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Abstract
Working in homotopy type theory, we introduce the notion of n-exactness for a short sequence F → E→ B
of pointed types and show that any fiber sequence F ↪→ E� B of arbitrary types induces a short sequence

‖F‖n−1 ‖E‖n−1 ‖B‖n−1

that is n-exact at ‖E‖n−1. We explain how the indexing makes sense when interpreted in terms of n-groups,
and we compare our definition to the existing definitions of an exact sequence of n-groups for n= 1, 2. As
the main application, we obtain the long n-exact sequence of homotopy n-groups of a fiber sequence.
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1. Introduction
Homotopy type theory (Univalent Foundations Program 2013) is not only a foundational system
(univalent foundations); but it also allows us to reason synthetically about ∞-groupoids (synthetic
homotopy theory). By viewing higher groups in terms of certain pointed ∞-groupoids as laid out
by Buchholtz et al. (2018), it also allows us to do synthetic higher group theory.

From this point of view, a 1-groupG is (represented by) a pointed connected 1-typeBG (its clas-
sifying type). Loosely speaking, these are types that only have an interesting fundamental group
and no nontrivial higher homotopy groups. Of course, it is not quite as simple if there are non-
contractible ∞-connected types around, as can happen if Whitehead’s principle fails. Recall that
homotopy type theory has models in (∞, 1)-toposes (Shulman 2019, Thm. 11.2),1 and there are
plenty such where Whitehead’s principle fails.2 The underlying type of a 1-group is therefore a set
equipped with the usual structure of a group, so a group in the traditional sense of the word is a
1-group.

Likewise, an n-group G is represented by a connected n-type BG. The principal example of an
n-group is the fundamental n-group of a pointed type X, represented by the n-truncation of the
connected component at the base point.

Many n-groups G have further structure because they come with further deloopings of BG.
The higher homotopy n-groups, π (n)

k (X), of a pointed type X are examples of such n-groups with
additional symmetries. These capture the structure of X in dimensions k to n+ k− 1, inclusive,
just like the usual higher homotopy 1-groups, πk(X), capture the structure ofX at dimension k. So,
whereas the usual homotopy groups discard any interactions between different dimensions, the
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homotopy n-groups for n> 1 retain some of that information, while still being more algebraically
tractable than X itself.

Our main result in this paper is Theorem 5.5, where we show that any fiber sequence F ↪→ E�
B induces a long exact sequence of homotopy n-groups. The basic observation that enables this
result is Proposition 5.4, in which we establish that the n-truncation operation – although it is not
left exact – preserves k-cartesian squares for any k< n. A square

C B

A X

is called k-cartesian if the gap map C →A×X B is k-connected. In particular, any pullback square
is (n− 1)-cartesian, so the n-truncation of a pullback square is an (n− 1)-cartesian square.

We work in homotopy type theory with a predicative hierarchy of univalent universes closed
under n-truncations. Although we recall the basic definitions, we refer to Univalent Foundations
Program (2013, Sec. 7) for some results about n-types and the n-truncation modality, and we also
assume some familiarity with the basic theory of k-symmetric n-groups as developed in Buchholtz
et al. (2018).3

1.1 Outline
We start by establishing some basic definitions and notation in Section 2. In Section 3, we define
the notion of ∞-exactness and show that any fiber sequence induces a long ∞-exact sequence
of homotopy ∞-groups. In Section 4, we turn to n-exactness of k-symmetric n-groups and show
that it is equivalent to n-exactness of the map on underlying (n− 1)-types. Our main results are
in Section 5, and in Section 6, we point to some related work in the classical setting.

2. Basic Definitions and Notation
Just as in Univalent Foundations Program (2013), we write x= y for the type of identifications
of x and y, provided that both x and y have a common type X. Sometimes we call identifications
paths. We write

apf : (x= y)→ (f (x)= f (y))

for the action of a function f on paths. Path concatenation is written in diagrammatic order, i.e.,
we write p � q for the concatenation of p : x= y and q : y= z. The fiber of a map f :A→ B at b : B
is defined to be the type

fibf (b) :≡
∑

(x:A) f (x)= b.

If B is a pointed type with base point y0, we define the kernel of f as the fiber of f at y0, ker (f ) :≡
fibf (y0).

Definition 2.1. A map f : X → Y is said to be an n-truncation if Y is n-truncated, and for any
family P of n-truncated types over Y, the precomposition map

– ◦ f :
( ∏

(y:Y) P(y)
)

→
( ∏

(x:X) P(f (x))
)

is an equivalence. We assume that every type X has an n-truncation

η : X → ‖X‖n.
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Definition 2.2. Consider a pointed type B with base point x0 and a family E : B→ U equipped with
a base point y0 : E(x0) in the fiber over x0. The type of pointed sections∏∗

(x:B) E(x) is the type of pairs
(f , p) consisting of a section f : ∏(x:B) E(x) and an identification p : f (x0)= y0.

Given two pointed sections (f , p), (g, q) : ∏∗
(x:B) E(x), we define the type of pointed homotopies as

f ∼∗ g :≡
∏∗

(x:B) f (x)= g(x),

where we equip the family of identifications given by x 	→ (f (x)= g(x)) with the base point

p � q−1 : f (x0)= g(x0)

in the fiber over x0.

In the case of a nondependent type family, we recover the notions of pointed maps and pointed
homotopies between these.

Definition 2.3. A k-symmetric n-group G is a pointed (k− 1)-connected (n+ k− 1)-type BkG.
Its underlying type is the k-fold loop space �kBkG. A homomorphism f :G→H of k-symmetric
n-groups is represented by a pointed map Bkf : BkG→∗ BkH.

We call BkG the classifying type of G.

Definition 2.4. The m-connected cover X〈m〉 of a pointed type X is the kernel of η : X → ‖X‖m,
equivalently,

X〈m〉 :≡
∑

(x:X) ‖x0 = x‖m−1.

Recall that η : X → ‖X‖m is an m-connected map, so that X〈m〉 is indeed an m-connected type.

Definition 2.5. The k’th homotopy n-group of a pointed type X is represented by the (n+ k−
1)-truncation of the (k− 1)-connected cover of X at the base point, i.e., it is defined via the type

Bkπ (n)
k (X) :≡ ‖X〈k− 1〉‖n+k−1.

The underlying type of π (n)
k (X) is equivalent to ‖�kX‖n−1.

Thus, we see that Bkπ (n)
k (X) fits in the fiber sequence

Bkπ (n)
k (X) ‖X‖n+k−1 ‖X‖k−1,

Note also that in the case k= 0, we just recover the (n− 1)-truncation of X. The observation
that Bkπ (n)

k (X) is the kernel of ‖X‖n+k−1 → ‖X‖k−1 is a generalization of the well-known fiber
sequence

K(πk(X), k) ‖X‖k ‖X‖k−1

in which the fiber is the k’th Eilenberg-Mac Lane space of the k’th homotopy group of X (Licata
and Finster 2014).

We can also set n≡ ∞ in these definitions:

https://doi.org/10.1017/S0960129523000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000038


682 U. Buchholtz and E. Rijke

Definition 2.6. A k-symmetric ∞-group G is a pointed (k− 1)-connected type BkG. Its underlying
type is the k-fold loop space �kBkG. The k’th homotopy ∞-group of a pointed type X is represented
by (k− 1)-connected cover of X at the base point

Bkπ (∞)
k (X) :≡ X〈k− 1〉,

so the underlying type is equivalent to�kX.

3. The Long∞-Exact Sequence of a Fiber Sequence
Definition 3.1. A short sequence (or complex) consists of pointed types B, E, and F with base points
x0 : B, z0 : E and y0 : F, respectively, equipped with pointed maps

F E Bi p

and a pointed homotopy H : p ◦∗ i∼∗ constx0 . This homotopy witnesses that the square

F E

1 B

i

const∗ p

constx0

commutes. A short sequence is said to be a fiber sequence if the above square is a pullback square.

Definition 3.2. A short sequence

F E Bi p

is said to be ∞-exact if the family of maps

α :
∏

(z:E) fibi(z)→ (p(z)= x0)

given by α(z, (y, q))= app(q)−1 �H(y) is a family of equivalences.

Proposition 3.3. A short sequence is ∞-exact if and only if it is a fiber sequence.

Proof. First we note that we have a commuting square

F 1×B E

∑
(z:E) fibi(z)

∑
(z:E) p(z)= x0,

gap

� �

total(α)

where the gap map at the top sends y : F to the triple (∗, i(y),H(y)). The two vertical maps in this
square are equivalences. Thus, we see that the gapmap is an equivalence if and only if total(α) is an
equivalence, which is the case if and only if each αz : fibi(z)→ (p(z)= x0) is an equivalence.

The following corollary is of course a well-known fact.4

Corollary 3.4. For any fiber sequence F ↪→ E� B, we obtain a long ∞-exact sequence

· · · �F �E �B F E B.
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We can reinterpret this as the sequence

· · · π
(∞)
k (F) π

(∞)
k (E) π

(∞)
k (B) · · · π

(∞)
0 (F) π

(∞)
0 (E) π

(∞)
0 (B),

where themaps into a k-symmetric∞-group are homomorphisms of k-symmetric∞-groups (i.e.,
pointed maps of the classifying types). This motivates the following definitions and subsequent
observation.

Definition 3.5. A short sequence (or complex) of k-symmetric ∞-groups consists of three k-
symmetric ∞-groups K,G,H, and homomorphisms

K G H,ψ ϕ

with an identification of ϕ ◦ψ with the trivial homomorphism from K to H as homomorphisms.
By definition, this means we have a short sequence

BkK BkG BkH,Bkψ Bkϕ

of classifying types.

Definition 3.6. Given a homomorphism of k-symmetric ∞-groups ϕ :G→H, we define its kernel,
ker (ϕ), via the classifying type Bk ker (ϕ) :≡ ker (Bkϕ)〈k− 1〉, that is, the (k− 1)-connected cover
of the pointed kernel at the level of classifying types, ker (Bkϕ).

At the level of underlying types, we then have �kBk ker (ϕ)��k ker (Bkϕ)� ker (�kBkϕ),
where the first equivalence is an instance of the equivalence �k(X〈k− 1〉 ��kX and the second
follows by iterated application of the equivalence �( ker (f ))� ker (�(f )) for any pointed map f .
That is, the underlying type of the kernel is the kernel of the map of underlying types.

Definition 3.7. A short sequence of k-symmetric ∞-groups K ψ−→G ϕ−→H is ∞-exact if the induced
homomorphism K → ker (ϕ), obtained as the unique lift in the commutative square

1 Bk ker (ϕ)

BkK BkG

where the left map is (k− 2)-connected and the right map is (k− 2)-truncated is an equivalence.

The following proposition is the higher analog of the fact that a group homomorphism is an
isomorphism if and only if its underlying map is a bijection.

Proposition 3.8. A homomorphism of k-symmetric ∞-groups is an equivalence if and only if the
map of underlying types is an equivalence.

Proof. This follows by induction, based on the fact that a pointed map of connected types f :
X → Y is an equivalence if and only if �f :�X →�Y is Univalent Foundations Program (2013,
Cor. 8.8.2).

Corollary 3.9. A short sequence of k-symmetric ∞-groups is ∞-exact if and only if the short
sequence of underlying types is ∞-exact.

4. Exactness of Complexes of k-Symmetric n-Groups
Now we have laid the groundwork to consider the case of n-groups of finite n.
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Definition 4.1. A short sequence (or complex) of k-symmetric n-groups is a short sequence of three
k-symmetric ∞-groups that happen to be n-groups.

But beware that we have a different notion of exactness in this case, cf. Definition 4.3 below.

Proposition 4.2. Given a homomorphism of k-symmetric n-groups ϕ :G→H, the kernel ker (ϕ)
is again an n-group.

Proof. This follows since ker (Bkϕ) is an (n+ k− 1)-type, and taking the (k− 1)-connected cover
preserves (n+ k− 1)-types.

Definition 4.3. A short sequence of k-symmetric n-groups K ψ−→G ϕ−→H is n-exact if and only if the
induced map of underlying (n− 1)-types K → ker (ϕ) is (n− 2)-connected.

In contrast to the ∞-case, we also have a useful notion of image for finite n:

Definition 4.4. Given a homomorphism of k-symmetric n-groups ϕ :G→H, we define the n-image
imn(ϕ) via the classifying type Bkimn(ϕ) as it appears in the (n+ k− 2)-image factorization of
Bkϕ (Univalent Foundations Program 2013, Def. 7.6.3):

BkG Bkimn(ϕ) BkH, (1)

viz., Bkimn(ϕ) :≡ ∑
(t:BkH) ‖fibBkϕ(t)‖n+k−2.

When n is fixed and clear from the context, we shall leave it out from the notation and just
write im(ϕ) for the (n-)image. We do not mention k in the notation, thanks to the following.

Proposition 4.5. Given a homomorphism of k-symmetric n-groups ϕ :G→H with k> 0, we
can regard ϕ as a homomorphism of underlying (k− 1)-symmetric n-groups. Then the universal
property of the (n+ k− 3)-image factorization induces an equivalence�Bkimn(ϕ)� Bk−1imn(ϕ).

Proof. If we apply the loop space functor to (1), we get a factorization of �Bkϕ = Bk−1ϕ as an
(n+ k− 3)-connected map followed by an (n+ k− 3)-truncated map. Thus, we get the desired
induced equivalence (Univalent Foundations Program 2013, Thm. 7.6.6).

In particular, at the level of underlying (n− 1)-types, the n-image imn(ϕ) is the usual (n− 2)-
image. In the special case n= 1 of 1-groups, we recover the usual image (i.e., (− 1)-image) at the
level of underlying sets.5

Proposition 4.6. A short sequence of k-symmetric n-groups K ψ−→G ϕ−→H is n-exact if and only if
the unique homomorphism imn(ψ)→ ker (ϕ) is an equivalence.

Proof. The map of underlying types K → ker (ϕ) is (n− 2)-connected if and only if the map
BkK → Bk ker (ϕ) is (n+ k− 2)-connected, and this happens if and only if the right map in the
(n+ k− 2)-image factorization is an equivalence.

5. The Long n-Exact Sequence of Fiber Sequences
Our deliberations in the previous section motivate the following definition.

Definition 5.1. A short sequence F i−→ E
p−→ B of pointed types is n-exact if for each z : E, the map

αz : fibi(z)→ (p(z)= x0)

as in Definition 3.2 is (n− 2)-connected.
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Definition 5.2. A commuting square

C B

A X

is k-cartesian if its gap map C →A×X B is k-connected.

Lemma 5.3. Consider a short sequence F i−→ E
p−→ B. The following are equivalent:

(1) The short sequence is n-exact.
(2) The square

F E

1 B

i

p

is (n− 2)-cartesian.

Proof. Recall that the fiber of αz at q : p(z)= x0 is equivalent to the fiber of total(α) at (z, q) :
fibp(x0) (Univalent Foundations Program 2013, Thm. 4.7.6). Therefore, it follows immediately
that each αz is (n− 2)-connected if and only if total(α) is (n− 2)-connected.

We now come to the key observation:

Proposition 5.4. The n-truncation modality preserves k-cartesian squares for any k< n.

Proof. Consider a k-cartesian square

C B

A X

for some k< n. Our goal is to show that the square

‖C‖n ‖B‖n

‖A‖n ‖X‖n
is again k-cartesian. To see this, consider the commuting square

C A×X B

‖C‖n ‖A‖n ×‖X‖n ‖B‖n
η

gap

λ (a,b,p). (η(a),η(b),apη(p))

gap

In this square, the top map is assumed to be k-connected. The left map is n-connected, so it is also
k-connected. Recall that if, in a commuting triangle
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the top map is k-connected, then the left map is k-connected if and only if the right map is Rijke
et al. (2020, Lem. 1.33). Therefore, it suffices to show that the right map in the above square is
k-connected. This is indeed the case, since it is the induced map on total spaces of the two n-
connected maps η :A→ ‖A‖n and η : B→ ‖B‖n, and the (n− 1)-connected map apη : (f (a)=
g(b))→ (η(f (a))= η(g(b))), all of which are also k-connected.

Our main theorem is now a simple consequence of the above results.

Theorem 5.5. Any fiber sequence F ↪→ E� B induces an n-exact short sequence ‖F‖n−1 →
‖E‖n−1 → ‖B‖n−1.

Proof. Consider a fiber sequence F ↪→ E� B. Since any pullback square is in particular (n− 2)-
cartesian, it follows from Proposition 5.4 that the square

‖F‖n−1 ‖E‖n−1

1 ‖B‖n−1

is (n− 2)-cartesian. By Lemma 5.3, it now follows that the short sequence ‖F‖n ↪→ ‖E‖n � ‖B‖n
is n-exact.

As a corollary, we obtain the long n-exact sequence of homotopy n-groups, obtained from a
fiber sequence F ↪→ E� B.

Corollary 5.6. For any fiber sequence F ↪→ E� B, we obtain a long n-exact sequence

· · · π
(n)
k (E) π

(n)
k (B)

π
(n)
k−1(F) π

(n)
k−1(E) · · ·

π
(n)
0 (F) π

(n)
0 (E) π

(n)
0 (B)

of homotopy n-groups, where the morphisms are homomorphisms of k-symmetric n-groups when-
ever the codomain is a k-symmetric n-group.

As a further application we note:

Corollary 5.7. Given a short n-exact sequence of k-symmetric n-groups K ψ−→G ϕ−→H, the resulting
looped sequence�K →�G→�H is a short (n− 1)-exact sequence of (k+ 1)-symmetric (n− 1)-
groups, and the resulting decategorified sequenceDecat(K)→Decat(G)→Decat(H) is a short (n−
1)-exact sequence of k-symmetric (n− 1)-groups.

Here, Decat maps a k-symmetric n-group G, represented by the pointed (k− 1)-
connected (n+ k− 1)-type BkG, to the k-symmetric (n− 1)-group Decat(G), represented by
‖BkG‖n+k−2 (Buchholtz et al. 2018, Sec. 6).

6. Discussion and Related Work
The notion of 2-exactness of a complex of 2-groups is by now standard when described in terms
of crossed complexes or gr-stacks (Aldrovandi and Noohi 2009; Vitale 2002). Our Corollary 5.7 is
reminiscent of the results of Kasangian et al. (2011) in the setting of strict groupoids.
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The benefits of our synthetic development are that we automatically get the results in the case
of stacks over a Grothendieck site as well by interpretation in the corresponding (∞, 1)-topos, and
that our approach covers all higher groups, not just the case of 2-groups as presented by crossed
modules.

Acknowledgements
The authors acknowledge the support of the Centre for Advanced Study (CAS) at the Norwegian
Academy of Science and Letters in Oslo, Norway, which funded and hosted the research project
Homotopy Type Theory and Univalent Foundations during the academic year 2018/19. The
authors are also grateful to the anonymous referees for constructive and helpful comments.

Notes
1 More precisely, the quoted theorem includes the interpretation of many higher inductive types, including the truncations
we use here, but not yet the closure of univalent universes under these.
2 An (∞, 1)-topos satisfying Whitehead’s principle is also called hypercomplete. Examples of non-hypercomplete (∞, 1)-
toposes (in a classical metatheory) include the (∞, 1)-topos of parametrized spectra (an object is hypercomplete if and only if
the spectrum part is trivial) and the (∞, 1)-topos of continuous Zp-equivariant spaces, where we view the group Zp of p-adic
integers as a profinite group (Lurie 2009, Warning 7.2.2.31). The latter example is even boolean, hence satisfies the law of
excluded middle internally.
3 The terminology is a bit in flux: In loc.cit. the term was “k-tuply groupal (n− 1)-types, which is more in line with the
classical notion of group-like Ek-algebra in (n− 1)-types, where Ek is the little k-cubes ∞-operad. Another proposed term is
“(k− 1)-commutative n-group”.
4 It was formalized already in Voevodsky’s first UniMath formalization, Part A, ca. 2010–11 (Voevodsky et al. n.d.).
5 This is the reason we write a superscript n for the higher group-theoretical n-image:We have to subtract 2 when we describe
this as an (n− 2)-image in the sense of the truncation modality orthogonal factorization system at the level of underlying
(n− 1)-types: imn(ϕ)= imn−2(ϕ).
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