Canad. Math. Bull. Vol. 18 (2), 1975

LIMIT DISTRIBUTIONS FOR SUMS OF WEIGHTED RANDOM VARIABLES

BY D. R. BEUERMAN

ABSTRACT. Let X_1, X_2, X_3, \ldots be i.i.d., S_n their *n*th partial sum with $S_0=0$; Suppose that

$$B_n^{-1}(S_n - nc_{\alpha}) \xrightarrow{\mathscr{D}} Y_{\alpha}(1); \qquad c_{\alpha} = \begin{cases} E(X_k), & \alpha > 1 \\ 0, & \alpha < 1 \end{cases}; \quad \alpha \neq 1$$

LEMMA. $B_n^{-1}(S_{[nt]}-[nt]c_{\alpha}) \rightarrow Y_{\alpha}(t)$, a stable process whose onedimensional distributions are characterized by $Y_{\alpha}(t) \stackrel{@}{=} t^{1/\alpha} Y_{\alpha}(1)$.

THEOREM 1. The second characteristic of $Y_{\alpha}(t)$ is $\lambda(u)|u|^{\alpha} t$ with $\lambda(u)$ linear in sgn(u).

COROLLARY. The second characteristic of $Y_{\alpha}(1)$ is $\lambda(u) |u|^{\alpha}$; i.e., if the X_k are suitably centered, then so is $Y_{\alpha}(1)$.

THEOREM. Put $c_{\alpha}=0$, σ_n the Cesàro sum of index 1. Then

$$B_n^{-1}\sigma_n \xrightarrow{\mathscr{D}} Y_{\alpha}\left(\frac{1}{1+\alpha}\right)$$

(This was obtained in a different fashion than its generalization in the Note; i.e., a different sort of functional was used.)

Let X_1, X_2, X_3, \ldots be a sequence of independent and identically distributed random variables which belong to the domain of attraction of a stable law of exponent $\alpha \neq 1$. The purpose of this note is to obtain limit distributions for sums of the form

(1)
$$T_n = \sum_{k=1}^n f(n^{-1}k) X_k,$$

where f is non-negative and continuous on [0, 1]. As a special case, we obtain limit distributions for Cesàro sums of general index, r. This extends the work of Beuerman [1], whose notation we follow. In particular, $Y_{\alpha}(t), 0 \le t \le 1$, is a stable process of exponent α whose one-dimensional distributions are characterized by $Y_{\alpha}(t) \stackrel{\mathcal{D}}{=} t^{1/\alpha} Y_{\alpha}(1)$, $Y_{\alpha}(1)$ being the corresponding stable random variable. Our main result is the following. Put $S_n = \sum_{k=1}^n X_k$, $S_0 = 0$.

THEOREM. Let X_1, X_2, X_3, \ldots be a sequence of independent and identically distributed variables. Suppose there exist norming constants B_n and centering constants nc_{α} such that

(2)
$$B_n^{-1}(S_n - nc_a) \xrightarrow{\mathscr{D}} Y_a(1),$$

a stable random variable of exponent $\alpha \neq 1$. If T_n is given by (1), with \mathfrak{f} non-negative and continuous on [0, 1] then

(3)
$$B_n^{-1}\left(T_n - c_{\alpha} \sum_{k=1}^n \mathfrak{f}(n^{-1}k)\right) \xrightarrow{\mathscr{D}} Y_{\alpha}\left(\int_0^1 (\mathfrak{f}(t))^{\alpha} dt\right).$$

Proof. From the Lemma of [1] and Theorem 5.1 of Billingsley [2], we have

(4)
$$\int_0^1 \mathfrak{f}(t) \ d(B_n^{-1}(S_{[nt]}-[nt]c_\alpha)) \xrightarrow{\mathscr{D}} \int_0^1 \mathfrak{f}(t) \ dY_\alpha(t).$$

Now, Stieltjes integration yields

(5)
$$\int_0^1 \mathfrak{f}(t) \ d(B_n^{-1}(S_{[nt]} - [nt]c_a)) = B_n^{-1} \bigg(T_n - c_a \sum_{k=1}^n \mathfrak{f}(n^{-1}k) \bigg).$$

From Lemma 1 of Laha and Lukacs [4], the second characteristic of $\int_{0}^{1} f(t) dY_{\alpha}(t)$ is

(6)
$$\int_0^1 \psi(u\mathfrak{f}(t)) dt,$$

 $\psi(u)$ being the second characteristic of $Y_{\alpha}(1)$. As in [1] we may write $\psi(u)$ in the form

(7)
$$\lambda(u) |u|^{\alpha}$$

where $\lambda(u)$ is linear in sgn(u). Thus, from (6) and (7), the second characteristic of $\int_{0}^{1} f(t) dY_{\alpha}(t)$ is

$$\int_0^1 \lambda(u) |u|^{\alpha} (\mathfrak{f}(t))^{\alpha} dt = \lambda(u) |u|^{\alpha} \int_0^1 (\mathfrak{f}(t))^{\alpha} dt,$$

From Theorem 1 of [1], this is the second characteristic of

$$Y_{\alpha}\left(\int_{0}^{1}(\mathfrak{f}(t))^{\alpha} dt\right).$$

Hence, (4), (5) and (6) yield (3). Q.E.D.

An interesting special case of (3) is for the Cesàro sums of index r, $C_n^{(r)}$; cf. Hobson [3]. Here we may write

$$f(n^{-1}k) = A_{n-k}^{(r)} / A_n^{(r)}, \qquad A_n^{(r)} = \frac{\Gamma(n+r+1)}{\Gamma(n+1)\Gamma(r+1)}$$

From Stirling's approximation, $A_{n}^{(r)} \sim n^{r} / \Gamma(r+1)$, so that here $f(n^{-1}k) \sim (1-n^{-1}k)^{r}$ and (3) becomes

(8)
$$B_n^{-1}(C_n^{(r)} - (nc_\alpha/(r+1))) \xrightarrow{\mathscr{D}} Y_\alpha(1/(1+r\alpha))$$

[June

since $\sum_{k=1}^{n} (1-n^{-1}k)^r \sim n/(r+1)$, $\int_0^1 (1-t)^{r\alpha} dt = 1/(1+r\alpha)$. Theorem 2 of [1] is (8) for r=1, $c_{\alpha}=0$.

References

1. D. R. Beuerman, Some functional stable limit theorems, Canad. Math. Bull. 16 (1973), pp. 173-177.

2. P. Billingsley, Convergence of Probability Measures, J. Wiley & Sons, New York 1968.

3. E. W. Hobson, The Theory of Functions of a Real Variable, Vol. II, Dover, New York, 1957, pp. 70-71.

4. R. G. Laha and E. Lukacs, On a property of the Wiener process, Ann. Inst. Stat. Math. 20 (1968), pp. 383-389.