^{-} \in \mathfrak{N}^{-}$. Given a representation σ, let $\psi(m)$ be among the matrix coefficients of σ, i.e, choose an arbitrary element \tilde{v} in the contragredient space of σ. Let $\psi(m)=\langle\sigma(m) h(e), \tilde{v}\rangle$. With these notations and applying Theorem 2.2, [8, Proposition 2.4] can be restated as:

Proposition 4.1 Let σ be an irreducible admissible representation of M. Then the poles of $A\left(\nu, \sigma, w_{0}\right)$ are the same as those of

$$
\sum_{n_{i} \in O_{i}} \int_{M / M_{n_{i}}} q^{\left\langle\nu, H_{M}\left(w_{0}(m) m_{i} m^{-1}\right)\right\rangle} \phi\left(\operatorname{Ad}\left(m^{-1}\right) \mathfrak{n}_{i}^{-}\right) \psi\left(w_{0}(m) m_{i} m^{-1}\right) d \dot{m}
$$

where O_{i} runs through a finite number of open orbits of \mathfrak{M} under $\operatorname{Ad}(M) ; \mathfrak{n}_{i}$ is a representative of O_{i}, under the correspondence that $w_{0}^{-1} n_{i}=m_{i} n_{i}^{\prime} n_{i}^{-}$, with $n_{i}=\exp \left(\mathfrak{n}_{i}\right)$, $n_{i}^{-}=\exp \left(\mathfrak{n}_{i}^{-}\right)$and d \dot{m} is the measure on $M / M_{n_{i}}$ induced from $d^{*} n_{i}$.

Let $\tilde{\mathbf{A}}$ be the center of \mathbf{M}. Then there exists a function $f \in C_{c}^{\infty}(M)$ such that $\psi(m)=\int_{\tilde{A}} f(a m) \omega^{-1}(a) d a$, where ω is the central character of σ.

Define

$$
\theta: M \rightarrow M, \quad \theta(m)=w_{0}^{-1} m w_{0}, \forall m \in M
$$

Given $f \in C_{c}^{\infty}(M)$ and $m_{0} \in M$, define the θ-twisted orbit integral for f at m_{0} by:

$$
\phi_{\theta}\left(m_{0}, f\right)=\int_{M / M_{\theta, m_{0}}} f\left(\theta(m) m_{0} m^{-1}\right) d \dot{m}
$$

where

$$
M_{\theta, m_{0}}=M_{\theta, m_{0}}(F)=\left\{m \in M(F) \mid \theta(m) m_{0} m^{-1}=m_{0}\right\}
$$

is the θ-twisted centralizer of m_{0} in $M(F), d \dot{m}$ is the measure on $M / M_{\theta, m_{0}}$ induced from $d m$.

Applying our Theorem 2.2, the main theorem in [8] (Theorem 2.5) can be modified as:

Proposition 4.2 Assume σ is supercuspidal and $w_{0}(\sigma) \cong \sigma$. The intertwining operator $A\left(\nu, \sigma, w_{0}\right)$ has a pole at $\nu=0$ if and only if

$$
\sum_{i} \int_{Z(G) / Z(G) \cap w_{0}(\tilde{A}) \tilde{A}^{-1}} \phi_{\theta}\left(z m_{i}, f\right) \omega^{-1}(z) d z \neq 0
$$

for f as above. Here $Z(G)$ is the center of G and

$$
\phi_{\theta}\left(z m_{i}, f\right)=\int_{M / M_{n_{i}}} f\left(z \theta(m) m_{i} m^{-1}\right) d \dot{m}
$$

is the θ-twisted orbital integral for f at $z m_{i}$, where m_{i} corresponds to the representatives $\left\{n_{i}\right\}$ for the open orbits in N under $\operatorname{Int}(M)$, with $w_{0}^{-1} n_{i}=m_{i} n_{i}^{\prime} n_{i}^{-}$, as n_{i} runs through the finite number of open orbits in N.

References

[1] D. Goldberg and F. Shahidi, On the tempered spectrum of quasi-split classical groups. Duke Math. J. 92(1998), no. 2, 255-294.
[2] D. Goldberg and F. Shahidi, On the tempered spectrum of quasi-split classical groups. III. The odd orthogonal groups. Forum Math., to appear
[3] J. Humphreys, Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics 9, Springer-Verlag, New York, 1978.
[4] I. Muller, Décomposition orbitale des spaces préhomogènes réguliers de type parabolique commutatif et application. C. R. Acad. Sci Paris Sér. I Math. 303(1986), no. 11, 495-498.
[5] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65(1977), 1-155.
[6] F. Shahidi, A proof of Langlands' conjecture on Plancherel measures: Complementary series for p-adic groups. Ann of Math. 132(1990), no. 2, 273-330. Math. J. 66(1992), no. 1, 1-41.
[8] Poles of intertwining operators via endoscopy; the connection with prehomogeneous vector spaces. Compositio Math. 120(2000), no. 3, 291-325.
[9] Local coefficients as Mellin transforms of Bessel functions: Towards a general stability. Int. Math. Res. Not. 39(2002), no. 39, 2075-2119.
[10] T. A. Springer, Linear Algebraic Groups. Second edition. Progress in Mathematics 126, Springer-Verlag, New York, 1991.
[11] E. B. Vinberg, The Weyl group of a graded Lie algebra. Izv. Akad. Nauk SSSR Ser. Mat. 40(1976), no. $3,488-526,709$.

Institute of Science
Wuhan Institute of Technology
Hubei
China
e-mail: tianyuanwing@yahoo.com

[^0]: Received by the editors September 8, 2004; revised September 12, 2005.
 This work was part of the author's Ph.D thesis and was partly supported by NSF Grant number DMS0200325.

 AMS subject classification: 11F70.
 (C)Canadian Mathematical Society 2006.

