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THE DELIGNE COMPLEX OF A REAL ARRANGEMENT
OF HYPERPLANES

LUIS PARIS

1. Introduction

Let V be a real vector space. An arrangement of hyperplanes in V is a finite
family & of hyperplanes of V through the origin. We say that & is essential if
Nyey H =10}

Let Vo= C & V be the complexification of V. Every element z of V can be
written in a unique way z = x -+ iy, where z, y € 1 @ V= V. We say that x is
the real part of z and that y is its imaginary part. For two subsets X, Y & V, we

write
X+i¥Y={x+iy € Volr € Xandy € V).

Let H be a hyperplane of V. The complexification H of H is the hyperplane of V
spanned by H ; Ho = H + 1H.
Let & be an arrangement of hyperplanes in a real vector space V. We set

M) =V~ (Hgﬂ HC> :

This space is an open and connected submanifold of V. We say that & is a
K(r, 1) arvangement if M(d) is a K(xr, 1) space.
The lattice of a real arrangement 4 of hyperplanes is the poset

26 ={n HIB < al

He®B

ordered by the reverse inclusion. V.= N .4 H is the smallest element of ¥ (sf),
and Nye, H is the greatest one. For X € £(4), we set

dy={HEA|H2X.

Let &4 be a real and essential arrangement of hyperplanes. A chamber of 4 is
a connected component of V — U,_, H We say that & is simplicial if every
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chamber of & is an open simplicial cone. In [De], for a simplicial arrangement & of
hyperplanes, Deligne constructs a cover ¢ : M(«) — M(d), defines a simplicial
complex Del(d) from &, and proves that Del(#) has the same homotopy type as
M(d4), and that Del(#) is contractible. In particular, ¢ : M(d) = M(dA) is the
universal cover of M(«), and & is a K(r, 1) arrangement.

In [Pal], the author generalizes Deligne’s construction of the universal cover
q: M(d) — M(d) of M(d) to any real arrangement & of hyperplanes using a

new combinatorial tool: the oriented systems.

Our goal in this paper is to generalize the defintion of the Deligne complex
Del(d) to any real and essential arrangement & of hyperplanes (in the general
case, Del(d) is a regular and normal CW-complex), and to prove the following re-
sult.

MaIv THEOREM. Let A be a rveal and essential arrangement of hyperplanes. The
Deligne complex Del(d) of A has the same homotopy type as the universal cover
M) of M() if and only if Ay is a K, 1) arrangement for every X € L(A)
different from {0}.

In particular, if & is an essential arrangement of hyperplanes in a real vector
space of dimension < 3, then Del(#/) has the same homotopy type as the univer-
sal cover M(d) of M(sf) (it is well known that any arrangement of hyperplanes
in a real vector space of dimension < 2 is a K(rr, 1) arrangement).

Note that the study of the topology of M(4), where & is an arbitrary real
arrangement of hyperplanes, can be easily reduced to the case of an essential
arrangement. Thus the hypothesis “4 is essential” is not a restriction.

At the end of this section we will prove that: “if & is a K(rr, 1) arrangement,
then &, is also a K(x, 1) arrangement for every X € £(«4)” (Lemma 1.1). It
follows that, if & is a K(r, 1) arrangement, then Del(#f) has the same homotopy
type as the universal cover M(d) of M(«), and, consequently, Del(#) is
contractible. In view of these facts, our complex Del(s) can certainly be used to
prove that a given real arrangement of hyperplanes is a K(rr, 1) arrangement.

We refer to [FR] for a good exposition on K(rr, 1) arrangements, and to [Or]
and [OT] for good expositions on the theory of arrangements of hyperplanes.

Our work is organized as follows.

Section 2 is a summary of [Pal]. Its aim is to introduce our main combinato-
rial tool, the oriented systems, and to give the construction of the universal cover
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q: M) — M(d) of M(s). Although this section is almost identical to Section 2
of [Pa2], for convenience we reproduce it here rather than referring the reader to
the original paper.

In Section 3, we define the complex Del(sf) and prove the Main Theorem.

I am grateful to Peter Orlik and Hiroaki Terao who have helped me with
discussions, suggestions and encouragement during my work. I am also grateful to
Mutsuo Oka for granting his permission to include in this paper his proof of
Lemma 1.1.

LemMa 1.1, Let o be a veal arrangement of hyperplanes, and let X € L(A). If
4 is a K(zr, 1) arrangement, then dy is also a K(rr, 1) arrangement.

Proof. Let ¢ : M(sf) — M(sd,) be the inclusion map of M(d) into M(d,).
We are going to prove that ¢ admits a right homotopy inverse. This shows that
(D, (M) = 7,(M(Ay)) is a surjective morphism of groups for every
n 2 0, and thus that M(d,) is a K(rr, 1) space if M(4) is a K(rr, 1) space.

Pick a point 2 € Nye, H such that z € H¢ for any H € d — dy. Choose
a small disk B in V centered in z and which does not intersect any hyperplane
Hewith HE d — dy. Set

w=B-(U H)=B~-(U H,

Heo y Hegd

and let ¢*: W— M(d) denote the inclusion map of W into M(«). Then ¢ = ¢! = ¢°
: W— M(d,) is obviously a homotopy equivalence, thus ¢ admits a right homo-
topy inverse. O

Note that Lemma 1.1 can be easily generalized to complex arrangements of
hyperplanes.

2. The universal cover of M ()

This section is divided into three subsections. In the first one we introduce
our main combinatorial tool: the oriented systems. In the second subsection we
define the oriented system (I'(#), ~) associated with a real arrangement &f of
hyperplanes. In the third subsection, using the universal cover p: (I'(d), ~) —
(I'(d), ~) of the oriented system (I(«#), ~), we give the construction of the uni-
versal cover g : M(d) — M(d) of M(4).
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All results stated in this section are derived from [Pal], so we will not give

any proofs.

2. A. Oriented systems

An oriented graph I is the following data:

1) a set V(I of vertices,

2) a subset A(N € (VD) x V) = {(v, v) | v € V(D)} of arrous.

The origin of an arrow @ = (v, w) is v and its end is w. An oriented graph I”
is locally finite if every vertex v € V(I') is the origin or the end of only a finite
number of arrows.

A path of an oriented graph I is an expression

En

= 51852 ...
f'_alaz2 a,,

where a@; € A(I) and ¢, € {* 1}(for i = 1,...,n), such that there exists a sequ-

ence vy, vy,...,U, of vertices of I" with:
a;, = (v;_,, v,) if &;, = 1 and
a; = (v, v;_) ife; = — 1.

We say that v, is the origin of f and that v, is its end. The integer # is its length
and Z’;l g; is its weight. Every vertex of I' is assumed to be a path of length 0

and of weight 0. For a path f = a{' -+ a*, we write f ' = @, -+ -a;"". For two
paths f=a; -+ - @ and g = b} -+ - b,™ with end(f) = origin(g), we write fg
— S8 Eny 1 Lm
_al ...anbl “oe bm

An oriented graph I' is commnected if, for every pair (v, w) of vertices of I
there exists a path of I" which begins at v and ends in w.

We always assume the oriented graphs to be locally finite and connected.

Let I" be an oriented graph. An identification of I" is an equivalence relation
~ in the set of paths of I" with the following properties:
1) f~ g= origin(f) = origin(g), end(f) = end(g) and weight(f) =
weight(g),
2) ff ' ~ origin(f), for every path f,
3 f~eg=f"~4g7,
4) f~ g= h fh, ~ h,gh,, for suitable paths A; and &,.

An oriented system is a pair (I', ~), where I' is an oriented graph and ~ is
an identification of I
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Let o : ®— I be a morphism of oriented graphs. We say that p is a cover of I
if, for every vertex v of @ and every path f of I" beginning at p(v), there exists a
unique path f of © such that origin(f) = v and p(f) = f

Let p: (8, ~)— (I', ~) be a morphism of oriented systems (.e. f ~ §=
o(f) ~ p(@). We say that p is a cover of (I, ~) if it has the following two prop-
erties.

1) p: ®—TI'is acover of I'.

2) Let v € V(0), let f and g be two paths of I" which both begin at o(v), and
let f and g be the lifts of f and g respectively into © beginning at v. If f ~ g(=
end(f) = end(g)), then f ~ g(= end(f) = end(g)).

ProPOSITION 2.1. Let (I', ~) be an oviented system. There exists a unique cover
., ~)—= T, ~) of (I', ~) (up to isomorphism) which has the following univer-
sal property.

If p: (@, ~)— ", ~) is a cover of (I', ~), then there exists a unique cover
7 (I, ~)— (O, ~) of (O, ~) (up to isomorphism) such that T = p ° 7',

We call : (I, ~) = (I", ~) the universal cover of (I, ~).

ProPOSITION 2.2. Let w2 (I, ~) — (I', ~) be the universal cover of an oviented
system (', ~). Two paths f and § of I' are identified by ~ if and only if
origin(f) = origin(g) and end(f) = end ().

2. B. Definition of (I'(«f), ~)

Let & be an arrangement of hyperplanes in a real vector space V. The hyper-
planes of & subdivide V into facets. We denote by F () the set of all the facets.
The support | F'| of a facet F is the vector space | F| € £(4) spanned by F. Ev-
ery facet is open in its support. We denote by F the closure of F in V. There is a
partial order in () defined by F < G if F € G.

A chamber of & is a facet of codimension 0. A face is a facet of codimension 1.
Two chambers C and D are adjacent if they have a common face (i.e. a common
facet of codimension 1).

Now, let us define the oriented system (I'(«f), ~) associated with &.

The vertices of I'(df) are the chambers of &. An arrow of I'(«f) is a pair
(C, D), where C and D are adjacent chambers. Note that, in this oriented graph,
if (C, D) is an arrow, then (D, C) is also an arrow.
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A positive path of an oriented graph 4 is a path f=a}' -+ @;" with g, = ...
= ¢, = 1. This positive path is minimal if there is no positive path in 4 having
the same origin as f, the same end as f, and a length smaller than the one of f.

The relation ~ is the smallest identification of I'(«f) such that:

if f and g are both positive minimal paths with the same origin and the same
end , then f ~ g.

2. C. Universal cover of M(d)

Let & be an arrangement of hyperplanes in a real vector space V. We set
M) =Ve— (U H).
Hegd

Our goal in this subsection is to explain the construction of the universal cover

q: M(d) = M(«) of M(s4).

Let C be a chamber of #. For a facet F € F(4), we denote by Cy the unique
chamber of & 5 containing C. We write

MO = U (F+iC) S V+iV) =V,

FeF ()

Note that this union is disjoint.

Lemma 2.3. The set {M(C) | C € VII(A))} is a covering of M(A) by open

subsets.
Now, consider the universal cover p: (I'(d), ~) = ('), ~) of (I'(sf), ~).
For every vertex v of I'(4), write
M©w) = M(o(v).
Set

M= 1 My,

ve V(M ()
and let

q M (o) — M(A)
be the natural projection.
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It is easy to see that, if two chambers C and D are adjacent, then there is
only one hyperplane H € o which separates C and D it is the support of their
common face. For a chamber C of o and a hyperplane H € &, we denote by HCJr
the open half-space of V bordered by H and containing C.

Let & be the smallest equivalence relation on M’ () such that:

ifa= (v, w) € (), z€ M), 2 € M(w), and

¢ @ =q@) € Mw) N Mw) O (Hy, +iV),
where H is the unique hyperplane of & which separates p(v) and o(w), then
ZRzZ’.
The space M(sf) is the quotient
M) = M'(4) /R,
and
q: M) — M(o)

is the map induced by ¢’
THEOREM 2.4. The map q : M(4) — M() is the universal cover of M(A).

The following Lemmas 2.5, 2.6 and 2.7 are in [Pal] preliminary results to the
proof of Theorem 2.4; nevertheless, we state them since they will be used later in
this paper.

Fix a vertex v € V(I'(#)). Write C = p(v). For every chamber D of o, we
choose a positive minimal path f;, of I'(#f) beginning at C and ending in D. We de-
note by £, the lift of f, into I'(4f) beginning at v. Note that the end of f, does not
depend on the choice of f; (see the definition of the identification ~ of I'(«f)). We
set

() = {end(f,) | D € V(I'(d))}.

The restriction of p to 22(v) is clearly a bijection 2 (v) — V(I'(«)).
Let v and w be two vertices of I'(). We write

Zw, w) = U g(u),

where the union is over all vertices # € 2(v) N 2 (w) and, for u € 2. (v)
N 2.(w), the set g(u) is the closure of p(#) in V. We denote by Z(v, w) the in-
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terior of Z(v, w). Note that Z(v, w) is a union of facets of .
Consider the natural projection

pM()= 1o M — M.
eV ()
For every v € V(I (d)), we write M) = p(M(v)). Since ¢’ : M’ () — M(4)
sends M(v) homeomorphically onto M(v), and ¢ :q - p, the map q:M(d4)—
M(d) sends M(v) homeomorphically onto M(v). Moreover, since ¢ is a cover,
M) is an open subset of M(d).

LEMMA 2.5. Let v and w be two vertices of I'(). The border of Z(v, w) is con-
tained in the union of the hyperplanes H € A which separate p(v) and o(w).

LEMMA 2.6. Let v and w be two vertices of I'(d). Then

gM@) N Mw) = M) N Mw) N (Z(v, w) + iV).

COROLLARY. Let v, w be two vertices of I'(d). If Z(w) N Z(w) = @, then
M@ N Mw) = ¢.

LEMMA 2.7. For every chamber C of 4, we have

g M) = U M,

vep l(C)

and this union is disjoint.

3. The Deligne complex of o

Throughout this section, & is an essential arrangement of hyperplanes in a
real vector space V of dimension I, the map ¢ : M(d) — M(sd) is the universal
cover of M(A), the pair (I'(), ~) is the oriented system associated with &, and
o: (F(d), ~)— (I'(«4), ~) is the universal cover of (I'(«f), ~).

We provide V with an arbitrary scalar product. Let 8" = {z € V|||z| = 1}
be the unit sphere. The arrangement & determines a cellular decomposition of
S'™!. With a facet F of o of dimension d corresponds the (closed) cell 4,_,(F) =
F NS of dimension (d — 1), and every cell of this decomposition has that
form.

For every vertex v of f(ﬂ), we write
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4 (v) =4,_ (W)
(recall that p(v) is a chamber of &, so is a facet of dimension ). We set
Del'(d) = I.UI 4, (v),
where the union is over all the vertices v of I'(#), and let
7’ : Del' (¢) —» 8"

be the natural projection, The space Del (#f) is a disjoint union of (I — 1)-cells,
and each cell 47_,(v) has a natural cellular decomposition given by the embedding
() <& 8" Thus Del’(#) can be viewed as a cellular complex, and 7’ as a
cellular map.
Let R be the smallest equivalence relation on Del’(4) such that:
if a= (v, w) € AT ), a € 4,_,(v), BE 4)_,(w), and 7'(a) = 7' (B),
then

aRpB.
We denote by Del’(#f) the quotient
Del’(«#) = Del(d) /R,

by
7 : Del'(¢) — Del’(«)

the natural projection, and by
7°: Del’(4) = S

the map induced by 7. In other words, The space Del’(#) is obtained from
Del'(f) as follows: for every arrow a = (v, w) of I'(#), we identify the
(I = 2)-cell 4,_,(F) € A]_;(v) with the (I — 2)-cell 4,_,(F) € 4]_,(w), where F
is the face of & common to o(v) and o(w). Thus Del’(#f) has a natural cellular
decomposition where the maps 7 and 7’ are cellular maps.

For every vertex v of I'(), we write 4_, () = 7(4]_,(»)).

For every vertex v of I'(d), we write

S7'w) = U 49, (w) S Del’(«)
ue(v)

(the definition of 2 (v) is given in Subsection 3.C). The restriction of 7’ to
S (v) is obviously an isomorphism S''(v) — S'™" of cellular complexes.
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The Deligne complex of 4 is the cellular complex Del(d) obtained from
Del’(«#) by attaching a I-cell B'(v) to Del’(#) having §'7'(v) as border, for
every vertex v of 1'(d).

The complexes S'', Del’(#) and Del(d) are clearly regular and normal
CW-complexes.

MAIN THEOREM. Let & be a real and essential arrangement of hyperplanes. The
Deligne complex Del(d) of A has the same homotopy type as the umiversal cover
M(A) of M(A) if and only if dy is a K(x, 1) arrangement for every X €
L(A) different from {0}.

COROLLARY 1. et o be an essential arrangement of hyperplanes in a veal vector
space V of dimension < 3. Then Del(d) has the same homotopy type as the universal
cover M(dd) of M(dA).

COROLLARY 2. Let d be a real, essential, and K(xr, 1) arrangement of hyper-
planes. Then Del(d) has the same homotopy type as the umiversal cover M(d) of
M(A). In particular, Del(d) is contractible.

Let N be a regular and normal CW-complex. The cellular decomposition of N
determines a simplicial decomposition of N called the barycentric subdivision of N
(see [LW, Ch. III, Theorem 1.7]). For every cell 4, of N we fix a point w(4,) €
(4, — 04,), where 04, is the border of 4, (we assume 84, = @ if dim(4,) = 0).
A chain 4, € 4, C...C 4, of cells of N determines a simplex @ = w(4,)V
w(d,) V... Vo(d,) having 0(4,), w(4,),...,w(4,) as vertices and included
in (4, — 04,), and every simplex of this simplicial decomposition has that form.
All the simplexes are assumed to be open.

From now on, we assume S, Del’(#) and Del(#f) to be provided with their
respective barycentric subdivisions;, moreover, we assume all the simplexes of s!
to be convex subsets of S'_l, the complex Del’(#) to be a simplicial subcomplex of
Del(«), and 7°: Del’(f) — 8" to be a simplicial map.

NotaTionNs. Let ¢ be a simplex of s Then, by the construction of the
barycentric subdivision of SH, the simplex ¢ is contained in a unique facet of &
which we denote by F(¢). We write X(¢) = | F(¢) |. Note that X(¢) # {0}.

For a simplex @° of Del’(d), we write F(®°) = F(z°(®°)) and X(®°) =
X7’ (D).
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The proof of the Main Theorem is divided in 5 parts.

In Part 1, we give some preliminary results on the oriented system associated
with .

In Part 2, to every simplex @ of Del(#f) we associate a nonempty open subset
U(®) of M(d).

In Part 3, we prove the following assertions.

1) Let wy, @y, . ..,w, be (r + 1) vertices of Del(sd). If N, Ulw,) # @, then
Wy, Wy, ...,w, are the vertices of a simplex @ of Del(d).

2) Let wy, w,, . . .,w, be the vertices of a simplex @ of Del(d). Then
N_, Ulw,) = UW®).

3) The set U = {U(w) | @ a vertex of Del(d)} is a covering of M(f).

Assertions 1), 2) and 3) show that U = {U(w) | w a vertex of Del(#)} is a
covering of M(4) having Del(#) as nerve.

In Part 4, we prove the following assertions.

1) Let v be a vertex of I'(d). Then U(w(B'())) is contractible.

2) Let v be a vertex of I'(d), and let O° be a simplex of Del’(d) contained in
S (w). Write ® = @° V wB'(1)). Then U(D) is contractible.

3) Let @° be a simplex of Del’(d). Then U(D’) has the same homotopy type as
the universal cover M(d g0, of M(sl xg0)).

In particular, if 4, is a K(r, 1) arrangement for every X € (o) different
from {0}, then U(Q°) is contractible for every simplex @’ of Del’(d) (since
U(®°) has the same homotopy type as M(fyg0) and X(®°) # {0}). This fact,
Assertion 2) of Part 3, and Assertions 1) and 2) of Part 4 show that every
nonempty intersection of elements of 4 is contractible, thus, by [We], Del(#) has
the same homotopy type as M(s) (since U is a covering of M(«) having
Del(d) as nerve).

In Part 5, we assume that there exists an X € £(d) different from {0} such
that &y is not a K(, 1) arrangement. Then we construct a new space M » DY
attaching cells to M(«f) such that:

a) Del(#) has the same homotopy type as M.,

b) there exists an integer #, > 0 such that =, (M(d)) # nno(Mm).

Part 1.

Let I" be an oriented graph, and let W be a subset of V(I"). The oriented
subgraph of I' gemerated by W is the oriented graph © having W as set of vertices
and {(v, w) € AD) | v, w € W} as set of arrows.

For a facet F of 4, we denote by Iy the oriented subgraph of I'(#f)
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generated by {C € V(I'(#)) | C has F as facet}. For a simplex @’ of Del’(d), we
denote by I the oriented subgraph of I'(#) generated by {v € V(I'(«)) |
4, ,(v) 2 0%,

A gallery of & is a sequence (C,, Cy,...,C,) of chambers of & such that C,_,
and C; are adjacent for ¢ =1, ...,n (here we assume C;_, ¥ C;). Any positive
path f=a,...a, of I'(4) can be viewed as the gallery G = (C,, C,,...,C,),
where C; = end(a,,...,a,) for i =0, 1,...,n In particular, if f = a,...a, is a
positive minimal path of I'(«f) then G = (C,, C,, . . .,C,) is a minimal gallery
(i.e. a gallery of minimal length among the galleries of & from C, to C,). From this
perspective, the following lemma is a well known result.

LEmMa 3.1. Let F be a facet of A, let C and D be two chambers having F as
facet, and let [ be a positive minimal path of I'(4) beginning at C and ending in D.
Then f is a path of I'.

LEmMA 3.2. Let @° be a simplex of Del’(d). Then I’ o 1S a commected component
of 0 (Tpco).

Proof. Fix a vertex v, of r oo- Let © denote the connected component of
0 (Tpg0y) With v, € V(). Let us prove that V(0) = V(I',0).

Let w € V(I',0). Choose a point a’ € @°, and write a = 7°(a’). Since &’ €
A, (v N A;_,(w), by definition of Del’(#), there exists a path f = ai'...a." of
I'(d) beginning at v, ending in w, and such that @ € 4,_,(o(v,)) for every i = 0,
1,...,n, where v; = end(a;*. ..a;) for i=0,1,...,n. We have @ € 7°(®°) N
4, (o)) € F(®°) N p(v,), where §(v) is the closure of p(v) in V, thus
F(®°) N p(v,) #+ @, and therefore F(®°) is a facet of p(v,) for every i=0, 1,...,n.
This implies that p(v;) € V(I'pge), thus p(f) is a path of I'pge), and therefore f
is a path of @ (since origin(f) = v, € V(6)). It follows that end(f) = w €

V(o).

Now, let w € V(). Choose a path f = a;'...a," of © beginning at v, and
ending in w. Write v, = end(a$*. . .a;) for i=0, 1,...,n. We have 7°(®°) <
4,,(w@)) N 4,_,(o(v;,,) for i=0,1,...,m—1 (since p(f)is a path of
Tpo0), thus, by the definition of Del’(«f), we successively have ®° S 4;_,(v,) for
i=0,1,...,n In particular, ®° € A;_, (w), namely, w € V(I0). J
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Part 2.
For a simplex ¢ of S'", we denote by K(¢) the cone over ¢;
K(¢) = {Ax|2> 0 and x € ¢}.

Note that K(¢) S F(¢) for every simplex ¢ of S, and{K(¢) | ¢ a simplex of
S is a partition of V — {0}.

Let S be a simplicial complex, and let ¢ and ¢ be two simplexes of S. We set
¢ = ¢ if ¢ D @, where ¢ is the closure of ¢ in S. The relation “=" is a partial
order in the set of simplexes of S.

Recall that, for a chamber C of o and for a facet F, we denote by Cj the
unique chamber of 4z, containing C.

For a simplex ¢ of 8' ' and for a chamber C of &, we write

R(p, O) = wL>J¢ (K(¢) +iCpy)-
We have R(¢, C) S M(C).

LemMa 3.3. Let ¢ be a simplex of S, and let C be a chamber of d. Then
R(p, C) is an open subset of M(A).

Proof. Pick z= (x + iy) € R(p, C). Let ¢ be the simplex of S'~' such that
z € K(¢). Then we have y € Cry. If ¢/ = ¢, then F(¢) = F(¢), thus Cpyy 2
Cr. Furthermore, the subset U, -, K(¢) is an open cone. It follows that

7@ = ( U K@)+ iCry

=

is an open neighbourhood of z, and T(2) S R(¢, C). O

Recall that, for every chamber C of &,

g M©) = U M),
vep O

this union is disjoint, and ¢ sends M) homeomorphically onto M(v) = M(C) for
every v € p(C) (see Lemma 2.7). For a simplex ¢ of S'™" and for a vertex v of
I'(d), we denote by R(¢, v) the lift of R(¢, p(»)) into M(v). By Lemma 3.3,
R(¢, v) is an open subset of I'().

Now, let us define U(®), where @ is a simplex of Del(d).

If @ is a simplex of Del’(#f), then
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U®) = U R(x(D), v),

where the union is over all the vertices of fq,.

Assume that @ = w(B'(v)), where v is a vertex of I'(#). Write C = p(v).
The set U(®) = U(w(B'®))) is the lift of (V + iC) S M(C) into M(v).

Assume that @ has the form @ = @° V w(B'(v)), where v is a vertex of
I'(#) and @’ is a simplex of Del’(#) contained in §' ' (v). Write ¢ = 7°(®°) and
C = p(v). Then U(®) is the lift of

(U k@) +ic s M©

(=3

into M(v).

Part 3.

LemmMa  3.4. i) Let wy, wy,...,w, be (r=+1) vertices of Del’(d). If
Ni_, Ulw,) # 0, then w,, w,,...,w, are the vertices of a simplex @° of Del’ ().

i) Let wy, w,,...,w, be the vertices of a simplex @° of Del’(d). Then
Ni_, Ulw) = UW@D).

Proof. i) Let @w,, @, . . . ,w, be (r+ 1) vertices of Del’(«f) such that
N, Ulw) # 0. Write x; = n°(w,;) for i=0,1,...,7. Pick ¢ € N|_, Ulw,).
Write z = (z + i) = ¢g(e). For every i =0, 1,...,7, we choose a vertex v, of IA"(,,‘

such that e € R(x,, v,), and we write 4, = p(,).

Let ¢ be the simplex of 8'" such that x € K(¢). By the definition of R(x;,
A;), we have ¢ =2 x; for i = 0, 1,...,7, thus x,, x,,...,, are vertices of ¢.

By the definition of R(x;, A,), we have y € (A5, for every 1 =0,1,...,7,

thus Nj_o(A)pq # 0, therefore (A)py = A py = ... = (A)py- Let C be
the chamber of & having F(¢) as facet and such that Cryy = (A)pp = ... =
(AY)F(¢)'

Let 1€ {0, 1,...,7. The facet F(z,) of & is common to A; and C (since
F(¢) = F(x;)). We fix a positive minimal path f; of I'(¢/) beginning at A; and en-
ding in C. By Lemma 3.1, f; is a path of [}, We denote by f, the lift of £, into
I'(o) beginning at v,. By Lemma 3.2, f, is a path of I,

Write w = end(f,). First, let us prove that w = end(f)) for every i =1,...,r.
By Lemma 2.6, we have z € R(x,, v,) N Rz, v) N (Z(v,, v;) + iV), therefore
z € Z(vy, v;). Furthermore, x € F(¢) and Z(v,, v;) is a union of facets of &,
thus F(¢) € Z(v,, v,). Finally F(¢) S C and Z(v,, v,) is an open subset of V,
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therefore C & Z(v,, v,). Thus, by the construction of Z(v,, v,), there exists a ver-
tex u; € 22(v,) N 22(v,) such that p(x,) = C. This can happen only if #, =
end(f,) = end(f).

Now, consider the simplex ¥° of Del’(#) such that ¥’ S A;_,(w) and
7°(T°) = ¢. Let us show that , is a vertex of U’ for every i=0,1,...,7
Recall that f, is a path of fw,» thus end(f,) = w € V(fwi), therefore w, €
4A;_(w). Tt follows that w, is the unique vertex of ¥’ S AJ_ (w) such that
() = x,

i) Let wy, @,,...,w, be the vertices of a simplex @ of Del’(#). Write x, =
7’(w,) for i=0,1,...,7,and ¢ = 7°(D").

Let e € Ul_, Ulw,;). Write z= (z + iy) = qle). For every i =0,1,...,7,
we choose a vertex v; of f’wi such that ¢ € R(x,, v,), and we write 4, = p(v,). Let
w be the vertex of () defined in the proof of i). Let us prove that w € V(Iy0)
and ¢ € R(¢p, w). This shows that ¢ € U(®’).

Consider the simplex ¥ defined in the proof of i), and write ¢ = 7’(¥°).
The simplex ¢ is the (unique) simplex of S’ such that z € K(¢). Since
Wy, Wy, . ..,w, are vertices of ¥’ we have ¥’ = @°, thus V(o) S V(I',0), there-
fore w € V(o) (since w € V(o).

In order to prove that ¢ € Ié(qﬁ, w), by Lemma 2.6, it suffices to show that

z € Rz, A) N R(p, O) N (Z(v,, w) +iV),

where A, = o(v,) and C = p(w). By the starting hypothesis, we have
z € R(xz,, Ay). The inequality ¢ = ¢ and the inclusions z € K(¢) and y € Cpy,
= (A py imply z € R(¢, C). Now, C S Z(v,, w) (since w € 2(vy) N 2 (w))
and F(¢) S C, thus F(¢) S Z(v,, w). Since (A)) g = Cpey, 10 hyperplane of o
which separates A, and C contains F(¢), thus, by Lemma 2.5, x € F(¢) ©
Z(vy, w). It follows that z = (x + iy) € (Z(v,, w) + V).

Now, let ¢ € U(®°). We choose a vertex v of Iy such that e € R(g, v).
Then we have v € V(f’w‘,) and R(¢, v) S I?(x,, v) for every 1 =0, 1,...,7, thus
e€ N_,Ulw,). ]

Lemva 35. 1) Let v and w be two vertices of I'(d). If v# w, then
Uw®B' @) N UwB W) = 0.

i) Let @° be a simplex of Del’ (), and let v be a vertex of I'd). If U(@°) N
Ulw®B' ) # 0, then & < 8" (0).

i) Let v be a vertex of I'(d), and let @° be a simplex of Del’(d) such that
° < 87N (w). Write @ = @V w(B' (). Then U®") N Ulw(B'(v)) = U(D).
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Proof. i) Let v and w be two vertices of I'(#). Assume U(w(B'®))) N
UlwB'(w))) # 0, and let us prove that v = w.
We have

g Uw®B' @))) N gq(UwB W) = (V+io) N (V+iow) + @
= o Now #* @
= p@ =pw).

Write C = p(v) = p(w). We know that
MO = U M),

uep™HC)
this union is disjoint, Ulw(B'(1))) & M(v), and U(wB'w))) S M(w). Thus
v = w.

ii) Let v be a vertex of I'(«f), and let ®° be a simplex of Del’(#f). Assume
U(@) N Ulw®B' @) # §. Write ¢ =x"(0). Pick an e€ U®) N
UlwB'®))), and write z= (x + iy) = q(e). We choose a vertex w of I’y such
that ¢ € R(¢, w). We write A = p(v) and B = p(w). Let ¢ be the simplex of 8’
such that x € K(¢).

We have y € A (since z € (V+ i4)) and y € By, (since z € R(¢, B)),
thus Apy N Bpy F @, therefore Apy) = By, Let C be the chamber of & hav-
ing F(¢) as facet and such that Cpyy = Apy = Bpy). Let f be a positive minimal
path of I'(«f) beginning at A and ending in C, and let g be a positive minimal path
of I'(4) beginning at B and ending in C. By the definition of R(¢, B), we have
¢ = ¢ (since (x + iy) € R(¢, B) and x € K(¢)), thus F(¢) = F(¢), therefore
F(¢) is a facet of C. On the other hand, we have @’ S A,_,(w), thus F(®°) =
F(¢) is a facet of p(w) = B. It follows that B and C are vertices of Iy, and,
consequently, by Lemma 3.1, g is a path of I ,.

We denote by f the lift of f into ') beginning at v, and by £ the lift of g
into I'() beginning at w. First, let us prove that end (f) = end(§). By Lemma
2.6, we have

z=(x+ iy € (V+i4) N R(p, B) N (Z(v, w) + iV),

thus x € Z(v, w). Furthermore, x € F(¢) and Z(v, w) is a union of facets of &,
thus F(¢) € Z(v, w). Finally, F(¢) € C and Z(v, w) is an open subset of V,
therefore C S Z(v, w). This implies, by the definition of Z(v, w), that there ex-
ists a vertex # € 2(v) N X (w) such that o(w) = C. This can happen only if
end(f) = end(@) = .

Now, let us prove that @° S A ,(u) € 8" '(v). The path g is a path of
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I'pgoy = Iy, the vertex w is a vertex of fq,o, and f¢o is a connected component of
0 (T'pigoy) (Lemma 3.2), thus # is a path of I'g, and, consequently, # = end(g) €
V(I'y0). It follows, by the definition of I'o, that @ S A7_ (u). On the other hand,
u € X(v), therefore, by the definition of 8" (v), we have 4)_, (@) S S ().

iii) Let v be a vertex of I'(4), and let @’ be a simplex of Del’(«) such that
9° S S (). We write = @’ V w(B'(1)) and ¢ = 7°(0°).

Let ¢ € U(9°) N Ulw®B'®))). Pick a vertex w of [y such that ¢ € R(¢, w).
Write A = p(v) and B = p(w). We have

e€ Uw®B'®)) N R(gp, w)
= gle) € (V+id) N R(p, B) N (Z(v, w) +iV) (Lemma 2.6)
= g0 € ((Nysy K@) +id) N R(p, B) N (Z(v, w) + iV)
(indeed, if (x + iy) € R(¢p, B), then x € N 45, K(¢))
= ¢€ U(® N R(p, B} (Lemma 2.6)
= e€ UD).

Now, let ¢ € U(®D). Write z = (x + iy) = q(e) and A = p(v). Let ¢ be the
simplex of §'™" such that x € K(¢), and let B be the chamber of & having
F(¢) as facet and such that Apy) = Bpy,. Pick a positive minimal path f of
I'(«) beginning at A and ending in B, and denote by f the lift of f into
I'(sf) beginning at ». Set w = end(f). Let us prove that w € V(I'y) and
¢ € R(¢, w), This shows that ¢ € U(®’), and, consequently, ¢ € U(®’) N
UlwB'(v))) (we obviously have ¢ € U(®) S Ulw®B'())).

Since ¢ =2 ¢ and ¢ S 4,_,(B), we have ¢ S 4,_(B). Thus there exists a
simplex ¢”° € A7_, (w) such that 7°(¢"°) = ¢. Moreover, A7_,(w) S 8" (») (since
w € 2 (v)) and the restriction of 7° to 8'"'(») is an isomorphism §' () —» 8,
therefore ¢ = @°. It follows that w € V(I'p0).

In order to prove that e € R’(¢, w), by Lemma 3.6, it suffices to show that

z€ (V4144 N R, B) N (Z(v, w) + V).

By the starting hypothesis, we have z € (V+ i4) and z = (x + iy) € (K(¢) +
iBpy) S R(¢, B). Now, w€ 2(v) N Z(w), thus C € Z(v, w). Moreover,
F(¢) S C, therefore F(¢) S Z(v, w). Finally, since Ag;, = Bpyy, no hyperplane
of 4 containing F(¢) separates A and B, thus, by Lemma 2.5, £ € F(¢) S
Z(v, w), therefore z € (Z(v, w) + iV). U

LEMMA 3.6. The set U = {Ulw) | w a vertex of Del(d)} is a covering of
M(d).
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Proof. Let e € M(A). Write z = (z + iy) = q(e).

Casea:xz = 0.
Then there exists a chamber C of & such that y € C. We have z = (x + iy)
€ (V+i0) < M(C). By Lemma 2.7,
M) = U M),

vep™HC)

and this union is disjoint, so there exists a unique vertex v € p_l(C) such that

e€ g (V+i0) N M) = Uw®B @)).

Case b:x # 0.

Let ¢ be the simplex of S'~" such that z € K(¢). Let C be the chamber of &
having F(¢) as facet and such that y € Cg, (recall that K(¢) S F(¢)). We have
z= (x+ 1y € (K(p) +iCpy) S R(p, C) S M(C). By Lemma 2.7,

g M) = U My,

vep~H(C)

and this union is disjoint, so there exists a vertex v € p~ (C) such that ¢ €
g ' (R(p, ©)) N M(w) = R(¢, v). We have ¢ S A4,_,(C), thus there exists a sim-
plex @° S A4;_,(v) such that 7°(9°) = ¢. We have ¢ € R(¢, v) and v € ("),
therefore ¢ € U(®°). By Lemma 3.4, ¢ € U(w), where  is any vertex of @°. []

Part 4.
LemMA 3.7. 1) Let v be a vertex of I'(). Then U(w(B'(v))) is contractible.
ii) Let v be a vertex of I'(d), and let ®° be a simplex of Del’ () contained in
S (). Write ® = ®° V w(B'(v)). Then U(D) is contractible.
Proof. i) Write A = o(v). Then
q(U(wB' @) = (V + iA)

is clearly contractible, thus the lift U(w(B'®))) of ¢(U(w®B'(®)))) into M(v) is
also contractible.
ii) Write A= p(v) and ¢ = 7°(®°). Then
qU@) = (U K@) +iA
¢=¢

is clearly contractible, thus the lift U(®) of g(U(®)) into M(v) is also contracti-
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ble. O

Lemma 3.8. Let @° be a simplex of Del’(d). Then U(D°) is homotopically
equivalent to M(yp0).

Following Lemmas 3.9 and 3.10 are preliminary results to the proof of Lem-
ma 3.8.

For a simplex ¢ of Sl_l, we write

W(g) = U R(g, O,
C

where the union is over all the chambers C of & having F(¢) as facet (i.e. over
all the vertices of V(I'p)). The set W(¢) is an open subset of M(«f). We denote
by 53: W(g) — M(4) the inclusion map of W(¢) into M(A), by zi,:M(szi)—*
M(d ) the inclusion map of M(sf) into M(sdyy,), and by ¢, = ¢4 ° ¢5: W(g) —
M(sdyy,) the inclusion map of W(¢) into M(dy,).

LemMa 3.9. Let ¢ be a simplex of 8'™". Then ¢,: W(g) — M(dyy) is a homo-
topy equivalence.

Proof We have to define a continuous family (A)o<,<;: M(dyy) —
M(d y,) of maps such that:

a) ho(z) = z for all z € M(dy,),
b) h,(2) € W(@) for all z € M(dy,),
¢) h,(z) € W(¢) for all z&€ W(¢) and all ¢ € [0, 1].

We set

K= U K(¢),

=9

and we fix a point x, € @. Since K is an open cone of V and x, € K, there exists
a continuous map 4 : V— [0, + o[ such that (x + A(x)x,) € K for all z € V.
For every z = (x + iy) € M(dy) and for every t € [0, 1], we set

h(z) = x+ Az, + iy.

The family (B)o<,<;: M(dyy,) — Ve is a continuous family of maps, and
hy(2) = z for all z € M(dy,). It remains to prove:
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1) h,(2) € M(d ) for all z € M(dy,) and all t € [0, 1],
2) h(2) € W(@) for all z € M(dyy),
3) h,(2) € W(¢) for all z € W(¢) and all ¢t € [0, 1].

1) Let z = (z + iy) € M(dy,,). Suppose that there exists a ¢t € [0, 1] such
that h,(z) & M(dy,). Then there exists a hyperplane H € dy,, such that
h(2) € He (e (x+ tA(x)x) € H and y € H). Since x, € ¢ S H and H is a
linear space, we have x € H and y € H, thus 2 € H. This contradicts the fact
2 € M(dyq).

2) Let z= (z + 1y) € M(dyy). We have (x + A(2)x,) € K, so there exists
a simplex ¢ of 8" such that ¢ = ¢ and (z + 2(2)x,) € K(¢).

Let G be the facet of Ay, with ¢ S G. Let us prove that |G| =
| F(¢) | (recall that F(¢) is a facet of & but not necessarily of &y). If a hyper-
plane H € 4 contains F(¢), then H 2 X(¢) (since ¢ = ¢), thus H is a hyper-
plane of &, containing ¢, therefore H 2 G. This shows that |Gl S| F()|. If a
hyperplane H € 4y, contains G, then H € o and H 2 F(¢). This shows that
|F(p)| <] Gl.

Now, since (x + A2z, + iy € M(dy,) and (x + A(x)x) € G, there ex-
ists a chamber D of &5 = & py such that y € D. Let C be the chamber of o
having F(¢) as facet and such that D = Cpy,. The inequality ¢ = ¢ implies
F(¢) = F(¢), thus C has also F(¢@) as facet. It follows that k,(z) € (K(¢) +
iCpy) S R(p, O) S W(g).

3) Let z= (x+ iy) € W(¢). There are a chamber C € V(Ip,) and a
simplex ¢ > ¢ of 87 such that z€ (K(¢) +iCpy). Since x, € ¢ S
K(¢) (where K(¢) is the closure of K(¢) in V) and K(¢) is a convex cone, we
have (z+ M@z, € K(¢), thus h,(2) = ((z+ tA(@x) + iy € (K@) +
iCpyy) S W(@) for every t € [0, 1]. O

Let @° be a simplex of Del’(#f). We denote by ggo: U(®’) — M(d) the res-
triction of ¢ to U(@°). Note that gg can be viewed as a map g : U(Q°) —
W(x’(@°)) onto W(z’(®°)).

Lemva 3.10. Let @° be a simplex of Del’(d). Then qgo: U(@") —
Wz’ (D)) is a cover.
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Proof. Write ¢ = n°(®@°). In order to prove Lemma 3.10, it suffices to show,
for every chamber A of & having F(¢) as facet, that

4ge (R(¢, A)) = U R($, v),

where the union is over all the vertices v of p;g(A); indeed, this union is disjoint
(Lemma 2.7), the sets R(¢, v) are copies of R(¢, A), the map g is surjective,
and {R(¢, A) | A € V(I'p)} is a covering of W(¢) by open subsets.

Fix A € V(I},), and pick e € gy (R($, A)). By the definition of U(®°),
there exists a vertex w of f¢o such that ¢ € R(¢, w). On the other hand, by Lem-
ma 2.7,

4o (R(¢, D)) S ¢ (R(p, ) = U R(g, ),
vep t(4)
thus there exists a vertex v € p  (4) such that ¢ € R(¢, v). Write z= (z + iy)
= g(e) and B = p(w). Let ¢ be the simplex of §'" such that z € K(¢). Since
z € R(¢, A N R(¢p, B), we have y € Apyy N By, thus Apy = Bpy,. Let C be
the chamber of & having F(¢) as facet and such that Cpyy = Apyy = Br-

Let f be a positive minimal path of I'(«) beginning at A and ending in C, and
let g be a positive minimal path of I'(«#) beginning at B and ending in C. The
facet F(¢) is common to A (since A € V(I,), to B (since w € V(I,)), and to
C (since F(¢) = F(¢)), so, by Lemma 3.1, the paths f and g are paths of [y,

Let f denote the lift of finto I'(#) beginning at v, and let @ denote the lift of
g into I'(f) beginning at w. Let us prove that end(f) = end(g). This shows that
v € pg(A), thus ends the proof of Lemma 3.10; indeed, gf " is a path of Ty,
the oriented graph I'go is a connected component of 0 '(Fpy) (Lemma 3.2), and w
€ V(I',0), thus gf s a path of Iy, and, consequently, v = end(gf ") € V(I ).

By Lemma 2.6,

Z2€ R(¢, A N R($, B N (Z(©w, w) + iV,

thus « € Z(v, w). Moreover, Z(v, w) is a union of facets of & and x € F(¢),
therefore F(¢) € Z(v, w). Finally Z(v, w), is an open subset of V and F(¢) € C,
thus C < Z(v, w). By the definition of Z(v, w), there exists a vertex
# € 2() N XZ(w) such that p(w) = C. This can happen only if # = end(f) =
end(2). O

Proof of Lemma 3.8. Let ®° be a simplex of Del’ (). Write ¢ = 7°(®°) and

X = X(0°). We denote by gy : M(dy) — M(d,) the universal cover of M(dy).
Since ¢ is the universal cover of M(«) and gy is a cover, there exists a map
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Foo : M(sd) — M(sd,) such that the following diagram commutes.
Zgo
M) ——>  M(d,)

q qx
1
lo

M) —> Mdy

We denote by 7go : U(®°) — M() the inclusion map of U(®°) into M(«f). Then

the following diagram commutes.
0

U — s B

oo q
0

74 ()] —l——» M(d)

We write fpo = ?;,o ° tf,),o‘ By the above considerations, the following diagram com-

mutes.

Lg0
V(@) ——— Mty

doo ax

I'4
W@ —— M)

The map ¢, is a homotopy equivalence (Lemma 3.9), g4¢ is a cover (Lemma 3.10),
and @, is the universal cover of M(d,), thus ¢m is the universal cover of

W(¢) and 740 is a homotopy equivalence. O

ProposiTiON 3.11. Let A be a real and essential arrangement of hyperplanes.
Assume Ay to be a K(xr, 1) arrangement for every X € £(d) different from {0}.
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Then Del(d) has the same homotopy type as the universal cover M(s) of M(s).

Proof. Lemmas 3.4, 3.5 and 3.6 show that U = {U(w) | w a vertex of
Del()} is a covering of M(#) having Del(#) as nerve. Lemmas 3.7 and 3.8 and
the hypothesis “dy is a K(7, 1) arrangement for every X € £(«) different from
{0}” show that every nonempty intersection of elements of U is contractible. It
follows, by [We], that Del(«#) is homotopically equivalent to M(sf). O

Part 5.

PropositTioN 3.12. Let A be a real and essential avrangement of hyperplanes.
Assume that there exists an X € L(d) different from {0} such that Ay is not a
K(m, 1) arrangement. Then Del(d) is not homotopically equivalent to the universal

cover M(d) of M(d).

Proof. We are going to construct a space Mm by attaching cells to M(ﬂ), and
a covering U, = {U.(w)|w a vertex of Del(#)} of M . by open subsets,
having Del(4) as nerve, and such that every nonempty intersection of elements of
U, is contractible. By [We], the space Mm will be homotopically equivalent to
Del(df). Afterwards, we will prove that there exists an integer #, > 0 such that
the inclusion map M(#) — M., determines a surjective morphism 7‘[,,0(1\71(%)) -
m,, (M .) which is not injective. This shows that =, (Del(#)) =, (M .) #
nnO(M(ﬂ)).

Choose an X € £(d) different from {0} such that &, is not a K(m, 1)
arrangement. Pick a simplex @° of Del’(#f) such that X(®°) = X. By Lemma 3.8,
U(@°) has the same homotopy type as M(s,), so is not contractible.

It follows that there exists an integer #, > 0 such that:

i) m,(U@")) = {0} for every simplex @’ of Del’(«) and every n <€ {0, 1,. . .,

n, — 1},

i) there exists a simplex @” of Del’ () such that 7, (U(®")) # {0}.

Recall that, if @ is a simplex of Del(#) not contained in Del’(«), then U(®) is
contractible (Lemma 3.7).

We  set Mno_le(ﬂ), and U, _,(®) = U(D) for every simplex @ of
Del(d).
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First, we are going to define, by induction on k = #,,

a) a space M,

b) an open subspace U, (®) of M, for every simplex @ of Del(d),
such that:
1) M, , < M,
2) U,_,(®) = U, (®) N M,_, for every simplex @ of Del(sf),
3) the inclusion map Mk_l—* Mk induces an isomorphism of groups nn(Mk—l) -
7,(M,) for every n € {0, 1,...,k — 1}, and induces a surjective morphism
Ty, (Mk—l) - ”k(Mk)v
4) 7, (U, (@) = {0} for every simplex @ of Del(#) and every # € {0, 1,...,k},
5) let Wy, @y,...,w, be (r+ 1) vertices of Del(d), if N;_,U,(w,) # @ , then
Wy, Wy, ..,w, are the vertices of a simplex @ of Del(),
6) let wy, @y,...,w, be the vertices of a simplex @ of Del(#) then N]_ U, (w,) =
U.(D),
7) {U,(®) | w a vertex of Del(#)} is a covering of M,

Assume M, , to be defined. Let @ be a simplex of Del(#) such that
7, (U,_,(®)) # {0}. We fix a base point ¢, € U,_,(®). We choose a generator
system {1;},e;, of 7, (U,_,(®), ¢,), and, for every i € I,, we fix a representative
map f; : §* = U,_,(®) for 7, We write I, = @ if w,(U,_,(®)) = {0}. We set

I= U1,
L4

where the union is over all the simplexes @ of Del(sf). The space M, is obtained
by attaching a (k + 1)-cell E, to M, , by means of the map f,:S*— M, ,
defined on the boundary of E; for every ¢ € I In other words, for every 1 € I, we
fix a copy Bf“ ={z e R""||z| £ 1} of B**". Then

= (1 )/

iel

where ~ is the equivalence relation on M ,_,IL(I,., B¥"") defined by x ~
f,(z) for every i € I and for every x € B = §* We denote by g, : Bf"' > M,
the natural map, and by E; the image of g, (where ¢ € I). We have g; ]anﬂ = f.

Let @ be a simplex of Del(sf). The set U, (D) is defined by:

a) U (d) N Mk—l = U, (D),

b) let i € I, if 0E; © U,_,(®), then E, € U, (D),

c) leti € I if 0E; € U,_,(®), then

U(D) NE =g ({z|0<A<landzx € f (U_ (®)}).
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Let ¢ € I, and let @ be a simplex of Del(#). Then g,(0) € U, (®) if and only if
OE; S U,_,(®), and g,(Ax) € U, (D) if and only if g;(x) = f,(x) € U,_,(D),
where 2 € [0, 1] and z € 8.

Now, let us prove Properties 1) to 7).
1) and 2) are obvious.

3) The space M, is obtained by attaching (k + 1)-cells to M,_,, so m,(M,,
M,_) = {0} for every n € {0, 1,...,k}, thus the inclusion map M, ,— M,
induces a group isomorphism 7,(M,_,) — m,(M,) for every n € {0, 1,...,k — 1},
and induces a surjective morphism 7, (M,_,) — 7,(M,).

4) Let @ be a simplex of Del(#). We denote by U.(®) the subset of M, de-
fined by:

a) U(®) N M,_, = U, (D),

b) let i € I, if O, S U,_,(®D), then E; S U, (D),

¢)let i€ if 0E, ZU,_,(®), then E, N U(P) = @ , where E, is the
interior of E,.
The set U;(®) is a strong deformation retract of U,(®) and is obtained by
attaching (k + 1)-cells to U,_;(®). If follows that the inclusion map U,_,(®) —
U,(®) induces a group isomorphism 7, (U,_,(®)) — 7,(U, (D)) for every
ne€{0,1,...,k— 1}, and induces a surjective morphism & : 7, (U, (D)) —
7, (U (@)). A first consequence is, by the inductive hypothesis, that 7,(U,(®)) =
7, (U,_,(®)) = {0} for every n € {0, 1,...,k — 1}. On the other hand, by the
construction of M,, every generator 7, of m,(U,_,(®), e,) is sent by & onto O,
thus the image of & is {0} = T, (U (D)).

5) Let @y, @y, . ..,w, be (r + 1) vertices of Del(sf) such that N)_ U, (w;) # @.
Pick an ¢ € N U, (w)).

Case a: e € Mk—1~ Then e € ﬂ;onk_l(wj), thus, by the inductive hypothesis,
Wy, Wy,...,w, are the vertices of a simplex @ of Del().

Case b: There exists an ¢ € [ such that ¢ € E, and ¢ = g; (0). Then, by the
construction of U, (w,), we have 0E; € U,_,(w,) for every j =0, 1,...,7, there-
fore N;_U._,(w) # @. 1t follows, by the inductive hypothesis, that
Wy, Wy,...,w, are the vertices of a simplex @ of Del(d).

Case ¢: There exists an ¢ € I such that ¢ € E; and ¢ # gi—l(O). There are
an £€ 8" and a 110, 1] such that ¢ = g;(Az). By the construction of
U/w,), we have g,(x) = fi(x) € U,_(w) for every j=0,1,...,7, therefore
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ﬂ;o U (w) # @ . 1t follows, by the inductive hypothesis, that wy, w,,...,0,
are the vertices of a simplex @ of Del(«).

6) Let w,, w,,...,w, be the vertices of a simplex @ of Del(d).

a) (N[ U(w)) N M, = NicUir (@) = U, (@) = U (P) N M,_,

b) let i € I such that 0E; & U,_,(w,) for every j =0, 1,...,7. Then 0F;
Ny Ui = U,_,(®), and, consequently,

(N_Uy)) N E,=E,=UJ(® NE,.

¢) Let i € I such that there exists a j € {0, 1,.. ., with 0, € U,_,(w)).
then 0E, € U,_,(®), and, consequently,

(N_ U, @)) NE;=g({ix]|0<A<landx € f; (N_,U,_ (w))})
= g((Az|0<A<landz€ (™ (U_(®)))
= UJ(®) N E,.

a), b) and c) show that N;_,U,(w,) = U (D).

7) Let e € Mk. Ilfee Mk_l, then, by the inductive hypothesis, there exists a
vertex @ of Del(d) such that ¢ € U,_;(w) € U,(w). Assume now that there
exists an 7 € I such that e € E,. Let @ denote the simplex of Del(d) such that
i € I,. By the construction of M,, we have dE, € U,_,(®), and, by the construc-
tion of U, (D), we have e € E; S U, (D). By Property 6), ¢ € U,(w), where w is
any vertex of @.

Now , we set:

a) M«, = lim Mk

b) U, (D) = lim U, (®) for every simplex of Del(d).
We have the folloang properties.

1) ,(M.) = 7,(M(d)) for every n € {0, 1,...,m — 1}, and 7,(M.) =
7, (M,) for every n = n,.

2) m,(U.(@)) = {0} for every n = 0 and for every simplex @ of Del(«).

3) Let wy, @y, . . .,w, be (r+ 1) vertices of Del(#). If N;_U,(w,) # @,
then w,, w,,...,w, are the vertices of a simplex @ of Del(«).

4) Let w,, w,, . . .,w, be the vertices of a simplex @ of Del(«). Then
Nz Unlw) = U.(9).

5) U, = {U,(w) |w a vertex of Del(#)} is a covering of M, by open
subsets.
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Properties 3), 4) and 5) show that 9, is a covering of M - having
Del(4) as nerve. Properties 2) and 4) show that any nonempty intersection of
elements of 4., is contractible. It follows, by [We], that Del(#) is homotopically
equivalent to Mw.

Since nnn(Mw) = ”no(Mno) and the inclusion map M(ﬂ)—’Mno induces a
surjective morphism &, : 7, (M(«)) — =, (M, ), in order to prove that Del(s) is
not homotopically equivalent to M(4), it suffices to show that &, is not injective.

Choose a simplex @° of Del’(#) such that =, (U(®°)) # {0} Let foo:
U(®°) — M(d) be the inclusion map of U(®’) into M(df), and let Zgo : M(dd) —
M(dl 40, be the map defined in the proof of Lemma 3.8. Then fp0 = igo © igo is a
homotopy equivalence (see the proof of Lemma 3.8), thus (fgo)y : 7, (U(@%) —
nno(M(ﬂ)) is injective. Furthermore, by construction of M,,o, the morphism &, °
(Z0) s : 7,,(U(D)) — nno(Mno) sends 7, (U(®%) onto {0}. This shows that &, is
not injective. O
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