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FILTER ADJUNCTION OF SPACES AND
COMPACTIFICATIONS

DOUGLAS HARRIS

1. Introduction. The problem of describing the T compactifications of
a given 11 space arises quite naturally in many contexts, and has been ap-
proached from a number of directions. One characteristic of all apprcaches has
been the exclusive consideration of strict topological extensions. There are
obvious advantages to this approach. Points of the compactification may be
distinguished by their trace filters, and the topology of the compactification is
readily described in a natural manner. Moreover every T, compactification is
strict, so the method loses no generality in this most important special case.
However, in the study of 7; compactifications many important ones are not
strict, and are in fact of an entirely opposite nature. The present paper examines
a special and in a sense prototypical class of such non-strict compactifications.

The principal method through which the present results are obtained is the
method of filter adjunction, through which from a pair (X, Y¥) of spaces and a
filter A on X a space T(X, ¥, \) is obtained which contains X as a dense open
subspace with remainder Y. The process is functorial in nature and frequently
preserves topological properties of the spaces and maps to which it is applied.
It is a simple generalization of the usual construction of one point extensions.

The main result of this paper is a description of the possible outgrowths of a
space in its Ty compactifications. The result is very simple; the class of out-
growths of an infinite discrete space in 7 compactifications is the class of
nonempty compact 1’y spaces, and the class of outgrowths of a non-discrete 7
space is the class of all nonempty spaces. Thus outgrowth classes do not
distinguish spaces.

Several results concerning the embedding of categories of spaces into
categories of compact spaces are also established.

The term space shall mean a nonempty topological space, and the term map
shall mean a continuous function between spaces.

2. The adjunction construction. All constructions in this paper begin
with the disjoint union bifunctor in the category of sets and functions. To
establish notation, given a pair (X, V) of sets the object T°(X, Y) is their
disjoint union with inclusion G(X, V) of X into 7(X, V) and inclusion H (X, Y)
of Yinto T(X, V). Given a pair (f, g) of functionsf: X > Wandg: Y > 2Z
the function T'(f,g): T(X,Y)— T(W,Z) is defined by the relations
GW,Z)-f=T(fg) GX,Y)and HW,Z)-g = T(f,g) - HX, Y).
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Now let X and Y be spaces, with a filter A on X. Define a topology on the set
T(X, Y) by declaring V to be open if G(X, ¥)[V]isopenin X, H(X, V)[V]
is open in Y, and G(X, Y)[V] € A\ whenever H(X, Y)[V] # 0. Write
T(X, Y, \) for the resulting space.

There are various important filters on X. In particular the improper filter 6
of all open subsets of X, the filter A, of complements of closed compact subsets,
the filter A;, of complements of closed finite subsets, and the smallest filter
M o= (X}

2.1. Let X, Y be spaces with an open filter X on X.

a) G(X, V) 1s an embedding of X as open subspace of T(X, ¥, \).
b) H(X, Y) s an embedding of Y as closed subspace of T(X, YV, N).
c) T(X, Y, \) is the sum of X and Y if and only if X = 6.

d) G(X, V)[X] is dense in T(X, YV, \) 1f and only if X 5 6.

2.2. Let X, Y be spaces with an open filter X on X.

a) T(X, Y, \) is Tyif and only if X and YV are T,.

b) T(X, Y, N\) @s T if and only if X and Y are Ty and N;e C N

c) T(X, Y, N) is Ty if and only iof X is T, YV has exactly one poini, and X\ has
no cluster point in X.

d) T(X, Y, \) is compact if and only if V 1s compact and X C ..

e) T(X, Y, \) is connected if and only if X s the only closed member of \.

One particularly simple type of extension is useful in attaching non-compact
spaces as outgrowths in compactifications.

Given a space X and x € X, set X, = X — x, and let \, be the trace on X,
of the neighborhood filter of x € X.

2.3. For any space X and x € X, and for any space YV and y € Y, the subspace
G(X,, MX)YV H(X,, YY) of T(X,, YV, \,) 1s homeomorphic to X.

24. Let X, Y, W, Z be spaces with open filters A on X and w on W, and functions
fiX—>Wandg: YV — Z.

a) T'(f, g) is one-one if and only if f and g are one-one.

b) T'(f, g) is onto if and only if f and g are onto.

c) T(f, g) is a map if and only if f and g are maps and f<(w) C A.

d) T({, g) is an embedding if and only if f and g are embeddings and N = f<(w).

e) T'(f, g) is open if and only if f and g are open and f(\) C w.

£) T(f, g) is closed if and only if f and g are closed, N C f(w), and either
f(w) = 6 or g is onto.

Proof. The proofs of all the assertions are similar. The proof of f) will be
given as a sample. Write 7' = T (X, V,\),S = T(W, Z, w), G = G(X, V),
H=HX,Y),K=GW,Z),and L = H(W, Z).

Suppose T'(f, g) is a closed function. Let 4 C X be closed; then G(4) \J
H[Y] C Tisclosed, so K[f[A]] U L[g[ Y]] is closed in .S, and thus f[4] is closed
in W. Similarly if B C Y is closed then G[X]\JU H[B] is closed in T, so
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K[f[X11\U L[g[B]] is closed in S, and thus g[B] is closed in Y. This establishes
that f and g are closed.

Now if V' € X then G[X — V] C T is closed, so K[f[X — V]] C S is closed,
which means U= W — f[X — V] € w. Since f[U] C V it follows that
V € f (w). Thus N C f“(w). Also since G[X] \J H[Y]is closed then K[f[X)) U
L[g[Y]] is closed, which means either g[¥] = Z, or f[X] N\ V = @ for some
V € w, that is, fT(w) = 4.

Conversely, suppose f and g are closed, A C f“(w), and T'(, g) is not a closed
function. Then f“(w) # 6, and g[ V] # Z. To see these last two statements, note
first that since T(f, g) is not closed there are closed sets A C X and B C YV
such that G[4]\J H[B] is closed and K[f[A]]\J L[g[B]] is not closed. Since
fl[A] and g[B] are closed then g[B] # Z, and f[A] NV # @ for all V € w. This
gives A N f[V] ## @ for all V € w, so fT(w) # 8. Also since N\ C f“(w) then
ANW # @forall W € \ Since G[A] U H[B] is closed then B = Y, and thus
glY] = Z.

2.5. Remark. The construction of T(X, ¥, N) may also be performed as a
combination of a generalized one-point extension, as in [1, 6, § 5], and a map
attachment construction, as in [2, VI, § 6]. Specifically, let 4 be the set ¥ with
discrete topology, and let j be the identity map from 4 to Y. Construct Z as a
space whose ground set is the disjoint union of X and A, with X as open
subspace and 4 as closed subspace, in which the trace filter on X of each point
of A4 is the filter \. Then T°(X, ¥, \) is homeomorphic to the attachment space
Z\U, Y.

The extensions T'(X, ¥, \x) and T(X, Y, \,,) have special minimal proper-
ties.

2.6. T(X, Y, \x) has the smallest topology for which G(X, Y) is an open em-
bedding and H(X, V) is an embedding.

2.7.If X and Y are Ty and X 1s infinite then T (X, Y, \,.) has the smallest T
topology for which G(X, Y) is an open embedding and H(X, Y) is an embedding.

3. Compactifications. A compactification of the infinite space X is a pair
(Z, k) in which Z is a compact space and k is a dense embedding of X into Z;
the outgrowth is the subspace Z;, = Z — k[X]. A map from the compactification
(Z, k) to the compactification (Y, ) is a map m from Z to Y such that mk = h
and m[Z,] C V,. The compactificationsof X forma category €y, preordered by
the relation (Z, k) > (Y, k) if there is a map m with mk = h.

The following results show that the order structure of the category of com-
pactifications of any infinite space is as complex as the order structure of the
category 2 of compact spaces, in which Z > Y if there is a map from Z to V.

Given Z € A, set K(Z) = (T (X, Z, N\;.), G(X, Z)), and if m is a map from
Z to Yset K(m) = T (idx, m).
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3.1. The function K s a full embedding functor from the category \ to the
category €x.

Proof. By 2.1, 2.2, and 2.4 K is a functor from J# to % x. It is clearly one-one
on objects and maps. If p is a map from the compactification K (Z) of X to the
compactification K (V) then since p preserves outgrowths there is a map m
from Z to Y such that p = K(m).

The class of maps considered in the preorder Z > Y may be restricted, as for
example to closed surjections, and the compactifications may be correspond-
ingly restricted.

In the remainder of this paper we shall consider only 7', spaces and compacti-
fications.

3.2. An infinite space contains every compact space in its outgrowth class.
3.3. A discrete space is open in every extension.

3.4. The outgrowth class of an infinite discrete space s the class of all compact
spaces.

3.5. The outgrowth class of a non-discrete space is the class of all spaces.

Proof. Let X be a non-discrete space, with a non-isolated point x. Let ¥V be
any space, with y € V. Set R = T(Y,,x, \;,) and S = T(X,, R, \;). Let » be
the collection of all open subsets V of S such that G(X,, R)[V] € X\, and
G(Y,, x)[H(X,, R)[V]] € A, Itis easy to see that \;, C v C M. It follows
from 2.1 b) and d) that Z = T'(S, v, ») is a compact (7;1) space. The subspace
G(S, MIGX,, R)[X]Y HX,, R)[H(Y,,x)(x)]] of Z is homeomorphic to X
and its complement is homeomorphic to Y. Thus X has a compactification with
outgrowth V.

3.6. 4 non-discrete space has a compactification in which it is not open.

Proof. It is simple to see that X is not open in the compactification con-
structed in 3.5.
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