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SMOOTHNESS AND THE
ASYMPTOTIC-NORMING PROPERTIES OF BANACH SPACES

ZHIBAO HU AND BOR-LUH LIN

We study some smoothness properties of a Banach space X that are related to
the weak* asymptotic-norming properties of the dual space X*. These properties
imply that X is an Asplund space and are related to the duality mapping of X.

1.

Recently, Haydon [6] resolved a long standing conjecture in the negative by con-
structing an Asplund space that fails to admit an equivalent Prechet differentiable norm.
The authors [8] introduced the weak*-asymptotic-norming properties in the dual Ba-
nach spaces and showed that there exists a Banach space X such that X* has the
Radon-Nikodym property but fails to have the weak *-asymptotic-norming property
III. In this paper, we study some smoothness properties of X that are related to the
weak *-asymptotic-norming properties in X* and show that they imply that X is an
Asplund space. We partially solve a question raised in [1] concerning the duality map-
ping of X.

For a Banach space X, let Sx = {x : x e X, \\x\\ = 1} and Bx = {x : x E X, \\x\\ <
1}. A subset $ of Bx* is called a norming set of X if ||x|| = sup{x*(x) : x* G $} for
all x in X. A sequence {xn} in Sx is said to be asymptotically normed by $ [9] if
for any e > 0, there is x* in $ and N in N such that x*(xn) > 1 — e fo ra l l n^JV .

For K = I,II or III, a sequence {xn} is said to have the property K if

(I) {xn} is convergent;
(II) {xn} has a convergent subsequence;

(III) f\cd{xk:k^n}^</>.
n=l

Let $ be a norming set of X. Then X is said to have the asymptotic-norming property
K, K — I,II, or III with respect to $ ( $ - A N P - K ) if every sequence in Sx that is
asymptotically normed by $ has the property K. X is said to have the asymptotic-
norming property K, (ANP-K) [9] if there is an equivalent norm || • || on X such that
there is a norming set $ with respect to (X, || • ||) such that X has the $-ANP-/c,
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K — I,II or / / / . We say that a dual Banach space X* has the weak* asymptotic-

norming property K ( W * - A N P - « ) [8] if there is an equivalent norm || • || on X and a
norming set $ of {X*, || • ||) in Bx such that (X*, || • ||) has the $ - A N P - K , K = I,II

or III.

For a Banach space X, let X1- = {x1- : x x G X***,x±(x) = 0 for all x in
X}. A Banach space X is said to be Hahn-Banach smooth [11] if for all x* in X*,

\\x* + x-^W — ||a;*|| = 1 implies that x1- — 0. In other words, x* in X*** is the unique
Hahn-Banach extension of x* \x • It is obvious that X is Hahn-Banach smooth if and
only if X* = {x*** : a;*** G X***,||z***|| = sup{a;***(a;) : x G Bx}}. Combining this
with [8, Theorem 2.3 and Theorem 3.1], we have the following result.

THEOREM 1 . Let (X, || • ||) be a Banach space. The following are equivalent:

(1) (X, || • ||) is Hahn-Banach smooth;

(2) X* has the w* -ANP-III with respect to the norm \\ • || ;

(3i) there exists a norming set $ of (X, || • ||) in JB(X,||-||) such that X* =
{x*** : x*** G X***, \\x*** || = sup *•••(*)} ;

(3ii) for any norming set $ of X* in B(XM), X* = {x*** : x*** G

-y"MI****|| = sup *"•(*)};

(4) the weak and weak* topologies coincide on ^jc'.ll-ll)-

COROLLARY 2 . [11, Theorem 6]. If X is a Banach space such that (Sx*,w*) =

(£x*>|| ' II) > then X is Hahn-Banach smooth.

COROLLARY 3 . [1, Corollary 3.4]. Every Hahn-Banach smooth space is As-

plund.

PROOF: If X is Hahn-Banach smooth, then X* has the w*-ANP-III. By [8], X*
has the Radon-Nikodym property. Hence X is Asplund. D

REMARK. In [2, Lemma 6], it is proved that (1) and (4) in Theorem 1 are equivalent.

EXAMPLE. Let X = co(wi) where wi is the first uncountable ordinal. Then X is an
Asplund space which admits an equivalent Frechet differentiable norm [12]. However,
in [8], it is proved that X* fails to have w*-ANP-III. Hence X is an Asplund space
which is Frechet differentiable but fails to have an equivalent Hahn-Banach smooth
norm. The spaces C(K) and Co(L) constructed by Haydon in [6] are Asplund spaces
that fail to admit an equivalent Frechet differentiable norm and they also fail to have
an equivalent Hahn-Banach smooth norm. We don't know whether every Hahn-Banach
smooth space admits an equivalent Frechet differentiable norm, even though Hahn-
Banach smoothness is a property strictly stronger than the property that the space is
Asplund.
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2.

The duality mapping D for a Banach space X is the set valued function from Sx

to Sx- defined by D(x) = {x* : \\x*\\ - 1 = x*(x)}, x G Sx- X is said to be very

smooth [11] if every element in Sx has a unique norming element in X"* . It is known
that X is Frechet differentiable (respectively, very smooth) if and only if the duality
mapping D is single-valued and is (|| • || — || • ||) (respectively, (|| • || — w)) continuous.

DEFINITION: A Banach space X is said to be quasi-Frechet differentiable (respec-
tively, quasi-very smooth) if, when {xn} is any convergent sequence in Sx, then for any
a;* € D(xn), n 6 N, the sequence {x*} has a norm-convergent (respectively, weakly
convergent) subsequence.

It is clear that if X is smooth and quasi-Frechet differentiable (respectively, quasi-
very smooth) then X is Frechet differentiable (respectively, very smooth). However,
let c0 be the usual sup norm; then cj = l^ has the w*-ANP-II [8]. By Theorem 4
below, Co is quasi-Frechet differentiable and Hahn-Banach smooth but is neither Frechet
differentiable nor very smooth.

Let X and Y be topological spaces. A set valued function D : X —> Y is said to
be upper semi-continuous (u.s.c.) at x, x £ X if for any open set G in Y, G D D(x),

there exists a neighbourhood U of x in X such that D(U) C G. D is said to be
upper semi-continuous on X if D is u.s.c. at every point of X. In the case that X

is a normed space and Y — X*, Giles, Gregory and Sims [1] introduced a restricted
notion of upper semi-continuity for the duality mapping. The duality mapping D is
said to be GGS-u.s.c. (respectively GGS-w.u.s.c.) at x if for every open set G of the
form D(x) + N where N is an open neighbourhood of 0 in (X*, || • ||) (respectively,
(X*, weak)), then there is a neighbourhood U of x such that D(U) C G. It is easy to
see that if D{x) is compact, then the two definitions of u.s.c. are the same. However,
in general, D(x) is not compact in either the norm or weak topology of X*.

THEOREM 4 . Let (X, \\ • \\) be a Banach space and let D be the duality mapping

of X.

(1) If X* has the w*-ANP-I with respect to the norm \\-\\, then (X, \\ • \\)

is Frechet differentiable.

(2) If X* has the w* -ANP-II with respect to the norm \\-\\, then (X, || • ||)
is quasi-Frechet differentiable.

(3) U X* has the w* -ANP-III with respect to the norm \\-\\, then (X, \\ • \\)

is quasi-very smooth and so every Hahn-Banach smooth Banach space is

quasi-very smooth.

(4) If X is quasi-Frechet differentiable then D(x) is compact for all x in Sx

and D : (Sx,\\ • II) —» (SX;\\ • ||) is u.s.c.
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(5) If X is quasi-very smooth then D(x) is we&kly compact tor all x in Sx
and D : (Sx, || • ||) —» (Sx.,w) is u.s.c.

PROOF: (1) Let {«„} be a sequence in Sx such that lim ||xn — x\\ = 0 for some
n

x G X. Then for any a;* G D(xn), n G N, z£(x) —> 1. Hence {z*} is asymptotically
normed by Bx • Since (-X"*,|| • ||) has the w*-ANP-I, by [8, Corollary 3.2], it follows
that {x£} is convergent in (S;c*,|| • ||). Thus X is Frechet differentiable.

(2) and (3) are proved similarly to (1).
(4). It is clear that D(x) is compact for all x in Sx when X is quasi-Frechet

differentiable. To show that D is u.s.c, it suffices to show that if F is a norm closed
subset in X*, then the set A — {x : \\x\\ = l,D(x) D F ^ (f>} is norm closed in Sx-
Suppose {«„} C A and lim ||s:n — x|| = 0 for some x in X. Choose x£ G D(xn) ("I F.

n

Then lim x^(x) — 1. Since X is quasi-Frechet differentiable, there is a subsequence
n

{x*} of {x^} and x* in Sx* such that lim IIa;* — x* II = 0. It is clear that x* G
* k k

D(x) n F. Therefore A is closed.
(5) is proved similarly to (4). U

REMARK. Since there exists a Frechet differentiable space X [8] that fails to admit
an equivalent Hahn-Banach smooth norm, hence there exists a Frechet differentiable
(respectively, quasi-Frechet differentiable) space X such that X* does not have the
w*-ANP-I (respectively, w*-ANP-II). We don't know if X is Frechet differentiable
(respectively, quasi-Frechet differentiable) and Hahn-Banach smooth, whether or not
X* has the w*-ANP-I (respectively, w*-ANP-II).

3.

A Banach space X is said to be weakly Hahn-Banach smooth [10] if in X***, for
any x* G X*, xx G X1-, ||as* -J- as-1-1| = ||x*|| = 1 and x*(x) = \\x\\ = 1 for some x in
X, then x-1 =0.

X is said to be weakly very smooth [13] if for all z in Sx , *n m &x* > lim xnix) ~ •"•
n

implies that {x^} has a weakly convergent subsequence in X*.
From [1, Theorem 3.1, Cororllary 3.2] and Theorem 4, we conclude that for a

Banach space X, the weakly Hahn-Banach smoothness, weakly very smoothness and
quasi-very smoothness are the same. From now on, we shall use the term weakly Hahn-
Banach smooth only.

In the following, for simplicity, we say that the duality mapping is w.u.s.c. if

2 > : ( S J C , | H | ) — » ( S j r . , t i ; ) is u.s.c.

4.

In [1], a question was raised: if a Banach space X admits an equivalent norm for
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which the duality mapping D is GGS-w.u.s.c, must X be an Asplund space? We give
necessary and sufficient conditions for the space X to be an Asplund space when the
duality mapping D of X is GGS-w.u.s.c. and show that if the duality mapping D is
w.u.s.c. then X is an Asplund space. In fact, we give several consequences of w.u.s.c.
of D that imply X is Asplund.

For a subset A in X*, an element z* in A is called a weak* strongly exposed

(respectively, weak* denting) point of A if A is strongly exposed at x* by some element
in X (respectively, for any e > 0, there exists a slice of A determined by some element
in X which contains x* and has diameter less than e) . Also x* is called a weak* -weak

point of continuity of A if the identity mapping Id : (A,w*) —> (A,w) is continuous
at x*. For a set A in X, let [.4.] (respectively, ~coA) denote the closed linear subspace
in X spanned by A (respectively, the closed convex hull of A). If A is in X*, To*A

denotes the closed convex hull of A under the weak* topology in X*.

LEMMA 5 . If X is a. separable Banach space such that the duality mapping D

of X is GGS -weak upper semi-continuous then for any x in Sx, a weaic* -weaic point

of continuity of D(x) is a weak* -weak point of continuity of Bx* •

PROOF: Suppose x* £ D(x) and x* is not a weak "-weak point of continuity
of Bx* • Since X is separable, there exist a sequence {xn} in X, x** in X** and
e > 0 such that w* - limx* = x* and | x**(x* - z*) | > 2e, n £ N. Let {xn} be
a dense sequence in (Sx, || • | | ) . Since w* — limz*, = x*, choosing a subsequence if
necessary, we may assume that | (z* — z*,)(a;m) | < 1/n for all n ^ m , n,m £ N.
Let Un = {x* : x* e X*,\ x*(xm) |< 1/n, m = 1,2,--- , n and | ***(**) | < e} ,
n e N. Since D is GGS-w.u.s.c. at x, by [1, Theorem 2.1], D(x) + Un contains a
slice of Bx* determined by x. Since x* £ D(x) and w* — limzj^ = x*, there is a
subsequence, say { t £ } , of {z*} such that y* £ D(x) + Un, n £ N. Let z* £ D(x) and
< - J ^ P n , » ^ . It foUows that | « - x*)(ym) \ < 2/n for all n ^ m, n,m g N
and | a;**(z* — ,z£) | > e, n £ N. Hence z* is not a weak*-weak point of continuity of
D(x). D

LEMMA 6 . For any Banach space X, the following are equivalent:

(1) For any subspace Y of X, By* = co{weafc* strongly exposed points of

By*}-

(2) For any subspace Y of X, By* —co{ weak* denting points of By*}-

(3) For any subspace Y of X, By = co{ weaic* -wealc points of continuity of

By*}.

(4) For any separable subspace Y in X, By = ~co{weak* strongly exposed

points of By*}.
(5) For any separable subspace Y in X, By* = "co{ weak* denting points of

By*}.
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(6) For any separable subspa.ce Y in X, By* = ^o{ weak* -weak points of
continuity of By } •

Furthermore, each of them is a sufEcient condition for X to be an Asplund space.

PROOF: It suffices to show that (6) = > (1). We first show that (6) implies that
X is Asplund. Let E be a separable subspace of X. Then there exists a separable
norming subspace $ of E in E*. Since $ is norming, B$ — BE* • Hence B$ contains
all weak* to weak points of continuity of BE* • By (6), we have B$ — BE* and so E*
is separable. This implies that X is Asplund.

Let Y be any subspace of X, A = {y : \\y\\ = 1, || • || is Prechet differentiate at y}
and F = {y* : y* is a weak* strongly exposed point of By*}- Then A—Sy.

Suppose (1) is false. Then there exist e > 0 and y* G By* such that d(y*, coF) >
e. Let Ai be any countable subset of A. Then the set [j D(x) is countable. Hence

there exists a countable subset At in A, Ai C A?., S[A{\ C Az and sup (y* — z*)(y) >

e for all z* £ col (J D[x) 1 . Continue by induction; there is a sequence {An} in A,
\*€At J

An C An+1, S[An] C ~An+i and sup (y* - z*)(y) > e for all z* G col (J D(x) J .

Let y0 = [U An]. Then Yo is separable; Sy0 = \J An. Let Do be the duality mapping
n n

of Yo. Then By* = co*{D0(x) :xe\JAn}. By (6), By* = co{ weak* -weak points of
n

continuity of By}. Hence By = co{D0(x) : x G U-An}- However, y* |y0G By* and
n

\\y* \y0 — z*\\y0 > e for all z* in co{D0(x) : x G LMn} which is impossible. D
n

A Banach space X is called nicely smooth [2] if for all x** in X**,

n * * . . ( * , H*"-*n)={*••>

where Bx**(x,r) is the closed ball in X" with centre x and radius r. Equivalently [5,
Lemma 2.4], X is nicely smooth if and only if X* contains no proper closed norming
subspace of X.

LEMMA 7 . Let X be a Banach space. Then the following are equivalent.

(1) Every subspace of X is nicely smooth.
(2) Every almost monotone basic sequence in X is shrinking.

PROOF: (1) = > (2). Let {xn} be an almost monotone basic sequence in X, and
let Y — [a;n]. If {«£} is the coefficient functional of {xn} in Y*, since {xn} is
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almost monotone, [x£] is a norming subspace of Y. Hence [xJJ = Y*, that is, {x n } is

shrinking.

(2) ==> (1). Suppose not. Without loss of generality, we assume that there exists

a proper closed norming subspace F of X in X*. Choose xj £ Sx* and %o* € Sx**

such that x^*(xl) > 1/2 and x%*(F) = 0. Let 0 < en < 1 and suppose H(l - en)
n

converges. By the principle of local reflexivity, there exists Ti : [x"] —> X, ||Ti|| < 2
and x;(7\xj*) = xJ*(xS)- L e t *i = Zifco*) ^ ^ let ^i b e a finite subset of 5 F such
that i"\ (1 —ei)-norms [xi]. By the principle of local reflexivity again, there exists
^2 : [*;•] —•* X, \\T2\\ < 2 and x*0(T2x**) = x*0*(x*0) for all x* in Fx U {x*}. Let
X2 = T2x". Continue by induction; for each n £ N, there exist xn £ X, a finite
subset .Fn in SF, Fn (1 — en)-norniing set of [xi,.. . ,xn] and x*(xn+i) = xj*(x*)
for aU x* £ Fn U {xj}. It follows that ||xn|| ^ 2, xS(xn+i) = *;*(XQ) > V 2 and
xn+i(x*) = xj*(z*) = 0 for all x* £ Fn, n € N. Clearly {zn} is not shrinking. It
remains to show that {xn} is an almost monotone basic sequence.

For any x £ [xi,... ,x n ] , choose x* £ Fn, x*(x) ^ ( l - e n ) | | x | | . For any A £ R,
||x + Axn+i|| > x*(x + Axn+1) ^ (1 - en)||a;||. Since H(l - en) converges, it follows

n

that {xn} is a basic sequence and if {Pn} is the sequence of associated projections of

{xn}, then ||.Pn|| ^ 1 / 1 II (1 ~ £k) I —y 1- Thus {xn} is an almost monotone basic

sequence. 0

Let if be a bounded subset of X*. A subset B of K is called a boundary [3] of
K if for every x in X, there exists x* in B such that x*(x) = sup{j/*(x) : j / * £ if}.
Observe that if B is a boundary of K then B is also a boundary of co'-ST. We need
the following fundamental fact.

THEOREM 8. [3, Theorem 1.2], Let B be a boundary of a bounded closed convex
set K in X*. Suppose for any bounded convex set C in X and for any x** in X**
which is in the closure of C for the topology crjg of pointwise convergence on B, there
exists a sequence {xn} in C such that <TB — limzn = x**. Then K is weak* compact
and K = ~coB. In particular if B is a separable bounded set in X* such that B is a
boundary of itself, then ~co*B — coB and so c~o*B is separable.

Let us remark that Theorem 8 implies a result of Hay don [7]: If if is a weak*
compact convex set in X* such that the set of extreme points of K is norm separable,
then K is separable in the norm topology.

THEOREM 9 . Let X be a Banach space such that the duality mapping D of X
is GGS-weak upper semi-continuous. Then the following are equivalent:

(1) X is Asplund.
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(2) For all x in Sx > D(x) has the Radon-Nikodym property.
(3) For all separable subspace Y in X, By = co{ weak* -weak point of

continuity of By*} •
(4) Every subspace of X is nicely smooth.

PROOF: (1) implies (2) is well-known.
(2) = > (3). Let Y be a separable subspace of X and let Do be the duality

mapping of Y. Since D is GGS-w.u.s.c. on X, Do is GGS-w.u.s.c. on Y. By (2)
and Lemma 5, the set w* — wpcBy* consisting of weak*-weak point of continuity of
By* is non-empty and is a boundary of By*. Since Y is separable, w* — wpcBy
satisfies the hypothesis of Theorem 8, and hence ~co(w* — wpcBy) = By .

(3) ==> (4). Let Y be any subspace of X. By (3) and Lemma 6, By* = ~cd{w*-
strongly exposed points of By }. Hence the set of weak * strongly exposed points of
By* separates the point of X**. It follows [2, Lemma 5] that Y is nicely smooth.

(4) ==> (1). Let Y be a separable subspace of X. Since Y is nicely smooth, Y*
contains no proper closed norming subspace of Y. Hence Y* is separable and so X is
Asplund. D

REMARK. The fact that the dual space of a separable nicely smooth space is separable
has been proved in [2, Lemma 10]. The question of whether every Asplund space admits
an equivalent nicely smooth norm has been raised in [4, Question E] and is still open.

THEOREM 10. Let X be a Banach space and let D be the duality mapping of
X. Consider the following statements.

(1) D is weakly upper semi-continuous.
(2) For any symmetric closed convex set F in X*, the set {x : x £ Sx, D(x)f)

F ^ <f>} is norm closed.
(3) For any separable subspace Y in X and for any dense sequence {yn} in

Sy, then for any x*n G D{yn), n G N,By = co{±x*n \y. n € N}.
(4) For any separable subspace Y in X, By = i~d{ weak* strongly exposed

points of By } .
(5) Every subspace of X is nicely smooth.
(6) X is Asplund.

Then (1) = > (2) = » (3) = • (4) = • (5) = • (6).

PROOF: By definition of w.u.s.c. mapping, it is clear that (1) =$• (2).
(2) =>• (3). Let Y be a separable subspace of X and let Do be the duality

mapping of Y. By (2), it is obvious that for any symmetric closed convex subset F
in Y*, {y : y £ Sy,Do(y) ("1 F ^ <f>} is norm closed in Y. Let {yn} be a dense
sequence in Sy and let y^ G D0(yn), « E N . Then {j£} is a norming set of Y and
so co*{j£} — By* . Let F = co{±j/*,}. Then F is a symmetric closed convex set in
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Y*. Hence the set A = {y : y 6 Sy,D0(y) f~l F ^ <j>} is norm closed. Since yn e A,

n £ N, we conclude tha t A = S y . Thus for all y in Sy , there exists y* £ F such that

j/*(y) = 1 = sup z*(y). By Theorem 8, F = F* = B y .

(3) =>• (4 ) . By (3), every separable subspace of X has a separable dual. Hence

X is Asplund. Let Y be a separable subspace of X and let {yn} be a dense sequence

of Sy such tha t the norm is Prechet differentiate at yn, n G N. Then D0(yn) is a

weak* strongly exposed point of By* and by (3), By* = co{ weak* strongly exposed

points of By*} •

(4) = > (5) . Let Y be a subspace of X. If F is a close norming subspace of

y in y * , then BF = By*- Since By* — co{ weak *-weak points of continuity of

By}, BF contains all weak* to weak points of continuity of By*- It follows that

Bp = BF = By*. Hence Y* contains no proper closed norming subspace of Y and so

y is nicely smooth.

(5) = > (6) . Let y be a separable subspace of X. Since every separable space has

a separable norming subspace in its dual, we conclude tha t Y* is separable and so Y

is Asplund. Thus X is Asplund. D

We conclude this section with the following characterisations of reflexive Banach

spaces.

THEOREM 1 1 . T i e following are equivalent for a Banach space X.

(1) X is reflexive

(2) For any equivalent norm || • || on X, (X, || • ||) is Ha.hn-Ba.na.ch smooth

and (X, || • ||) has the ANP-III.
(3) For any equivalent norm || • || on X, the duality mapping of (X, || • ||) is

w.u.s.c.
(4) For any equivalent norm || • || on X, every almost monotone basic sequence

in (X, || • ||) is shrinking.
(5) X admits an equivalent norm || • || such that (X,\\ • ||) Aas tie ANP-I

and both (X, || • ||) and (X*, || • ||) are locally uniformly rotund.
(6) X admits an equivalent norm || • || such tiat (X, || • ||) ias t ie ANP-III

and the duality mapping of (X, || • ||) is w.u.s.c.

PROOF: By the definition of ANP-III, it is clear that every reflexive space has the
ANP-III and by Theorem 10, we conclude that (1) => (2) => (3) =J- (4).

(4) =>• (1). Let {scn} be a basic sequence in X. Then there is an equivalent norm
|| • || on X such that {xn} is almost monotone in (X, \\ • | |). Hence {xn} is a shrinking
sequence. By the well-known result of Zippin [14], X is reflexive.

(1) =>• (5). Since every reflexive space admits an equivalent norm || • || such that
(X, || • ||) and (X*, || • ||) are locally uniformly rotund and every reflexive space has the
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ANP-III, it follows that {X, || • ||) has the ANP-I [8].

( 5 ) = > ( 6 ) . Obvious.

(6) ==> (1). Without loss of generality, assume that X is separable. Let || • || be an
equivalent norm of X such that (X, || • ||) has the $-ANP-III for some norming set $ .
We may assume that $ is closed convex. It follows that $ = Bx* • Since the duality
mapping D of {X, \\ • ||) is w.u.s.c, by Theorem 10, Bx* — co{ weak* strongly exposed
points of BX'} and so $ = Bx* • Hence (X, || • ||) is Bx* -ANP-III. By [8, Theorem
2.3], we conclude that X = {x** : x** £ A"**,||x**|| = sup x**(x*)} = X** , that is,

*B

X is reflexive. 0

5.

In Theorem 4, we have proved that if {X*,\\ • ||) has the weak* ANP-II, then
(X, || • ||) is quasi-Frechet differentiable and so the duality mapping D of (X, || • ||) is
u.s.c. and D(x) is compact for all x in Sx • In the case that D(x) is compact for
all x in SJC, D is u.s.c. if and only if D is GGS-u.s.c. The next theorem, using the
Hahn-Banach theorem only, extends [1, Theorem 2.1]. The conditions (3) - (7) show
that in the case that D is GGS-u.s.c. at x, then D(x) behaves like a "weak* strongly
exposed set" of Bx* •

THEOREM 1 2 . Let X be a Banach space and let x € Sx • Then the following
are equivalent:

(1) The duality mapping D of X is GGS-u.s.c. at x.
(2) For any e > 0, D(x) + eBx* contains a weak* slice of Bx* determined

by x.
(3) For any net {x*} in Bx* , if x*a(x) —> 1 then d(x*a,D(x)) —> 0 where

d(x^,D(x)) is the distance from x*, to D(x).
(4) For any sequence {x*} in Bx*, if x^(x) —> 1, then d(x*n,D(x)) —* 0.

(5) For any sequence {xn} in Sx, if Hm||zn — x|| = 0 for some x, then

d(x*n,D(x)) —> 0 for any x*n G D{xn), n 6 N.
(6) For any sequence {xn} in Sx, if lim||xn — z|| = 0 for some x then

d(D(xn),D{x)) —*0.
(7) Urn sup inf{| l/t(||x + ty\\ - \\x\\) - x*(y) |: x* £ D(x)} - 0.

*-*° ll»ll=i

PROOF: (2) = > (3) = > (4) = » (1) =*• (5) => (6) are obvious.

(6)==>(7). Let t £ {0,1), V e SX) x* £ D(x) and y* G D{x+ty/\\x+iy\\).

Then

*•(„) = [x*(x + ty) - x'{x)]lt < (||x +*»|| - ||x||)/<
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Hence | (\\x+ ty\\ - \\x\\)/2 - x*{y) \£ \\x* - y*\\ for all y £ Sx. Thus inf{|
(||x + ty\\ - \\x\\)/t - x*(y) |: x* £ D(x)} ^ d(D(x),D(x + ty)/\\x + ty\\). Therefore

||=1

hm sup ini{\(\\x + ty\\-\\x\\)/t-x*(y)\:x* eD(x)\
* -0 ||,||=1 I J

sup d ( D ( x ) , £ ( ( x + *i/)/||x + *2/||)) = 0 .

(7) =*> (2). Assume (2) is false. Then there exist e > 0, and x* £ Bx*, with
limx^(x) = 1 and d(x*,Z)(x)) > e. By the Hahn-Banach theorem, there exists xn £

n

Sx for each n £ N such that (x* - x*)(xn) > e for all x* G -D(*)- By (7), choose

6 > 0 such that for all 0 < | t | ^ £,

sup inf {| ] (||x + ty|| - ||x||) - x*(y) |: x* G D
ll»ll=i l * V y

Let yn = 6xn,n £ N. Then for any x* £ D(x),

Se < (x; - x*)(yn) = [x;(x + yn) - x\x) - x*(j/n)]

- x;(x) + x*x < (||x + yn|| - ||x|| - x*(i/n)) - x;(x) + 1.

Thus Se < inf{||x +yn\\ - \\x\\ - x*{yn) : x* £ I>(x)} - x^(x) + 1

which is a contradiction. U

REMARK. (1) •$=*• (2) were proved in [1].

COROLLARY 1 3 . Let X be a Banach space, x £ Sx, and let D be the duality
mapping of X. Then the following are equivalent:

(1) D is u.s.c. at x and D(x) is compact.
(2) For any e > 0, D(x) + eBx* contains a weaic* slice of Bx* determined

by x and D[x) is compact.

(3) For any net {x£} in Bx', if *a(x) —* 1 ^nen ixa} aas a norm conver-
gent subnet.

(4) For any sequence {x^} in Bx*, if %„ —y 1 > tnen {xn} nas a ^orm
convergent subsequence.

(5) If {x n } is a sequence in Sx such that lim||xn — x|| = 0, then for any
n

x*n £ D(xn), {x^} has a norm convergent subsequence.
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(6) D(x) is compact and for any sequence {xn} in Sx, if lim \\xn — x\\ = 0
n

then d(D{xn),D{x)) — • O .

(7) D(x) is compact and lim sup inf( | l/t(\\x + ty\\ - \\x\\) -x*(y) |: x* G

D(x)}=0.

REMARK. (1) <£=>• (2) <$=>• (3) are proved in [1, Theorem 3.2].

REFERENCES

[l] J.R. Giles, D.A. Gregory and B. Sims, 'Geometrical implications of upper semi-continuity
of the duality mapping on a Banach space', Pacific J. Math. 79 (1978), 99-105.

[2] G. Godefroy, 'Nicely smooth Banach spaces', in Longhorn Notes, pp. 117-124 (The Uni-
versity of Texas at Austin, 1984-85).

[3] G. Godefroy, 'Boundaries of a convex set and interpolation sets', Math. Ann. 277 (1987),
173-184.

[4] G. Godefroy and N. Kalton, 'The ball topology and its applications', Contemporary Math.

85 (1989), 195-237.

[5] G. Godefroy and P.D. Saphar, 'Duality in spaces of operators and smooth norms on

Banach spaces', Illinois J. Math. 32 (1988), 672-695.

[6] R. Haydon, 'A counterexample to several questions about scattered compact spaces', Bull.

London Math. Soc. 22 (1990), 261-268.
[7] R. Haydon, 'An extreme point criterion for separability of a dual Banach space and a new

proof of a theorem of Carson', Quarter J. Math. 27 (1976), 379-385.
[8] Zbibao Hu and Bor-Luh Lin, 'On the asymptotic-norming property of Banach spaces', in

Proc. Conference on Function Spaces, SIUE: Lecture Notes in Pure and Applied Math.
(Marcel-Dekker, to appear).

[9] R.C. James and A. Ho, 'The asymptotic-norming and Radon-Nikodym properties for

Banach spaces', Ark. Mat. 19 (1981), 53-70.

[10] M. Smith and F. Sullivan, Extremely smooth Banach spaces: Lecture Notes in Math. 604

(Springer-Verlag, Berlin, Heidelberg, New York, 1977).

[11] F. Sullivan, 'Geometrical properties determined by the higher duals of a Banach space',
Illinois J. Math. 21 (1977), 315-331.

[12] M. Talagrand, 'Renormage de quelques C(K)', Israel J. Math. 54 (1986), 327-324.
[13] Wenyao Zhang, 'A new smoothness of Banach spaces', in Proc. Analysis Conference,

Singapore 1986, pp. 301-304 (Elsevier Science Publishers, North Holland, 1988).
[14] M. Zippin, 'A remark on basis and reflexivity in Banach spaces', Israel J. Math. 6 (1968),

74-79.
Department of Mathematics
University of Iowa
Iowa City IA 52242
United States of America

https://doi.org/10.1017/S000497270003015X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003015X

