
JFP 11 (6): 591–627, November 2001. c© 2001 Cambridge University Press

DOI: 10.1017/S0956796801004154 Printed in the United Kingdom

591

Monadic encapsulation of effects:
a revised approach (extended version)

E. MOGGIã
DISI, University of Genova, via Dodecaneso 35

16146 Genova, Italy

AMR SABRY†
Computer Science Department, Indiana University Bloomington, IN 47405, USA

Abstract

Launchbury and Peyton Jones came up with an ingenious idea for embedding regions of

imperative programming in a pure functional language like Haskell. The key idea was based

on a simple modification of Hindley-Milner’s type system. Our first contribution is to propose

a more natural encapsulation construct exploiting higher-order kinds, which achieves the

same encapsulation effect, but avoids the ad hoc type parameter of the original proposal. The

second contribution is a type safety result for encapsulation of strict state using both the

original encapsulation construct and the newly introduced one. We establish this result in a

more expressive context than the original proposal, namely in the context of the higher-order

lambda-calculus. The third contribution is a type safety result for encapsulation of lazy state

in the higher-order lambda-calculus. This result resolves an outstanding open problem on

which previous proof attempts failed. In all cases, we formalize the intended implementa-

tions as simple big-step operational semantics on untyped terms, which capture interesting

implementation details not captured by the reduction semantics proposed previously.

Capsule Review

The paper gives the long-awaited definitive answer that monadic encapsulation using Launch-

bury and Peyton Jones’s approach is correct. It does so by giving a purely syntactic type

soundness proof for a version with strict state. Beyond that, it provides a new approach to

monadic encapsulation, which works by abstracting over the operations of the monad. For

this new framework, the authors show type soundness with strict as well as with lazy semantics

for the monadic operations. The paper is cast in a standard type-theoretic framework with

higher-order polymorphism. All semantics are formalized as big-step operational semantics.

1 Introduction

Launchbury & Peyton Jones (1995) came up with an ingenious idea for encapsulating

regions of imperative programming in a pure functional language. More specifically,

ã Research partially supported by MURST and ESPRIT WG APPSEM.
† Worked started at the University of Oregon. Supported by the National Science Foundation under

Grant No. CCR-9733088.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


592 E. Moggi and A. Sabry

they introduced a simple modification of Hindley–Milner’s type system, and proved

(using logical relations) that if a program is well-typed (in a restricted system, where

all locations contain expressions of a fixed base type), then different state threads

do not interfere. Subsequently Launchbury & Sabry (1997) gave a formal account

of type safety (for the whole system) by attempting to prove subject reduction for

a reduction semantics. Unfortunately, there is a bug in the attempted proof, which

“can be traced to the complicated semantics of lazy state threads” (Semmelroth &

Sabry, 1999). However, Semmelroth & Sabry (1999) are able to adapt the formal

developments by Launchbury & Sabry (1997) to prove type safety for monadic

encapsulation of strict state.

Our goals are similar to those stated by Semmelroth & Sabry (1999), while we

differ substantially in the methodology and strength of the results. We formalize

the intended implementations as big-step operational semantics (which are referred

to as dynamic semantics), then we prove type safety for three systems. The first

system uses strict state and a newly introduced encapsulation construct based on

higher-order kinds. The second system uses strict state and the original encapsulation

construct runST : it is almost identical to the system considered by Semmelroth &

Sabry (1999); the only difference being the rather minor issue of using Call-By-

Name (CBN) evaluation for pure terms rather than Call-By-Value (CBV). The final

system uses lazy state which adds considerable complexity since it does not allow the

simple deallocation strategy typical of region-based memory management. However,

despite the more complicated semantics, the general approach and proof techniques

used for reasoning about the previous two systems scale nicely and enable us to

establish the open problem of type safety for lazy state.

The dynamic semantics we use is substantially simpler than the reduction seman-

tics of Semmelroth & Sabry (1999), and we argue that it formalizes certain imple-

mentation details more accurately, such as deallocation of local state and leakage

of locations referring to a deallocated state. Another advantage of the dynamic

semantics we use is that it avoids the limitations one encounters when applying

reduction semantics to lazy state (Launchbury & Sabry, 1997). On the other hand,

reduction semantics provides a more direct support for sound equational reasoning.

Methodology and techniques. We follow a standard approach for proving type safety.

The techniques used are fairly elementary and well-established:

• the dynamic behavior of programs is specified operationally with a structural

operational semantics (SOS);

• type systems are presented à la Church (Barendregt, 1991; Cardelli, 1996), and

we use erasure to remove information not needed at run-time;

• type safety is established for an instrumented SOS, which handles also type

and region information, and performs additional run-time checks, and the

pattern of the proof follows (Harper, 1994).

These techniques are quite robust with respect to language extensions such as

recursive definitions of terms and types, therefore we mostly ignore such desirable

(but technically easy) extensions.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 593

Summary. The article extends the paper with the same title (Moggi & Palumbo,

1999) with two results: a proof of type safety for a system with strict state and the

runST encapsulation construct, and a proof of type safety for a system with lazy

state. The first extension is an adaptation of a result by Semmelroth & Sabry (1999);

the second extension is novel and resolves a problem in the paper by Launchbury

& Sabry (1997).

The paper is structured as follows. Section 2 recalls some necessary background

about monads and monadic state. It also motivates the problem of monadic encap-

sulation and relates it to the more general problem of encapsulation of effects.

Section 3 gives a big-step operational semantics (dynamic semantics) for an untyped

λ-calculus with a run-construct and strict state, describing the intended implemen-

tation, including what constitutes a run-time error. We have refrained from using

a reduction semantics along the lines of several other papers (Wright & Felleisen,

1994; Launchbury & Sabry, 1997; Semmelroth & Sabry, 1999), because it fails to

capture certain low-level implementations details (see Remarks 3.3 and 3.4). Sec-

tion 4 introduces a type system à la Church, basically a higher-order λ-calculus with

constants. The expressiveness of the type system allows us:

• to adopt a more natural encapsulation construct, which relies on higher-

order kinds, and avoids the ad hoc type parameter for monadic types and

operations introduced in previous studies (Launchbury & Peyton Jones, 1995).

Our construct can be added as a primitive to Haskell (see Appendix C).

• to establish a stronger type safety result, since more untyped terms are typable

(but one must restrict to Haskell, to get a type inference algorithm).

Section 5 introduces an instrumented semantics for the pseudo-expressions of the

type system à la Church. The instrumented semantics makes explicit the two-di-

mensional structure of the address space, typical of region-based memory manage-

ment (Tofte & Talpin, 1997), and enables a more accurate description of improper

program behavior. We prove type safety for the instrumented semantics, by exploiting

region information in a crucial way. Then we relate the instrumented and dynamic

semantics independently from well-typedness assumptions (in general the instru-

mented semantics does not agree with the dynamic semantics, e.g. the former does

not permit access to the state of a thread with a location generated by anoth-

er thread, while the latter semantics does). Finally, we derive type safety for the

dynamic semantics, namely the erasure of a well-typed term cannot cause a run-time

error.

Section 6 repeats the previous development for the original encapsulation con-

struct maintaining the simpler strict state semantics. This section confirms that our

methodology and proof technique are not tied to the new encapsulation construct

but could also be applied to the original runST construct, and are thus at least as

powerful as the reduction semantics approach used by Semmelroth & Sabry (1999).

Section 7 adapts the development to the more challenging problem of lazy state,

showing that the current methodology and proof technique apply even to problems

on which several previous approaches based on reduction semantics failed. Section 8

briefly discusses two language extensions beyond the minimal calculi presented in

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


594 E. Moggi and A. Sabry

the early sections. Finally, section 9 draws some conclusions and discusses related

and future work. Proof details are found in the appendices.

Notation. We summarize some conventions used throughout.

Notation 1.1 for untyped and higher-order λ-calculi:

• An overline, e.g. e, indicates a comma-separated sequence (of terms), and |e|
denotes its length.

• We write e(e) and λx.e for iterated application and abstraction respectively

(similar notation is also introduced for other binary constructs and binders,

e.g. τ→ τ, e[u], ΛX:K.e and ∀X:K.τ).

• Terms are treated up to α-conversion, and e[x: = e] stands for parallel substi-

tution with renaming of bound variables.

• Γ stands for a typing context, i.e. a sequence of variable declarations x: τ

(and X:K); we write x: τ for declaring several variables of the same type.

In a well-formed context a variable can be declared at most once, while an

arbitrary context can have multiple declarations of the same variable.

• Σ stands for a signature, i.e. a sequence of constant declarations c: τ (and

C:K). Well-formed signatures will not contain multiple declarations of the

same constant; we informally enforce this by requiring that any constant that

is to be added to a signature is ‘fresh’.

A constant is like a variable that cannot be bound. With some abuse of

notation (used only for constructor constants C in the instrumented semantics)

one can extend operations involving variables to constants, such as substitution

e[C: = u] and binding ΛC.e of a constant C .

Notation 1.2 related to BNF:

• We allow production schemes in BNF. Let #o be the arity of operation o. A

scheme, e.g. ‘o(e) with |e| 6 #o’, stands for a finite set of productions, i.e.

‘o(e1, . . . , en)’ with 0 6 n 6 #o.

• We write e /∈ BNF to say that a certain expression e is not in the set of

expressions defined by the BNF BNF . We use this notation mainly in side-

conditions. For instance, the rule
e1 =⇒ v

e1 e2 =⇒ err
v /∈ λx.e | run | o(e) with |e| < #o

says that ‘e1 e2 evaluates to err’, provided ‘e1 evaluates to a value v’ and v is

not among the values defined by the BNF ‘λx.e | run | o(e) with |e| < #o’.

2 Monadic encapsulation: introduction and examples

We recall some necessary background about monads and monadic state, and then

motivate the problem of monadic encapsulation and relate it to the more general

problem of encapsulation of effects.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 595

2.1 Programming with monads

In most programming languages, evaluation may have implicit side-effects that are

not predicted by the type of the expression. For example, if r is a global variable

holding a reference to an int, and Error is a global exception name, then the Ocaml

expression:

3 + !r + raise Error

has type int, which does not reflect the fact that the function reads the global

reference and raises a global exception. In fact evaluating the expression does not

return an int at all but rather raises the exception Error.

From their first introduction to the world of programming languages (Moggi,

1989; Moggi, 1991), monads were used to distinguish between values, whose evalua-

tion is pure, and computations, whose evaluation may have side-effects. The semantic

separation quickly led to a stratified programming style in which a pure functional

sublanguage is used to express the manipulation of values, and a monadic sublan-

guage is used to express the manipulation of computations (Wadler, 1992; Wadler,

1990). The interaction between the two sublanguages is mediated by the type system,

which keeps track of the computational effects and their propagation.

Hence, to write the above example in monadic style, one must expose the com-

putational effects. This can be done in almost any modern language, but Haskell

provides elegant mechanisms to do so. First, one defines a type that explicitly records

the fact that computations of that type depend on global locations and may raise

exceptions. For simplicity the following type assumes only one fixed global location

holding an Int. The dependency on a global location means that computations are

really functions that take the value of that location as an argument; the ability to

raise exceptions means that computations may either return a value or fail, which is

modeled with the Maybe type:

type Loc = Int

data GE a = GE (Loc -> Maybe a)

Given appropriate definitions to the operations deref and raise, our example at

the beginning of the section becomes:

do x1 <- return 3

x2 <- deref

x3 <- raise "Error"

return (x1+x2+x3)

The monadic expression looks more like an imperative program: sequencing and

termination of monadic evaluation are made explicit through do and return. The

expression no longer has type Int but rather has the type GE Int which clearly

exposes the dependency on the global location and the ability to raise exceptions,

and more accurately predicts the dynamic behavior of the expression.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


596 E. Moggi and A. Sabry

2.2 Monadic state

To integrate assignments into Haskell, Launchbury & Peyton Jones (1995) propose

to extend the Haskell runtime with a state monad. As one would expect, an

efficient implementation of the monad is not possible in the source (functional)

language, and hence must be provided as a primitive in the implementation. The

monad comes equipped with the type constructor ST, and several operations for

manipulating references, of which we focus on the following three: newSTRef,

readSTRef, and writeSTRef. Using these operations, many imperative algorithms

can be implemented naturally and without a loss of efficiency in Haskell. For our

purposes, we are mostly concerned with the types of the operations, and their

interaction with the operation runST discussed in the next section.

2.3 Encapsulation

One can argue that exposing the computational effects using monads has software

engineering as well as semantic benefits. However, without the ability to encapsulate

the computational effects, the monadic approach forces every effect to be propagated

to the top-level, and even worse, interferes with the modular decomposition of

programs. Hence it is desirable and even necessary to associate a construct run with

every monad to encapsulate the computational effects.

The problem of encapsulating effects is not unique to the monadic approach: it

has been studied in various contexts and is known to be quite subtle. The subtleties

are most visible in the case of the state monad ST where the encapsulation construct

is called runST. To gain some intuition about the problem, consider the following

Haskell term:

runST (runST (do x <- newSTRef 0

return (do _ <- return x

return 2)))

Operationally, the evaluation of the expression proceeds as follows. The first runST

creates an outer region in which its subexpression is evaluated. This subexpression

immediately establishes an inner region in which a reference to 0 is allocated and

bound to the name x, and returns a computation to be evaluated in the outer

region. Since all computational effects within the inner runST are supposed to be

encapsulated, the inner region is reclaimed at this point, so the computation:

do _ <- return x

return 2

must be performed in a context where x is a dangling pointer. Luckily, when executed,

this computation binds the dangling pointer to a dummy variable, and returns the

value 2.

The example shows that the straightforward typing of runST as ST a -> a is

unsound, since it would fail to reject terms that actually tried to use the dangling

pointer.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 597

In the history of programming languages, several approaches have been introduced

to keep track of the lifetimes of references as required above, starting with Reynolds’s

syntactic control of interference (1978), the imperative lambda calculus (Swarup

et al., 1991), lambda var (Odersky et al., 1993; Chen & Odersky, 1994; Rabin, 1996),

type-and-effect systems (Tofte, 1990; Talpin & Jouvelot, 1992b), coercions (Riecke,

1993; Riecke & Viswanathan, 1995), and region calculi (Tofte & Talpin, 1997) to

name a few. The multitude of proposals and the fact that some variants of these

proposals were initially unsound, witness the difficulty of the problem. Instead of

attempting to adapt any of these approaches directly to the monadic framework,

Launchbury & Peyton Jones (1995) proposed to achieve the same result with a

modest extension to the type system. State computations are given an additional

type parameter rho making the type of computations ST rho a. The type indicates

that the computation delivers a value of type a and that it occurs in a region

indexed by the type variable rho. The additional type variable is propagated by

every computation and stored in the types of references to keep track of the current

region. In that framework, runST can be given the following type:

runST : (forall rho. ST rho a) -> a

which intuitively says that the effects of the state computation can be encapsulated

if that computation makes no assumptions about the region in which it is evaluated.

This idea has been formalized in the context of a strict state monad in which the

monadic operations are performed as they are encountered. In the more complex

case of the lazy state monad, the correctness of the typing of runST was still an

open problem.

3 Dynamic semantics: run with strict state

We extend the pure untyped λ-calculus with a run-construct. Intuitively, when an

interpreter for the λ-calculus has to evaluate run e, it calls a monadic interpreter

which evaluates e applied to an internal implementation of the monadic operations,

and then evaluates the term returned by the monadic interpreter. The term e in run e

should be considered abstract code, since it abstracts from the implementation of

the monadic operations. One can envisage several monadic interpreters for the same

abstract code, which would differ in the implementation of the monadic operations.

To define the dynamic semantics for such a language, we introduce auxiliary

semantic domains and extend the syntax for terms with additional constants. The

relevant syntactic categories are:

• Names m, n ∈ N, e.g. natural numbers, for locations `m.

• Monadic operations o ∈ Op
def
= {ret , do, new , get , set} with arities defined as

follows:
monadic operation o ret do new get set

arity #o 1 2 1 1 2
Given an expression e that abstracts from the implementation of monadic

operations, we write e(Op) for applying e to the sequence of monadic opera-

tions in Op in the order listed above.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


598 E. Moggi and A. Sabry

Pure Evaluation

v =⇒ v
e1 =⇒ λx.e e[x: = e2] =⇒ v

e1 e2 =⇒ v

e1 =⇒ o(e)

e1 e2 =⇒ o(e, e2)
|e| < #o

e1 =⇒ run ∅, e2(Op) =⇒ µ, e e =⇒ v

e1 e2 =⇒ v

Monadic Evaluation

e =⇒ ret(e′)
µ, e =⇒ µ, e′

e =⇒ do(e0, e1) µ0, e0 =⇒ µ1, e
′
0 µ1, e1 e

′
0 =⇒ µ2, e

′

µ0, e =⇒ µ2, e
′

e =⇒ new (e0)

µ, e =⇒ µ{m = e0}, `m m /∈ dom(µ)

e =⇒ get(e0) e0 =⇒ `m

µ, e =⇒ µ, e′
e′ = µ(m)

e =⇒ set(e0, e1) e0 =⇒ `m

µ, e =⇒ µ{m = e1}, `m m ∈ dom(µ)

Pure and Monadic Run-Time Errors

The rules for error propagation follow the ML convention, those for error generation are:

e1 =⇒ v

e1 e2 =⇒ err
v /∈ λx.e | run | o(e) with |e| < #o

e =⇒ v

µ, e =⇒ err
v /∈ o(e) with |e| = #o

e =⇒ get(e0) e0 =⇒ v

µ, e =⇒ err
v /∈ Locµ

e =⇒ set(e0, e1) e0 =⇒ v

µ, e =⇒ err
v /∈ Locµ

Fig. 1. Evaluation rules for dynamic semantics (strict state, run).

• Constants c ∈ Const: : = run | o | `m.

• Terms e ∈ E: : = c | x | λx.e | e1 e2; we write E0 for the set of closed terms.

• Values v ∈ Val: : = λx.e | run | `m | o(e) with |e| 6 #o; we write Val0 for the

set of closed values.

• Stores µ ∈ S
def
= N

fin→ E0, i.e. partial maps from N to E0 with finite domain; we

write Locµ for the set {`m|m ∈ dom(µ)} of locations in µ.

• Descriptions d ∈ D: : = v | (µ, e) | err, i.e. possible outcomes of evaluation.

Remark 3.1 (About constants) run is the only constant allowed in user-defined

programs, while monadic operations o and locations `m are instrumental to the

dynamic semantics.

The dynamic semantics is given by two mutually recursive interpreters for closed

terms, which may also raise run-time errors. There are two evaluation judgments:

• e =⇒ v | err says that evaluation of e ∈ E0 by the pure interpreter returns

v ∈ Val0 (or raises an error);

• µ, e =⇒ µ′, e′ | err says that evaluation of e ∈ E0 in local store µ by the monadic

interpreter returns e′ ∈ E0 and a final store µ′ (or raises an error).

Figure 1 gives the evaluation rules for the dynamic semantics, which satisfies the

following basic property:

Proposition 3.2

µ, e =⇒ µ′, e′ implies dom(µ) ⊆ dom(µ′).

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 599

Remark 3.3 (About evaluation) On pure λ-terms pure evaluation coincides with

CBN evaluation. Pure evaluation treats locations `m as values (like nil for the empty

list) and monadic operations o as term-constructors (like cons). Monadic evaluation

proceeds much like evaluation for an imperative language, but sequencing and

termination of monadic evaluation are made explicit through do and ret . The

sequencing of monadic operations is strict in the sense that monadic operations

are immediately performed in the order they are encountered whether their effects

are needed or not. Moreover, monadic evaluation calls pure evaluation whenever it

needs the value of a term. The dynamic semantics is non-deterministic, since we do

not fix a deterministic strategy for choosing an m /∈ dom(µ). Finally, evaluation is

rather permissive:

• locations referring to a deallocated state can be returned as values, e.g.

run (λx.xnew 0) =⇒ `m where xnew is the variable in x which gets bound

to new and m can be any name;

• new can be implemented by a local name server, which does not require

communication with other threads, e.g. run (λx.xnew `m) =⇒ `n where n can

be any name (including m);

• there is no check on whether a location generated by a thread is used to

access the state of another, e.g. run (λy.ydo (ynew 1)(λ .yget (run (λx.xnew 0)))

may evaluate to 1 or err. The value 1 is returned when the name servers for

the two threads choose the same name, while the run-time error occurs if they

choose different names.

Despite these examples, the dynamic semantics behaves properly on well-typed

programs (as we will prove).

Remark 3.4 (Untyped run vs. runST ) Previous studies (Launchbury & Peyton Jones,

1995; Launchbury & Sabry, 1997; Semmelroth & Sabry, 1999) adopt a runST -

construct with a slightly different dynamic semantics (See Section 6):

e1 =⇒ runST ∅, e2 =⇒ µ, e e =⇒ v

e1 e2 =⇒ v

In an untyped language where Op can appear in user programs, the two constructs

are inter-definable as follows: run e ≡ runST (e(Op)) and runST e ≡ run (λx.e)

with x not free in e, but they are no longer inter-definable in the typed languages

introduced in the rest of the paper.

There are important trade-offs between our dynamic semantics and the reduction

semantics used previously (Launchbury & Sabry, 1997; Semmelroth & Sabry, 1999).

The latter introduce an auxiliary construct sto(µ, e) (or sto(µ, e)), which roughly

speaking corresponds to the configuration (µ, e) for our monadic interpreter. How-

ever, in sto(µ, e) the locations in µ are considered bound variables (while for us they

are constants), therefore one has that:

• reduction e −→ e′ has to be defined on open terms (and thus it is convenient

to identify terms modulo α-conversion), while our dynamic semantics is given

on closed terms;

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


600 E. Moggi and A. Sabry

Signatures and Contexts : Σ ` and Σ; Γ `
∅-Σ ∅ ` C-Σ

Σ `
Σ, C:K ` C fresh in Σ c-Σ

Σ; ∅ ` τ: ∗
Σ, c: τ ` c fresh in Σ

∅-Γ Σ `
Σ; ∅ ` X-Γ

Σ; Γ `
Σ; Γ, X:K ` X fresh in Γ x-Γ

Σ; Γ ` τ: ∗
Σ; Γ, x: τ ` x fresh in Γ

Constructors : Σ; Γ ` u:K
C

Σ; Γ `
Σ; Γ ` C:K

C:K ∈ Σ X
Σ; Γ `

Σ; Γ ` X:K
X:K ∈ Γ

Λ
Σ; Γ, X:K1 ` u:K2

Σ; Γ ` ΛX:K1.u: (K1 → K2)
app

Σ; Γ ` u1:K1 → K2 Σ; Γ ` u2:K1

Σ; Γ ` u1[u2]:K2

∀ Σ; Γ, X:K ` τ: ∗
Σ; Γ ` (∀X:K.τ): ∗ → Σ; Γ ` τ1: ∗ Σ; Γ ` τ2: ∗

Σ; Γ ` (τ1 → τ2): ∗
Terms : Σ; Γ ` e: τ

c
Σ; Γ `

Σ; Γ ` c: τ c: τ ∈ Σ x
Σ; Γ `

Σ; Γ ` x: τ
x: τ ∈ Γ conv

Σ; Γ ` e: τ1

Σ; Γ ` τ2: ∗
Σ; Γ ` e: τ2

τ1 =u
βη τ2

→I
Σ; Γ, x: τ1 ` e: τ2

Σ; Γ ` λx: τ1.e: (τ1 → τ2)
→E

Σ; Γ ` e1: (τ1 → τ2) Σ; Γ ` e2: τ1

Σ; Γ ` e1 e2: τ2

∀I Σ; Γ, X:K ` e: τ
Σ; Γ ` ΛX:K.e: (∀X:K.τ)

∀E Σ; Γ ` e: (∀X:K.τ) Σ; Γ ` u:K
Σ; Γ ` e[u]: τ[X: = u]

Fig. 2. Formation rules for type system.

• the reduction sto(µ, ret(e)) −→ e makes no sense when sto(µ, e) is a binder

(unless no locations in µ occur in e), so one has to postpone deallocation of

the local store (in a lazy state semantics there are other reasons why one must

postpone deallocation);

• the reduction sto(µ, do (new (e0)) e1) −→ sto(µ{m = e0}, e1 `m) is correct only

if (m /∈ dom(µ) and) `m is not free in e0, e1, and µ, so the name server has to

look at the whole term.

One can adapt the reduction semantics to provide a faithful account of store

deallocation, but other implementation details (e.g. name generation) are at a lower

level of abstraction. On the other hand, the reduction semantics is directly related to

sound equational reasoning.

4 Higher order lambda-calculus à la Church

We formalize the type system as a higher-order λ-calculus à la Church (Barendregt,

1991; Geuvers, 1993).

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 601

4.1 Syntax and formation rules

For convenience, we distinguish between constants (declared in signatures) and vari-

ables (declared in contexts). The type system uses the following syntactic categories:

• Constructor constants C ∈ CONST and constructor variables X ∈ VAR,

term constants c ∈ Const and term variables x ∈ Var; these sets are assumed

to be infinite and mutually disjoint.

• Kinds K ∈ K: : = ∗ | K1 → K2; ∗ is the kind of all types.

• Constructors u, τ ∈ U: : = C | X | τ1 → τ2 | ∀X:K.τ | ΛX:K.u | u1[u2]; we

write τ for a constructor that is expected to have kind ∗.
• Terms e ∈ E: : = c | x | λx: τ.e | e1 e2 | ΛX:K.e | e[u]
• Signatures Σ ∈ Sig: : = ∅ | Σ, C:K | Σ, c: τ ; we write Σ � Σ′ when Σ is a prefix

of Σ′.
• Contexts ∆,Γ ∈ Ctx: : = ∅ | Γ, X:K | Γ, x: τ.

Notation 4.1 There are several notions of reduction one may consider:

• (ΛX:K.u′)[u] −→u
β u
′[X: = u] and ΛX:K.u[X] −→u

η u when X /∈ FV(u)

• (ΛX:K.e)[u] −→∀β e[X: = u] and ΛX:K.e[X] −→∀η e when X /∈ FV(e)

• (λx: τ.e′) e −→e
β e
′[x: = e] and λx: τ.e x −→e

η e when x /∈ FV(e)

The only notion of reduction needed for defining the type system is −→u
βη , i.e. the

union of −→u
β and −→u

η . With some abuse of notation, we use the same notation

to refer to notions of reductions and their compatible closure. Moreover, we denote

with =u
βη the reflexive, symmetric and transitive closure of the reduction −→u

βη (and

similarly for other notions of reduction).

Figure 2 gives the rules of the type system for deriving judgments of the form:

• Σ `, i.e. Σ is a well-formed signature

• Σ; Γ `, i.e. Γ is a well-formed context

• Σ; Γ ` u:K , i.e. u is a well-formed constructor of kind K

• Σ; Γ ` e: τ, i.e. e is a well-formed term of type τ.

Appendix A summarizes some basic facts about the type system needed for later

developments in the paper.

4.2 Types for encapsulation

This section describes the type for run , which is the only constant allowed in user-

defined programs, and relates it to the type of the original runST encapsulation

construct (Launchbury & Peyton Jones, 1995) and to existential types (Mitchell &

Plotkin, 1988). We argue that the type of run is intuitive: it simply maps monadic

code to values. The type of run is however a new point in the design space of

type-based encapsulation mechanisms; it differs from abstract data types, existential

types, and the runST proposal.

For conciseness, we use the derived notation in figure 3 defined by induction on

the structure of a context ∆ or a sequence ρ, where sequences are given by the BNF

ρ, θ ∈ Seq: : = ∅ | u, ρ | e, ρ.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


602 E. Moggi and A. Sabry

∆ ∅ X:K ′, ∆′ x: τ′, ∆′
ρ ∅ u′, ρ′ e′, ρ′

Derived notation for:

kinds ∆→ K K K ′ → ∆′ → K ∆′ → K

constructors Λ∆.u u ΛX:K ′.Λ∆′.u Λ∆′.u
u(ρ) u u[u′](ρ′) u(ρ′)
∀∆.τ τ ∀X:K ′.∀∆′.τ τ′ → ∀∆′.τ

terms Λ∆.e e ΛX:K ′.Λ∆′.e λx: τ′.Λ∆′.e
e(ρ) e (e[u′])(ρ′) (e e′)(ρ′)

signatures

and contexts
ΠΓ.∆ ∅ X: Γ→ K ′, ΠΓ.∆′[X: = X(|Γ|)] x: ∀Γ.τ′, ΠΓ.∆′

sequences |∆| ∅ X, |∆′| x, |∆′|
λΓ.ρ ∅ ΛΓ.u′, λΓ.ρ′ ΛΓ.e′, λΓ.ρ′
ρ(θ) ∅ u′(θ), ρ′(θ) e′(θ), ρ′(θ)

The two top lines give the three cases of the inductive definitions of ∆ and ρ, while the

others introduce notation defined by induction on the structure of ∆ or ρ. For instance,

the first line in the second table defines ∆ → K (first entry) by cases on the inductive

definition of ∆, i.e.

∅ → K
def≡ K, (X:K ′, ∆′)→ K

def≡ K ′ → ∆′ → K and (x: τ′, ∆′)→ K
def≡ ∆′ → K.

Fig. 3. Derived notation.

Type of run. The signature Σrun for the constant run is:

run: ∀X: ∗.(∀ΓM.XM[X])→ X, where

ΓM ≡ XM,XR: ∗ → ∗,
xret : ∀X: ∗.X → XM[X],

xdo: ∀X,Y : ∗.XM[X]→ (X → XM[Y ])→ XM[Y ],

xnew : ∀X: ∗.X → XM[XR[X]],

xget : ∀X: ∗.XR[X]→ XM[X],

xset : ∀X: ∗.XR[X]→ X → XM[XR[X]]

A more appealing way of writing the type for run is ∀X: ∗.(M[X])→ X, where the

type constructor M is defined as M ≡ ΛX: ∗.∀ΓM.XM[X] : ∗ → ∗ . Intuitively

M[X] is the type of monadic code (in higher-order abstract syntax).

One can almost define an initial algebra for the specification ΓM . In second-

order λ-calculus one can represent initial algebras for algebraic specifications. For

instance, given the specification ΓN ≡ XN: ∗, xzero:XN, xsucc:XN → XN of the

natural numbers, one can define the type N ≡ ∀ΓN.XN (of Church’s numerals),

which has the structure of a weakly initial algebra (Reynolds & Plotkin, 1993). The

specification ΓM is not algebraic, but one can mimic the definition of the initial

algebra given by Reynolds & Plotkin (1993), except for the operation new (and set),

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 603

since the type ∀X: ∗.X →M[R[X]] of new has a nesting of M and R.

M ≡ ΛX: ∗.∀ΓM.XM[X] : ∗ → ∗
R ≡ ΛX: ∗.∀ΓM.XR[X] : ∗ → ∗

ret ≡ ΛX: ∗.λx:X.ΛΓM.xret [X](x) : ∀X: ∗.X →M[X]

new ≡ ???? : ∀X: ∗.X →M[R[X]]

get ≡ ΛX: ∗.λx:R[X].ΛΓM.xget [X] (x(|ΓM |)) : ∀X: ∗.R[X]→M[X]

Comparison with runST . It is easy to recast the original proposal of encapsula-

tion (Launchbury & Peyton Jones, 1995) in the higher-order λ-calculus, and thus

compare its expressiveness with that of our run . The type system of Launchbury &

Peyton Jones (1995) introduces several constants. If we write ΣM for ΓM viewed as a

signature (we write M in place of XM , etc.), then these constants are those declared

in:

Σ′M, runST : ∀X: ∗.(∀α: ∗.M[α,X])→ X where Σ′M
def≡ Πα: ∗.ΣM

(every constant in Σ′M takes an extra type parameter with respect to the correspond-

ing constant in ΣM). In the higher-order λ-calculus one can define our run in terms

of these constants:

run
def≡ ΛX: ∗. λx: (∀ΓM.XM[X]). runST [X] (Λα: ∗.x (|Σ′M | (α)))

In other words, run[X] x first specializes the monadic code x with the constants in

Σ′M applied to a generic type parameter α, i.e.

Σ′M; X: ∗, x: ∀ΓM.XM[X], α: ∗ ` x (|Σ′M | (α)):M[α,X] ,

then applies runST to the abstraction of the specialized code with respect to α. As

shown in Appendix C, this construction can be easily implemented in Haskell (using

the non-standard extensions for rank-2 polymorphism).

Remark 4.2 (Typed run vs. runST ) We conjecture that runST (and the other constants

in Σ′M) cannot be defined in terms of run . We advocate run in place of runST because

it avoids the ad hoc type parameter α, and thus it complies with standard monadic

programming style. Moreover, we have given an intuitive reading for the type of run

in terms of the definable type constructor for monadic code.

Comparison with existential types. With the notation of figure 3 one can define the

existential type ∃∆ as ∀X: ∗.(∀∆.X)→ X. Then the definition ∀X: ∗.(∀ΓM.X)→ X of

the existential type ∃ΓM is similar to the type ∀X: ∗.(∀ΓM.XM[X])→ X of run .

5 Instrumented semantics: run with strict state

The instrumented semantics is a refinement of the dynamic semantics of section 3

which uses terms of the type system à la Church described in section 4 instead of

untyped λ-terms. The instrumented semantics serves two technical purposes: to give

a more accurate description of improper program behavior, and to prove type safety

for the dynamic semantics. To transfer the type safety result from the instrumented

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


604 E. Moggi and A. Sabry

to the dynamic semantics, one has to establish a compatibility result linking dynamic

and instrumented semantics.

To define the instrumented semantics, we introduce auxiliary semantic domains

and syntactic categories. Most of them are analogues of those introduced for the

dynamic semantics, and are indicated by a superscript ?:

• Names r ∈ N for regions. Region names are used to index locations `r,m, the

monadic type-constructors Or , and the monadic operations or .

• Names m, n ∈ N for locations `r,m within a region.

• Names a ∈ N for constructor constants Ca created by evaluation of polymor-

phic terms (see Remark 5.1).

• Monadic type-constructors O ∈ OP
def
= {M,R}.

• Monadic operations o ∈ Op
def
= {ret , do, new , get , set} with the following arities:

monadic operation o ret do new get set

type-arity �o 1 2 1 1 1

term-arity #o 1 2 1 1 2
• Type- and term-constants, kinds, constructors and terms:

C : : = Ca | Or ; we write OPr for {Or|O ∈ OP}
c ∈ Const? : : = run | or | `r,m ; we write Opr for {or|o ∈ Op}

K : : = ∗ | K1 → K2

u : : = C | X | u1 → u2 | ∀X:K.u | ΛX:K.u | u1[u2]

e ∈ E? : : = c | x | λx: u.e | e1 e2 | ΛX:K.e | e[u]
• Values: v ∈ Val? : : = λx: u.e | run | run[u] | `r,m | or[u] with |u| < �o

| or[u](e) with |u| = �o and |e| 6 #o

• Stores µ ∈ S?
def
= N

fin→ E?0; we write Locr,µ for the set {`r,m|m ∈ dom(µ)}.
• Dynamic signatures Σ ∈ Sig: : = ∅ | Σ, C:K | Σ, c: u and

Static signatures ∆: : = ∅ | ∆, Ca:K .

Dynamic signatures keep track of the monadic type-constructors, operations,

and locations associated with each region. Static signatures keep track of the

polymorphism of terms. (See Remark 5.1.)

• Descriptions d ∈ D?: : = (∆|Σ; v) | (Σ; µ, e) | err.

Remark 5.1 (Polymorphism) The values in Val? do not include polymorphic terms

ΛX:K.e, and hence the instrumented semantics has to account for evaluation

under Λ. More specifically, to evaluate ΛX:K.e we replace X with a fresh type

constant Ca, and evaluate e[X: = Ca]. These type constants Ca and their kinds form

the static signatures ∆.

One can obtain a term in E from a term in E? by erasing types and regions.

Definition 5.2

Given e ∈ E? its erasure |e| ∈ E is defined by induction as

|run| = run |or| = o |`r,m| = `m |x| = x

|λx: u.e| = λx.|e| |e1 e2| = |e1| |e2| |ΛX:K.e| = |e[u]| = |e|

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 605

Pure Evaluation

∆|Σ; v =⇒ ∅|Σ; v
∆|Σ0; e1 =⇒ ∅|Σ1; λx: u.e ∆|Σ1; e[x: = e2] =⇒ ∆′|Σ2; v

∆|Σ0; e1 e2 =⇒ ∆′|Σ2; v

∆|Σ; e =⇒ ∅|Σ′; run

∆|Σ; e[u] =⇒ ∅|Σ′; run[u]

∆|Σ; e =⇒ ∅|Σ′; or[u]
∆|Σ; e[u] =⇒ ∅|Σ′; or[u, u] |u| < �o

∆|Σ; e1 =⇒ ∅|Σ′; or[u](e)
∆|Σ; e1 e2 =⇒ ∅|Σ′; or[u](e, e2)

|u| = �o ∧ |e| < #o

∆|Σ; e =⇒ Ca:K,∆
′|Σ′; v

∆|Σ; e[u] =⇒ ∆′|(Σ′; v)[Ca: = u]

∆, Ca:K|Σ; e[X: = Ca] =⇒ ∆′|Σ′; v
∆|Σ; ΛX:K.e =⇒ Ca:K,∆

′|Σ′; v a fresh

∆|Σ0; e1 =⇒ ∅|Σ1; run[u]

∆|Σ1 + Σop
r ; ∅, e2[OPr](Opr)

r
=⇒ Σ2; µ, e

∆|Σ2; e =⇒ ∆′|Σ3; v

∆|Σ0; e1 e2 =⇒ ∆′|Σ3; v
r fresh

where Σop
r

def≡ Mr, Rr: ∗ → ∗ ,

ret r: ∀X: ∗.X →Mr[X] ,

dor: ∀X,Y : ∗.Mr[X], (X →Mr[Y ])→Mr[Y ] ,

new r: ∀X: ∗.X →Mr[Rr[X]] ,

get r: ∀X: ∗.Rr[X]→Mr[X] ,

set r: ∀X: ∗.Rr[X], X →Mr[Rr[X]]

Monadic Evaluation

∆|Σ; e =⇒ ∅|Σ′; ret r[u](e
′)

∆|Σ; µ, e
r

=⇒ Σ′; µ, e′

∆|Σ0; e =⇒ ∅|Σ1; dor[u0, u1](e0, e1)

∆|Σ1; µ0, e0
r

=⇒ Σ2; µ1, e
′
0

∆|Σ2; µ1, e1 e
′
0

r
=⇒ Σ3; µ2, e

′

∆|Σ0; µ0, e
r

=⇒ Σ3; µ2, e
′

∆|Σ; e =⇒ ∅|Σ′; new r[u](e0)

∆|Σ; µ, e
r

=⇒ Σ′, `r,m:Rru; µ{m = e0}, `r,m
m /∈ dom(µ)

∆|Σ0; e =⇒ ∅|Σ1; get r[u](e0) ∆|Σ1; e0 =⇒ ∅|Σ2; `r,m

∆|Σ0; µ, e
r

=⇒ Σ2; µ, e′
e′ = µ(m)

∆|Σ0; e =⇒ ∅|Σ1; set r[u](e0, e1) ∆|Σ1; e0 =⇒ ∅|Σ2; `r,m

∆|Σ0; µ, e
r

=⇒ Σ2; µ{m = e1}, `r,m
m ∈ dom(µ)

Fig. 4. Evaluation rules for instrumented semantics I (strict state, run).

Erasure is extended to stores µ ∈ S? and descriptions d ∈ D? as follows

|µ|(m) = |µ(m)| |(∆|Σ; v)| = |v| |(Σ; µ, e)| = (|µ|, |e|) |err| = err

Proposition 5.3

Erasure satisfies the following properties:

• |e[X: = u]| = |e| and |e[x: = e′]| = |e|[x: = |e′|]
• v ∈ Val? implies |v| ∈ Val

• e −→u∀
βη e

′ implies |e| ≡ |e′|.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


606 E. Moggi and A. Sabry

Pure and Monadic Run-Time Errors

The rules for error propagation follow the ML convention, those for error generation are:

∆|Σ; e1 =⇒ ∆′|Σ′; v
∆|Σ; e1 e2 =⇒ err

∆′ 6≡ ∅ or

v /∈ λx: u.e | run[u] | or[u](e) with |u| = �o ∧ |e| < #o

∆|Σ; e =⇒ ∅|Σ′; v
∆|Σ; e[u] =⇒ err

v /∈ run | or[u] with |u| < �o

∆|Σ; e =⇒ ∆′|Σ′; v
∆|Σ; µ, e

r
=⇒ err

∆′ 6≡ ∅ ∨ v /∈ or[u](e) with |u| = �o ∧ |e| = #o

∆|Σ; e =⇒ ∅|Σ′; get r[u](e0) ∆|Σ′; e0 =⇒ ∆′|Σ′′; v
∆|Σ; µ, e

r
=⇒ err

∆′ 6≡ ∅ ∨ v /∈ Locr,µ

∆|Σ; e =⇒ ∅|Σ′; set r[u](e0, e1) ∆|Σ′; e0 =⇒ ∆′|Σ′′; v
∆|Σ; µ, e

r
=⇒ err

∆′ 6≡ ∅ ∨ v /∈ Locr,µ

Fig. 5. Evaluation rules for instrumented semantics II (strict state, run).

The instrumented semantics (like the dynamic one) is given in terms of two

mutually recursive interpreters, which evaluate closed terms and may raise run-time

errors:

• ∆|Σ; e =⇒ ∆′|Σ′; v | err says that evaluation of e ∈ E?0 by the pure interpreter

returns v ∈ Val?0 and extends the dynamic signature from Σ to Σ′ (or raises

an error); moreover, the polymorphism of e is made explicit by extending the

static signature ∆ to ∆′;
• ∆|Σ; µ, e

r
=⇒ Σ′; µ′, e′ | err says that evaluation of e ∈ E?0 in local store µ by

the monadic interpreter for region r returns e′ ∈ E?0, changes the store to µ′
and extends the dynamic signature from Σ to Σ′ (or raises an error).

Figures 4 and 5 give the evaluation rules for the instrumented semantics. Each rule

is either the counterpart of a rule for the dynamic semantics of figure 1, or is for

evaluating terms of the form e[u] and ΛX:K.e. The dynamic signature Σ keeps

track of the monadic constants and their regions. The rule for evaluating ΛX:K.e is

the one forcing the introduction of static signatures ∆ and ∆′. The pure interpreter

may evaluate under Λ but the monadic interpreter never evaluates under Λ which

avoids known problems with the combination of polymorphism and effects (Harper

& Lillibridge, 1993).

The following are basic properties of the instrumented semantics.

Proposition 5.4

• ∆|Σ; e =⇒ ∆′|Σ′; v implies Σ � Σ′

• ∆|Σ; µ, e
r

=⇒ Σ′; µ′, e′ implies Σ � Σ′ and dom(µ) ⊆ dom(µ′)
• ∆|Σ; e =⇒ ∆′|Σ′; v implies no Ca in ∆′ occurs in ∆|Σ.

The last clause is needed in the rule for evaluating polymorphic abstractions to

conclude that Σ is identical to Σ[Ca: = u].

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 607

5.1 Type safety and compatibility

We show that well-formed programs cannot go wrong, which amounts to proving

subject reduction for the instrumented semantics.

Notation 5.5 We introduce auxiliary definitions useful in stating type safety.

• ∆,Σ |= J
def⇐⇒ Σrun ,∆,Σ ` J and for all C:K and c: τ declared in Σ:

— C ≡Mr implies K ≡ ∗ → ∗
— C ≡ Rr implies K ≡ ∗ → ∗
— c ≡ ret r implies τ ≡ ∀X: ∗.X →Mr[X]

— c ≡ dor implies τ ≡ ∀X,Y : ∗.Mr[X], (X →Mr[Y ])→Mr[Y ]

— c ≡ new r implies τ ≡ ∀X: ∗.X →Mr[Rr[X]]

— c ≡ get r implies τ ≡ ∀X: ∗.Rr[X]→Mr[X]

— c ≡ set r implies τ ≡ ∀X: ∗.Rr[X], X →Mr[Rr[X]]

— c ≡ `r,m implies τ ≡ Rr[τ′] for some τ′

• RegΣ is the set of regions in Σ, i.e.

r ∈ RegΣ

def⇐⇒ at least one Or is declared in Σ.

• Locr,Σ is the set of locations of region r in Σ, i.e.

`r,m ∈ Locr,Σ
def⇐⇒ `r,m is declared in Σ.

• Σ ↪→ Σ′
def⇐⇒ Σ � Σ′ and ∀n ∈ RegΣ.Locn,Σ = Locn,Σ′ , i.e.

Σ′ extends Σ but the set of locations in pre-existing regions does not change.

• Σ
r
↪→ Σ′

def⇐⇒ Σ � Σ′ and ∀n ∈ RegΣ − {r}.Locn,Σ = Locn,Σ′ , i.e.

Σ′ extends Σ but the set of locations in pre-existing regions, except region r,

does not change.

• ∆,Σ |=r µ
def⇐⇒ ∆,Σ |= and Locr,µ = Locr,Σ and for all names m ∈ N

`r,m:Rr[τ] in Σ and e ≡ µ(m) imply ∆,Σ |= e: τ

To establish type safety one has to prove a much stronger result, which involves

in an essential way regions, namely pure evaluation does not add new locations to

pre-existing regions, while monadic evaluation can add new locations to the active

region r, but not to other pre-existing regions. However, both evaluations may add

new locations to newly generated regions.

Theorem 5.6 (Type Safety for Instrumented Semantics)

1. If ∆|Σ; e =⇒ d and ∆,Σ |= e: τ, then exist ∆′, Σ′, v and τ′ s.t.

d ≡ (∆′|Σ′; v) , τ =u
βη ∀∆′.τ′ , Σ ↪→ Σ′ and ∆,∆′,Σ′ |= v: τ′.

The type ∀∆′.τ′ is defined by induction on ∆′ (see figure 3), and by blurring

the distinction between constants and variables (see Notation 1.1).

2. If ∆|Σ; µ, e
r

=⇒ d , ∆,Σ |=r µ and ∆,Σ |= e:Mr[τ], then

exist Σ′, µ′ and e′ s.t. d ≡ (Σ′; µ′, e′), Σ
r
↪→ Σ′, ∆,Σ′ |=r µ

′ and ∆,Σ′ |= e′: τ.

Proof

By induction on the derivation of an evaluation judgment, and by applying the

generation lemma to the typing assumption. The details for some cases are given in

Appendix B. q

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


608 E. Moggi and A. Sabry

One expects the following relation (mediated by erasure) between the instrumented

and dynamic semantics: if e may evaluate to v, then |e| evaluates to |v|.
Theorem 5.7 (Erasure)

• ∆|Σ; e =⇒ ∆′|Σ; v implies |e| =⇒ |v|
• ∆|Σ; µ, e

r
=⇒ Σ′; µ′, e′ implies |µ|, |e| r

=⇒ |µ′|, |e′|
When e may raise an error, one cannot say anything about |e|. To prove type safety

for the dynamic semantics, the above result is useless. Instead, we need implications

in the opposite direction covering also the case of run-time error (in the dynamic

semantics), more precisely: if |e| may raise an error so does e, if |e| may evaluate to

v′, then e may evaluate to a compatible value or raise an error. This compatibility

result together with type safety for the instrumented semantics will immediately

imply type safety for the dynamic semantics via Corollary 5.9.

Theorem 5.8 (Compatibility)

For every ∆, Σ, e, µ, r and d′ the following implications hold:

• |e| =⇒ d′ implies exists d s.t. ∆|Σ; e =⇒ d and (d′ ≡ |d| or d ≡ err)

• |µ|, |e| =⇒ d′ implies exists d s.t. ∆|Σ; µ, e
r

=⇒ d and (d′ ≡ |d| or d ≡ err)

Proof

The implications are proved by lexicographic induction on the derivation of an

evaluation judgment |e| =⇒ d′ and |µ|, |e| =⇒ d′ for the dynamic semantics, and the

size of e and (µ, e). The details for some cases are given in Appendix B. q

Corollary 5.9 (Type Safety for Dynamic Semantics)

If Σrun ; ∅ ` e: τ and |e| =⇒ d′, then d′ 6≡ err.

Proof

The typing assumption on e is equivalent to ∅ |= e: τ. By compatibility we know

there exists a d s.t. ∅|∅; e =⇒ d and (d′ ≡ |d| or d ≡ err). By type safety for the

instrumented semantics we know that d 6≡ err, therefore d′ ≡ |d| 6≡ err. q

6 runST with strict state

We explain how to adapt the development of sections 3–5 to establish type safety

for a language with a strict state variant of the original state monad consisting of

runST , OP, and Op.

6.1 Dynamic semantics

The only change in the syntactic categories for the untyped language is in the names

of constants, the evaluation judgments are unchanged, and the evaluation rules (see

figure 6) are unchanged, except the rule for run , which has been replaced by the rule

for runST .

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 609

Pure Evaluation

e1 =⇒ runST ∅, e2 =⇒ µ, e e =⇒ v

e1 e2 =⇒ v

Monadic Evaluation

e =⇒ retST (e′)
µ, e =⇒ µ, e′

e =⇒ doST (e0, e1) µ0, e0 =⇒ µ1, e
′
0 µ1, e1 e

′
0 =⇒ µ2, e

′

µ0, e =⇒ µ2, e
′

e =⇒ newST (e0)

µ, e =⇒ µ{m = e0}, `m m /∈ dom(µ)

e =⇒ getST (e0) e0 =⇒ `m

µ, e =⇒ µ, e′
e′ = µ(m)

e =⇒ setST (e0, e1) e0 =⇒ `m

µ, e =⇒ µ{m = e1}, `m m ∈ dom(µ)

Pure and Monadic Run-Time Errors

The rules for error propagation follow the ML convention; those for error generation are:

e1 =⇒ v

e1 e2 =⇒ err
v /∈ λx.e | runST | o(e) with |e| < #o

e =⇒ v

µ, e =⇒ err
v /∈ o(e) with |e| = #o

e =⇒ getST (e0) e0 =⇒ v

µ, e =⇒ err
v /∈ Locµ

e =⇒ setST (e0, e1) e0 =⇒ v

µ, e =⇒ err
v /∈ Locµ

Fig. 6. Evaluation rules for dynamic semantics (strict state, runST).

• Names m, n ∈ N unchanged.

• Monadic operations o ∈ Op
def
= {retST , doST , newST , getST , setST } with the

following arities:
monadic operation o retST doST newST getST setST

arity #o 1 2 1 1 2

• Constants c ∈ Const: : = runST | o | `m.

• Terms e ∈ E: : = c | x | λx.e | e1 e2 unchanged.

• Values v ∈ Val: : = λx.e | runST | `m | o(e) with |e| 6 #o.

• Stores µ ∈ S unchanged.

• Descriptions d ∈ D unchanged.

Remark 6.1 (On constants) In this language runST and the monadic operations o are

allowed in user-defined programs, but locations `m are instrumental to the dynamic

semantics.

6.2 Types for encapsulation

This section gives the signature ΣrunST for the constants allowed in user-defined

programs, i.e. runST and the monadic type-constructors and operations. The kinds

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


610 E. Moggi and A. Sabry

and types of constants are those given by Launchbury & Peyton Jones (1995).

ST,Ref: ∗ → ∗ → ∗ ,

retST : ∀α,X: ∗.X → ST[α,X] ,

doST : ∀α,X, Y : ∗.ST[α,X]→ (X → ST[α, Y ])→ ST[α, Y ] ,

newST : ∀α,X: ∗.X → ST[α,Ref[α,X]] ,

getST : ∀α,X: ∗.Ref[α,X]→ ST[α,X] ,

setST : ∀α,X: ∗.Ref[α,X]→ X → ST[α,Ref[α,X]] ,

runST : ∀X: ∗.(∀α: ∗.ST[α,X])→ X

6.3 Instrumented semantics

In comparison to the language of section 5 the main change involves the constants,

in particular: monadic type-constructors and operations no longer have region anno-

tations, instead they take an extra type parameter, since region information is now

encoded by type-constants Vr; runST expects code abstracted over a region (encoded

as a type), instead of code abstracted with respect to the monadic operations.

• Names r ∈ N for the type encoding Vr of a region. Region names are used to

index locations `r,m.

• Names m, n ∈ N for locations `r,m within a region.

• Names a ∈ N for constructor constants Ca created by evaluation of polymor-

phic terms.

• Monadic type-constructors O ∈ OP
def
= {ST,Ref} for describing the types of

monadic computations and references.

• Monadic operations o ∈ Op
def
= {retST , doST , newST , getST , setST } with type-

arities and term-arities defined as follows:

monadic operation o retST doST newST getST setST

type-arity �o 2 3 2 2 2

term-arity #o 1 2 1 1 2

• Type-constants, term-constants, kinds, constructors and terms:

C ∈ CONST : : = Vr | Ca | O
c ∈ Const : : = runST | o | `r,m
K ∈ Kind : : = ∗ | K1 → K2

u ∈ U : : = C | X | u1 → u2 | ∀X:K.u | ΛX:K.u | u1[u2]

e ∈ E : : = c | x | λx: u.e | e1 e2 | ΛX:K.e | e[u]
are unchanged, except for constants C and c.

• Values:

v ∈ Val? : : = λx: u.e | runST | runST [u] | `r,m | o[u] with |u| < �o
| o[u](e) with |u| = �o and |e| 6 #o

• Stores µ ∈ S? are unchanged.

• Dynamic signatures Σ ∈ Sig and Static signatures ∆ are unchanged. But

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 611

Pure Evaluation

∆|Σ; v =⇒ ∅|Σ; v
∆|Σ0; e1 =⇒ ∅|Σ1; λx: u.e ∆|Σ1; e[x: = e2] =⇒ ∆′|Σ2; v

∆|Σ0; e1 e2 =⇒ ∆′|Σ2; v

∆|Σ; e =⇒ ∅|Σ′; runST

∆|Σ; e[u] =⇒ ∅|Σ′; runST [u]

∆|Σ; e =⇒ ∅|Σ′; or[u]
∆|Σ; e[u] =⇒ ∅|Σ′; or[u, u] |u| < �o

∆|Σ; e1 =⇒ ∅|Σ′; or[u](e)
∆|Σ; e1 e2 =⇒ ∅|Σ′; or[u](e, e2)

|u| = �o ∧ |e| < #o

∆|Σ; e =⇒ Ca:K,∆
′|Σ′; v

∆|Σ; e[u] =⇒ ∆′|(Σ′; v)[Ca: = u]

∆, Ca:K|Σ; e[X: = Ca] =⇒ ∆′|Σ′; v
∆|Σ; ΛX:K.e =⇒ Ca:K,∆

′|Σ′; v a fresh

∆|Σ0; e1 =⇒ ∅|Σ1; runST [u]

∆|Σ1, Vr: ∗; ∅, e2[Vr]
r

=⇒ Σ2; µ, e

∆|Σ2; e =⇒ ∆′|Σ3; v

∆|Σ0; e1 e2 =⇒ ∆′|Σ3; v
r fresh

Monadic Evaluation

∆|Σ; e =⇒ ∅|Σ′; retST [ur, u](e
′)

∆|Σ; µ, e
r

=⇒ Σ′; µ, e′
Vr =u

βη ur

∆|Σ0; e =⇒ ∅|Σ1; doST [ur, u0, u1](e0, e1)

∆|Σ1; µ0, e0
r

=⇒ Σ2; µ1, e
′
0

∆|Σ2; µ1, e1 e
′
0

r
=⇒ Σ3; µ2, e

′

∆|Σ0; µ0, e
r

=⇒ Σ3; µ2, e
′ Vr =u

βη ur

∆|Σ; e =⇒ ∅|Σ′; newST [ur, u](e0)

∆|Σ; µ, e
r

=⇒ Σ′, `r,m: Ref[Vr, u]; µ{m = e0}, `r,m
m /∈ dom(µ) ∧ Vr =u

βη ur

∆|Σ0; e =⇒ ∅|Σ1; getST [ur, u](e0)

∆|Σ1; e0 =⇒ ∅|Σ2; `r,m

∆|Σ0; µ, e
r

=⇒ Σ2; µ, e′
e′ = µ(m) ∧ Vr =u

βη ur

∆|Σ0; e =⇒ ∅|Σ1; setST [ur, u](e0, e1)

∆|Σ1; e0 =⇒ ∅|Σ2; `r,m

∆|Σ0; µ, e
r

=⇒ Σ2; µ{m = e1}, `r,m
m ∈ dom(µ) ∧ Vr =u

βη ur

Fig. 7. Evaluation rules for instrumented semantics I (strict state, runST).

dynamic signatures keep track of the type encoding of a region instead of the

types of the monadic operations associated with the region.

• Descriptions d ∈ D? unchanged.

Erasure | | is defined by analogy with Definition 5.2 and satisfies the same properties.

The evaluation judgments for the instrumented semantics are unchanged.

Figures 7 and 8 give the evaluation rules for the instrumented semantics. The

rules for pure evaluation are identical to the rules in figure 4 except for runST . The

rules for monadic evaluation are similar to the rules in figure 4: the differences are

that a monadic operation, like ret r , which was implicitly parameterized by a region

now takes an explicit type argument identifying the region, retST [ur]. Since region

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


612 E. Moggi and A. Sabry

Pure and Monadic Run-Time Errors

The rules for error propagation follow the ML convention, those for error generation are:

∆|Σ; e1 =⇒ ∆′|Σ′; v
∆|Σ; e1e2 =⇒ err

∆′ 6≡ ∅ or

v /∈ λx: u.e | runST [u] | o[u](e) with |u| = �o ∧ |e| < #o

∆|Σ; e =⇒ ∅|Σ′; v
∆|Σ; e[u] =⇒ err

v /∈ runST | o[u] with |u| < �o

∆|Σ; e =⇒ ∆′|Σ′; v
∆|Σ; µ, e

r
=⇒ err

∆′ 6≡ ∅ or

v /∈ o[ur, u](e) with ur =u
βη Vr ∧ 1 + |u| = �o ∧ |e| = #o

∆|Σ; e =⇒ ∅|Σ′; getST [ur, u](e0) ∆|Σ′; e0 =⇒ ∆′|Σ′′; v
∆|Σ; µ, e

r
=⇒ err

∆′ 6≡ ∅ ∨ v /∈ Locr,µ

∆|Σ; e =⇒ ∅|Σ′; setST [ur, u](e0, e1) ∆|Σ′; e0 =⇒ ∆′|Σ′′; v
∆|Σ; µ, e

r
=⇒ err

∆′ 6≡ ∅ ∨ v /∈ Locr,µ

Fig. 8. Evaluation rules for instrumented semantics II (strict state, runST).

information is now encoded in types, the check that the region names match in each

operation, is now in the side-condition Vr =u
βη ur .

6.4 Type safety and compatibility

The statements of the technical results are unchanged, but the auxiliary definitions

used for stating type safety have to be redefined.

Notation 6.2 The auxiliary definitions of Notation 5.5 are modified as follows:

• ∆,Σ |= J
def⇐⇒ ΣrunST ,∆,Σ ` J and for all C:K and c: τ declared in Σ:

— C ≡ Vr implies K ≡ ∗
— c ≡ `r,m implies τ ≡ Ref[Vr, τ

′] for some τ′

• RegΣ is the set of regions in Σ, i.e.

r ∈ RegΣ

def⇐⇒ Vr is declared in Σ.

• The definitions of Locr,Σ , Σ ↪→ Σ′ , Σ
r
↪→ Σ′ and ∆,Σ |=r µ are unchanged.

The statement of type safety for the instrumented semantics requires a minor

adjustment regarding the type of e in the second clause.

Theorem 6.3 (Type Safety for Instrumented Semantics)

1. If ∆|Σ; e =⇒ d and ∆,Σ |= e: τ, then exist ∆′, Σ′, v and τ′ s.t.

d ≡ (∆′|Σ′; v) , τ =u
βη ∀∆′.τ′ , Σ ↪→ Σ′ and ∆,∆′,Σ′ |= v: τ′.

2. If ∆|Σ; µ, e
r

=⇒ d , ∆,Σ |=r µ and ∆,Σ |= e: ST[Vr, τ], then

exist Σ′, µ′ and e′ s.t. d ≡ (Σ′; µ′, e′) , Σ
r
↪→ Σ′ , ∆,Σ′ |=r µ

′ and ∆,Σ′ |= e′: τ.

The statement of compatibility is unchanged. The statement of type safety for the

dynamic semantics reflects the change in the syntax, and more specifically in the

constants allowed in user-defined programs.

Corollary 6.4 (Type Safety for Dynamic Semantics)

If ΣrunST ; ∅ ` e: τ and |e| =⇒ d′, then d′ 6≡ err.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 613

7 run with lazy state

In this variant of the language pure evaluation is CBN and monadic evaluation

is lazy. This variant gives rise to lazy monadic state (Launchbury & Peyton Jones,

1994) and is significantly more complicated.

7.1 Dynamic semantics

Because of laziness of the monadic constants, commands are no longer performed

when they are first encountered. Instead, monadic evaluation immediately returns a

suspension which is treated as a first-class entity. The suspension may or may not

be forced as a result of the demand-driven evaluation mechanism. This scenario

is complicated by the fact that suspensions cannot be forced independently of

each other if the semantics is to maintain the (required) appearance of sequential

execution of the effects. In particular forcing a command that looks up the value

of a location should not be done without ensuring that all previous commands

that might set the location have also been forced. To realize this, suspensions are

maintained in lists of dependencies.

This is however not enough! Suspensions can be forced in two different ways

that have different semantics. Consider a chain of dependencies where suspension s3
depends on suspension s2 which in turn depends on suspension s1. Further consider

the case where s1 is the suspended monadic command set(`m, 0), s2 is the suspended

monadic command ret(5), and s3 is the suspended monadic command get(`m). If the

value of s2 is demanded during execution we can force s2 and immediately return

the value 5 without forcing s1 since the latter suspension cannot possibly affect the

returned value. However, if the value of s3 is demanded, then we must force s2 in a

more strict fashion than before, which also forces s1.

Hence for the dynamic semantics, a new category of suspensions is introduced. The

semantics still maintains a set of regions, one for each run-expression it encounters.

As before, locations have names `m which implicitly refer to the current region, and

hence the dynamic semantics is susceptible to the same pathological examples from

Remark 3.3 in which locations from different regions are confused. Suspensions can

be forced at any time, even within another region, and hence have global names

that includes their originating region.

More formally the syntax of the language, in comparison to that of section 3, is

defined as follows:

• Names r ∈ N for regions. Region names are used to index suspensions sr,p.

• Names m, n ∈ N for locations `m: the region in which the location is allocated

is implicit.

• Names p, q ∈ N for suspensions sr,p within a region.

• Monadic operations o ∈ Op
def
= {ret , do, new , get , set} and their arities are

unchanged.

• Constants c ∈ Const: : = run | o | `m | sr,p now include also suspensions.

• Terms e ∈ E: : = c | x | λx.e | e1 e2 are unchanged.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


614 E. Moggi and A. Sabry

Pure Evaluation

ξ, v =⇒ ξ, v
ξ, e1 =⇒ ξ′, λx.e ξ′, e[x: = e2] =⇒ d

ξ, e1 e2 =⇒ d

ξ
r,p

=⇒ ξ′, e′ ξ′, e′ =⇒ d

ξ, sr,p =⇒ d

ξ, e1 =⇒ ξ′, o(e)
ξ, e1 e2 =⇒ ξ′, o(e, e2)

|e| < #o

ξ, e1 =⇒ ξ′, run ξ′{r = (∅, ∅)}, e2(Op)
r,nil
=⇒ ξ′′, p ξ′′, sr,p =⇒ d

ξ, e1 e2 =⇒ d
r /∈ dom(ξ′)

Generation of Suspensions

ξ, e
r,k

=⇒ ξ(r).ρ{p = (e, c, k)}, p p /∈ dom(ξ(r).ρ)

Fig. 9. Evaluation rules for dynamic semantics I (lazy state, run).

Forcing of Suspensions

ξ
r,p

=⇒ ξ, e ξ(r).ρ(p) = (e, v, k)
ξ, e =⇒ ξ′, ret(e′)

ξ
r,p

=⇒ ξ′(r).ρ{p = (e′, v, k)}, e′
ξ(r).ρ(p) = (e, c, k)

ξ, e =⇒ ξ′, do(e0, e1)

ξ′, e0

r,k
=⇒ ξ′′, q

ξ′′(r).ρ{p = (e1 sr,q , c, q)} r,p
=⇒ d

ξ
r,p

=⇒ d
ξ(r).ρ(p) = (e, c, k)

ξ, e =⇒ ξ′, new (e0) ξ′
r,k

=⇒s ξ
′′

ξ
r,p

=⇒ ξ′′(r).µ{m = e0}.ρ{p = (`m, v, nil )}, `m
ξ(r).ρ(p) = (e, c, k) ∧ m /∈ dom(ξ′′(r).µ)

ξ, e =⇒ ξ′, get(e0)

ξ′
r,k

=⇒s ξ
′′

ξ′′, e0 =⇒ ξ′′′, `m
ξ

r,p
=⇒ ξ′′′(r).ρ{p = (e′, v, nil )}, e′

ξ(r).ρ(p) = (e, c, k) ∧ e′ = ξ′′′(r).µ(m)

ξ, e =⇒ ξ′, set(e0, e1) ξ′
r,k

=⇒s ξ
′′ ξ′′, e0 =⇒ ξ′′′, `m

ξ
r,p

=⇒ ξ′′′(r).µ{m = e1}.ρ{p = (`m, v, nil )}, `m
ξ(r).ρ(p) = (e, c, k)

Strict Forcing of Suspensions

ξ
r,nil
=⇒s ξ

ξ
r,p

=⇒ ξ′, ξ′
r,k

=⇒s ξ
′′

ξ
r,p

=⇒s ξ
′′(r).ρ{p = (e, v, nil )}

ξ′(r).ρ(p) = (e, v, k)

Fig. 10. Evaluation rules for dynamic semantics II (lazy state, run).

• Values v ∈ Val: : = λx.e | run | `m | o(e) with |e| 6 #o are unchanged;

note that suspensions are not values.

• Stores µ ∈ S
def
= N

fin→ E0 are unchanged.

• Suspension lists ρ ∈ P
def
= N

fin→ (E0 × {v, c} × (nil + N)) of suspended compu-

tations. The tag v or c distinguishes between suspensions whose effects have

been performed and those that have not. The tag from the set (nil +N) specifies

a possible dependency on another suspension: nil means no dependency, and

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 615

Run-Time Errors

The rules for error propagation follow the ML convention, those for error generation are:

ξ, e1 =⇒ ξ′, v
ξ, e1 e2 =⇒ err

v /∈ λx.e | run | o(e) with |e| < #o

ξ, e
r,k

=⇒ err r /∈ dom(ξ)

ξ
r,p

=⇒ err r /∈ dom(ξ) ∨ p /∈ dom(ξ(r).ρ)

ξ, e =⇒ ξ′, v

ξ
r,p

=⇒ err
ξ(r).ρ(p) = (e, c, k) ∧ v /∈ o(e) with |e| = #o

ξ, e =⇒ ξ′, get(e0) ξ′
r,k

=⇒s ξ
′′ ξ′′, e0 =⇒ ξ′′′, v

ξ
r,p

=⇒ err
ξ(r).ρ(p) = (e, c, k) ∧ v /∈ Locξ′′′(r).µ

ξ, e =⇒ ξ′, set(e0, e1)

ξ′
r,k

=⇒s ξ
′′

ξ′′, e0 =⇒ ξ′′′, v

ξ
r,p

=⇒ err
ξ(r).ρ(p) = (e, c, k) ∧ v /∈ Locξ′′′(r).µ

ξ
r,p

=⇒ ξ′,

ξ
r,p

=⇒s err
r /∈ dom(ξ′) ∨ p /∈ dom(ξ′(r).ρ) ∨ ξ′(r).ρ(p) 6= (e, v, k)

Fig. 11. Evaluation rules for dynamic semantics III (lazy state, run).

a name p means a dependency on suspension sr,p in the current region r. Note

that the effect of a suspension may have been performed (if it is a trivial effect

like ret) without having necessarily forced the effects of the suspensions on

which it depends.

• Regions ξ ∈ ST
def
= N

fin→ (S × P) consist of a store and a suspension list; we

write ξ(r).µ and ξ(r).ρ for the two components of the region indexed by r.

• Descriptions d ∈ D: : = (ξ, e) | (ξ, p) | ξ | err.

The pure and monadic interpreters are more tightly coupled than in the strict case;

in fact ξ gets threaded. There are three evaluation judgments: the pure evaluator is

much like before, but the monadic evaluator has been split in three parts: one part

generates suspensions, and the others force those suspensions to various degrees

depending on the kind of demand.

• ξ, e =⇒ ξ′, v | err for pure CBN evaluation;

• ξ, e r,k
=⇒ ξ′, p | err for lazy monadic evaluation which simply generates suspen-

sions: r is the index of the current region and k ∈ N + {nil} is the index of the

suspension (within region r) on which the current command e may depend;

the result is the name of a suspension for the current command.

• ξ r,p
=⇒ ξ′, e | err for forcing evaluation (and updating) of the suspension p within

region r. If evaluation does not require the store, then some of the suspensions

on which suspension p depends may not be forced. The dependencies among

suspensions are maintained in case a later suspension requires the store.

• ξ r,k
=⇒s ξ

′ | err, where k is either nil or a the name of a suspension p. This

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


616 E. Moggi and A. Sabry

forces strict evaluation (and updating) a suspension p within region r, i.e. the

suspension and anything on which it depends is forced. This mode is entered

whenever a command requires access to the store.

Figures 9, 10 and 11 give the evaluation rules for the dynamic semantics. An example

that illustrates much of the subtleties of the semantics is the following:

run (\ ret do new get set ->

let omega = omega -- shortand for any diverging computation

in do omega (\ _ ->

do (ret (\ x -> get x)) (\ f ->

do (new 5) (\ a ->

f a))))

The term consists of a run-expression whose body consists of a sequence of monadic

operations. The first operation refers to an incalculable monadic operation omega;

the second operation is also unusual in the sense that it returns a function that

when invoked, returns another monadic operation. The evaluation of this example,

immediately builds a suspension which contains all the monadic operations, and

then forces the suspension lazily since there is no demand for the store from the pure

evaluator. Forcing the value of the suspension, creates a linked list of suspensions

for the first three operations, and then attempts to evaluate the call (f a). The

reference to f forces the corresponding suspension which immediately returns the

function (\x -> get x) without forcing the suspension for omega on which it

depends. This is clearly the right behavior since only the value of f is needed.

However the application of f requires the execution of (get a) which requires that

all the monadic operations that might assign to a be forced. During this second

forcing the suspension for f is re-visited and this time, forcing it also forces the

suspension for omega, which makes the whole program diverge.

7.2 Instrumented semantics

To define the instrumented semantics, we extend the syntax of section 7.1 with type

information in a way that mirrors the transition from section 3 to section 5. In

comparison to the language of section 5, the syntax is defined as follows:

• Names r ∈ N for regions. Region names are used to index locations `r,m,

suspensions sr,p, monadic type-constructors Or , and monadic operations or .

• Names m, n ∈ N for locations `r,m within a region.

• Names a ∈ N for constructor constants Ca created by evaluation of polymor-

phic terms.

• Names p, q ∈ N for suspensions sr,p within a region.

• Monadic type-constructors O ∈ OP
def
= {M,R} are unchanged.

• Monadic operations o ∈ Op
def
= {ret , do, new , get , set} and their arities are

unchanged.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 617

Pure Evaluation

∆|Σ; ξ, v =⇒ ∅|Σ; ξ, v

∆|Σ0; ξ0, e1 =⇒ ∅|Σ1; ξ1, λx: u.e

∆|Σ1; ξ1, e[x: = e2] =⇒ ∆′|Σ2; ξ2, v

∆|Σ0; ξ0, e1 e2 =⇒ ∆′|Σ2; ξ2, v

∆|Σ; ξ, e =⇒ ∅|Σ′; ξ′, run

∆|Σ; ξ, e[u] =⇒ ∅|Σ′; ξ′, run[u]

∆|Σ; ξ, e =⇒ ∅|Σ′; ξ′, or[u]
∆|Σ; ξ, e[u] =⇒ ∅|Σ′; ξ′, or[u, u] |u| < �o

∆|Σ; ξ, e1 =⇒ ∅|Σ′; ξ′, or[u](e)
∆|Σ; ξ, e1 e2 =⇒ ∅|Σ′; ξ′, or[u](e, e2)

|u| = �o ∧ |e| < #o

∆|Σ; ξ, e =⇒ Ca:K,∆
′|Σ′; ξ′, v

∆|Σ; ξ, e[u] =⇒ ∆′|(Σ′; ξ′, v)[Ca: = u]

∆, Ca:K|Σ; ξ, e[X: = Ca] =⇒ ∆′|Σ′; ξ′, v
∆|Σ; ξ,ΛX:K.e =⇒ Ca:K,∆

′|Σ′; ξ′, v a fresh

∆|Σ0; ξ0

r,p
=⇒ Σ1; ξ1, e ∆|Σ1; ξ1, e =⇒ ∆′|Σ2; ξ2, v

∆|Σ0; ξ0, sr,p =⇒ ∆′|Σ2; ξ2, v

∆|Σ0; ξ0, e1 =⇒ ∅|Σ1; ξ1, run[u]

∆|Σ1 + Σop
r ; ξ1{r = (∅, ∅)}, e2[OPr](Opr)

r,nil ,u
=⇒ Σ2; ξ2, p

∆|Σ2; ξ2, sr,p =⇒ ∆′|Σ3; ξ3, v

∆|Σ0; ξ0, e1 e2 =⇒ ∆′|Σ3; ξ3, v
r fresh, Σop

r as in Figure 4

Generation of Suspensions

∆|Σ; ξ, e
r,k,u
=⇒ Σ, sr,p: u; ξ(r).ρ{p = (e, c, k)}, p p /∈ dom(ξ(r).ρ)

Fig. 12. Evaluation rules for instrumented semantics I (lazy state, run).

• Type- and term-constants, kinds, constructors and terms:

C : : = Ca | Or
c ∈ Const? : : = run | or | `r,m | sr,p

K : : = ∗ | K1 → K2

u : : = C | X | u1 → u2 | ∀X:K.u | ΛX:K.u | u1[u2]

e ∈ E? : : = c | x | λx: u.e | e1 e2 | ΛX:K.e | e[u]
are unchanged, excepts Const? which now include also suspensions.

• Values: v ∈ Val? are unchanged.

• Stores µ ∈ S?
def
= N

fin→ E?0 are unchanged.

• Suspension lists ρ ∈ P?
def
= N

fin→ (E?0 × {v, c} × (nil + N)) and

regions ξ ∈ ST?
def
= N

fin→ (S? × P?) mimic those for the dynamic semantics;

we write Locr,ξ for the set {`r,m|m ∈ dom(ξ(r).µ)} and Suspr,ξ for the set

{sr,p|p ∈ dom(ξ(r).ρ)}.
• Dynamic signatures: Σ ∈ Sig: : = ∅ | Σ, C:K | Σ, c: u and

Static signatures ∆: : = ∅ | ∆, Ca:K are unchanged.

• Descriptions: d ∈ D?: : = (∆|Σ; ξ; v) | (Σ; ξ, p) | (Σ; ξ, e) | (Σ; ξ) | err.

Erasure | | is defined by analogy with Definition 5.2, in particular |sr,p| = sr,p, and it

satisfies the same properties.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


618 E. Moggi and A. Sabry

Forcing of Suspensions

∆|Σ; ξ
r,p

=⇒ Σ; ξ, e ξ(r).ρ(p) = (e, v, k)

∆|Σ; ξ, e =⇒ ∅|Σ′; ξ′, ret r[u](e
′)

∆|Σ; ξ
r,p

=⇒ Σ′; ξ′(r).ρ{p = (e′, v, k)}, e′
ξ(r).ρ(p) = (e, c, k)

∆|Σ0; ξ, e =⇒ ∅|Σ1; ξ′, dor[u, u1](e0, e1)

∆|Σ1; ξ′, e0

r,k,u
=⇒ Σ2; ξ′′, q

∆|Σ2; ξ′′(r).ρ{p = (e1 sr,q , c, q)} r,p
=⇒ d

∆|Σ0; ξ
r,p

=⇒ d
ξ(r).ρ(p) = (e, c, k)

∆|Σ0; ξ, e =⇒ ∅|Σ1; ξ′, new r[u](e0)

∆|Σ1; ξ′
r,k

=⇒s Σ2; ξ′′
ξ′′′ = ξ′′(r).µ{m = e0}.ρ{p = (`r,m, v, nil )}

∆|Σ0; ξ
r,p

=⇒ Σ2, `r,m:Rru; ξ
′′′, `r,m

ξ(r).ρ(p) = (e, c, k) ∧
m /∈ dom(ξ′′(r).µ)

∆|Σ0; ξ, e =⇒ ∅|Σ1; ξ′, get r[u](e0)

∆|Σ1; ξ′
r,k

=⇒s Σ2; ξ′′
∆|Σ2; ξ′′, e0 =⇒ ∅|Σ3; ξ′′′, `r,m

∆|Σ0; ξ
r,p

=⇒ Σ3; ξ′′′(r).ρ{p = (e′, v, nil )}, e′
ξ(r).ρ(p) = (e, c, k) ∧ e′ = ξ′′′(r).µ(m)

∆|Σ0; ξ, e =⇒ ∅|Σ1; ξ′, set r[u](e0, e1)

∆|Σ1; ξ′
r,k

=⇒s Σ2; ξ′′
∆|Σ2; ξ′′, e0 =⇒ ∅|Σ3; ξ′′′, `r,m

∆|Σ0; ξ
r,p

=⇒ Σ3; ξ′′′(r).µ{m = e1}.ρ{p = (`r,m, v, nil )}, `r,m
ξ(r).ρ(p) = (e, c, k)

Strict Forcing of Suspensions

∆|Σ; ξ
r,nil
=⇒s Σ; ξ

∆|Σ0; ξ
r,p

=⇒ Σ1; ξ′,

∆|Σ1; ξ′
r,k

=⇒s Σ2; ξ′′

∆|Σ0; ξ
r,p

=⇒s Σ2; ξ′′(r).ρ{p = (e, v, nil )}
ξ′(r).ρ(p) = (e, v, k)

Fig. 13. Evaluation rules for instrumented semantics II (lazy state, run).

The instrumented semantics, like the dynamic semantics, is given in terms of four

mutually recursive interpreters. The evaluation judgments are:

• ∆|Σ; ξ, e =⇒ ∆′|Σ′; ξ′, v | err for pure CBN evaluation;

• ∆|Σ; ξ, e
r,k,u
=⇒ Σ′; ξ′, p | err for lazy monadic evaluation which generates suspen-

sions; the evaluation judgment takes an additional parameter u which is the

type of the suspension to generate. The type is used to augment the dynamic

signature.

• ∆|Σ; ξ
r,p

=⇒ Σ′; ξ′, e′ | err for forcing evaluation of suspension p within region r.

• ∆|Σ; ξ
r,k

=⇒s Σ′; ξ′ | err where k is either nil or the name of a suspension p.

This forces strict evaluation of the suspension sr,p and everything on which it

depends.

Note that the result of lazy monadic evaluation or evaluation of a suspension is never

polymorphic. Figures 12, 13 and 14 give the rules for the instrumented semantics.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 619

Run-Time Errors

The rules for error propagation follow the ML convention, those for error generation are:

∆|Σ; ξ, e1 =⇒ ∆′|Σ′; ξ′, v
∆|Σ; ξ, e1 e2 =⇒ err

∆′ 6≡ ∅ or

v /∈ λx: u.e | run[u] | or[u](e) with |u| = �o ∧ |e| < #o

∆|Σ; ξ, e =⇒ ∅|Σ′; ξ′, v
∆|Σ; ξ, e[u] =⇒ err

v /∈ run | or[u] with |u| < �o

∆|Σ; ξ, e
r,k,u
=⇒ err if r /∈ dom(ξ)

∆|Σ; ξ
r,p

=⇒ err if r 6∈ dom(ξ) ∨ p /∈ dom(ξ(r).ρ)

∆|Σ; ξ, e =⇒ ∆′|Σ′; ξ′, v
∆|Σ; ξ

r,p
=⇒ err

ξ(r).ρ(p) = (e, c, k) and

(∆′ 6≡ ∅ or v /∈ or[u](e) with |u| = �o ∧ |e| = #o)

∆|Σ; ξ, e =⇒ ∅|Σ′; ξ′, get r[u](e0)

∆|Σ′; ξ′ r,k
=⇒s Σ′′; ξ′′

∆|Σ′′; ξ′′, e0 =⇒ ∆′|Σ′′′; ξ′′′, v
∆|Σ; ξ

r,p
=⇒ err

ξ(r).ρ(p) = (e, c, k) ∧ (∆′ 6≡ ∅ ∨ v /∈ Locr,ξ′′′ )

∆|Σ; ξ, e =⇒ ∅|Σ′; ξ′, set r[u](e0, e1)

∆|Σ′; ξ′ r,k
=⇒s Σ′′; ξ′′

∆|Σ′′; ξ′′, e0 =⇒ ∆′|Σ′′′; ξ′′′, v
∆|Σ; ξ

r,p
=⇒ err

ξ(r).ρ(p) = (e, c, k) ∧ (∆′ 6≡ ∅ ∨ v /∈ Locr,ξ′′′ )

∆|Σ; ξ
r,p

=⇒ Σ′; ξ′,

∆|Σ; ξ
r,p

=⇒s err
r /∈ dom(ξ′) ∨ p /∈ dom(ξ′(r).ρ) ∨ ξ′(r).ρ(p) 6= (e, v, k)

Fig. 14. Evaluation rules for instrumented semantics III (lazy state, run).

7.3 Type safety and compatibility

We show that well-formed programs cannot go wrong, which amounts to proving

subject reduction for the instrumented semantics.

Notation 7.1 The auxiliary definitions of Notation 5.5 are modified as follows:

The definition of ∆,Σ |= J has an extra case for c: τ, i.e. c ≡ sr,p, but then τ

can be any type.

• The definitions of RegΣ and Locr,Σ are unchanged.

• Suspr,Σ is the set of suspensions of region r in Σ, i.e.

m ∈ Suspr,Σ
def⇐⇒ sr,p is declared in Σ.

• ∆,Σ |= ξ
def⇐⇒ ∆,Σ |= and RegΣ = dom(ξ) and for all names r, m ∈ N:

— Locr,Σ = Locr,ξ and Suspr,Σ = Suspr,ξ
— `r,m:Rr[τ] in Σ and e ≡ ξ(r).µ(m) imply ∆,Σ |= e: τ

— sr,p: τ in Σ and ξ(r).ρ(m) ≡ (e, c, nil ) imply ∆,Σ |= e:Mr[τ]

— sr,p: τ in Σ and ξ(r).ρ(m) ≡ (e, v, nil ) imply ∆,Σ |= e: τ

— sr,p: τ in Σ and ξ(r).ρ(m) ≡ (e, c, q) imply ∆,Σ |= e:Mr[τ] and sr,q ∈ Suspr,Σ
— sr,p: τ in Σ and ξ(r).ρ(m) ≡ (e, v, q) imply ∆,Σ |= e: τ and sr,q ∈ Suspr,Σ

In the statement of type safety for the instrumented semantics with lazy state the

signatures Σ and Σ′ before and after evaluation are related only by prefixing Σ � Σ′.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


620 E. Moggi and A. Sabry

Indeed, the more constrained relations Σ ↪→ Σ′ and Σ
r
↪→ Σ′ (which hold for the

instrumented semantics with strict state) are false.

Theorem 7.2 (Type Safety for Instrumented Semantics)

1. If ∆|Σ; ξ, e =⇒ d , ∆,Σ |= ξ and ∆,Σ |= e: τ,

then exist ∆′, Σ′, ξ′, v and τ′ s.t.

d ≡ (∆′|Σ′; ξ′, v) , τ =u
βη ∀∆′.τ′ , Σ � Σ′ , ∆,∆′,Σ′ |= ξ′ and ∆,∆′,Σ′ |= v: τ′

2. If ∆|Σ; ξ, e
r,k,u
=⇒ d , ∆,Σ |= ξ and ∆,Σ |= e:Mr[u], and (k = nil or sr,k ∈ Suspr,Σ),

then exist Σ′, ξ′ and p s.t.

d ≡ (Σ′; ξ′, p) , Σ � Σ′ , ∆,Σ′ |= ξ′ and ∆,Σ′ |= sr,p: u

3. If ∆|Σ; ξ
r,p

=⇒ d , ∆,Σ |= ξ , ∆,Σ |= sr,p: τ,

then exist Σ′, ξ′, e′ and k s.t.

d ≡ (Σ′; ξ′, e′) , Σ � Σ′ , ∆,Σ′ |= ξ′ and ξ′(r).ρ(p) = (e′, v, k)
4. If ∆|Σ; ξ

r,k
=⇒s d , ∆,Σ |= ξ , ∆,Σ |= sr,p: τ, and (k = nil or sr,k ∈ Suspr,Σ),

then exist Σ′ and ξ′ s.t.

d ≡ (Σ′; ξ′) , Σ � Σ′ , ∆,Σ′ |= ξ′

Compatibility has to be reformulated to account for the more complex evaluation

judgments, but the basic intuition is unchanged, i.e. if an error may occur in the

dynamic semantics, then it may also occur in the instrumented semantics.

Theorem 7.3 (Compatibility)

For every ∆, Σ, e, ξ, r, p, k, u, and d′ the following implications hold:

• |ξ|, |e| =⇒ d′ implies exists d s.t. ∆|Σ; ξ, e =⇒ d and (d′ ≡ |d| or d ≡ err)

• |ξ|, |e| r,k
=⇒ d′ implies exists d s.t. ∆|Σ; ξ, e

r,k,u
=⇒ d and (d′ ≡ |d| or d ≡ err)

• |ξ| r,p
=⇒ d′ implies exists d s.t. ∆|Σ; ξ

r,p
=⇒ d and (d′ ≡ |d| or d ≡ err)

• |ξ| r,k
=⇒s d

′ implies exists d s.t. ∆|Σ; ξ
r,k

=⇒s d and (d′ ≡ |d| or d ≡ err)

Type safety for the dynamic semantics is about the same set of user-defined

programs considered in Corollary 5.9, but the dynamic semantics has changed.

Corollary 7.4 (Type Safety for Dynamic Semantics)

If Σrun ; ∅ ` e: τ and ∅, |e| =⇒ d′, then d′ 6≡ err.

8 Extensions

We discuss how to extend the dynamic semantics of section 3 with a fix-point

operation fix and a test for equality of locations eq . We do not consider the

extensions in the context of instrumented semantics or lazy state. We view these

extensions as interesting (though unproblematic) for the following reasons:

• fix is independent of the run-construct (like many extensions one can envisage);

• eq is a peculiar operation, in fact its type involves the type constructor for

locations (and, like the monadic operations, it is passed as a parameter to

abstract code), but its result type does not involve the type constructor for

computational types (and so it is evaluated by the pure interpreter).

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 621

e1 =⇒ run

∅, e2(Op, eq) =⇒ µ, e

e =⇒ v

e1 e2 =⇒ v

e1 =⇒ fix

e2 (fix e2) =⇒ v

e1 e2 =⇒ v

e =⇒ eq

e e0 =⇒ eq e0

e =⇒ eq e0

e0 =⇒ `m
e1 =⇒ `m

e e1 =⇒ λx, y.x

e =⇒ eq e0

e0 =⇒ `m
e1 =⇒ `n

e e1 =⇒ λx, y.y
m 6= n

e =⇒ eq e0

ei =⇒ vi

e e1 =⇒ err
vi /∈ Loc

Fig. 15. Additional evaluation rules in the presence of fix and eq .

The changes to the syntactic categories are as follows:

• Constants c ∈ Const: : = run | fix | eq | o | `m, i.e. we have added two new

constants; we write Loc for the set {`m|m ∈ N} of locations.

• Terms e ∈ E: : = c | x | λx.e | e1 e2

• Values v ∈ Val: : = λx.e | run | fix | eq | eq e | `m | o(e) with |e| 6 #o.

Figure 15 gives the additional evaluation rules, and the modified rule for run . Only

fix would be allowed in user-defined programs.

9 Conclusions and related work

In this section we discuss what we have done, also in the light of related work, and

point out possible future developments.

• CBV, CBN and lazy semantics. We have adopted a CBN semantics for the

pure interpreter following two previous studies (Launchbury & Peyton Jones,

1995; Launchbury & Sabry, 1997), while another study (Semmelroth & Sabry,

1999) adopts a CBV semantics. Technically speaking, it does not make much

of a difference if the pure interpreter adopts CBN or CBV.

However, CBN is inefficient, so it would be interesting to adopt a lazy seman-

tics for the pure interpreter, and then prove that it would induce the same

observational congruence ≈ of the pure CBN interpreter.

• Effect Masking. Semmelroth & Sabry (1999) show that runST implements a

cheap form of effect masking (Lucassen & Gifford, 1988; Talpin & Jouvelot,

1992a). More precisely they give a translation from a type system with effects

and regions (EML) to one with runST (MML). The result is related to the

relation between effects and monads established by Wadler (1998).

It seems plausible that the translation given by Semmelroth & Sabry (1999)

can be adapted so that the target language (MML) uses our run-construct

instead of runST .

• Relations to region-based memory management. While the languages we con-

sider do not have syntactic categories of effects and regions, the instrumented

semantics for strict state exhibits certain similarities with region-based memory

management (Tofte & Talpin, 1997), namely the two-dimensional structure of

the address space, and the store deallocation strategy.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


622 E. Moggi and A. Sabry

In the paper, we have also pointed out a limitation of previous reduction semantics,

in which stores are represented as binders. Such semantics prevent the formalization

of certain implementation details, but are more suitable for equational reasoning.

Indeed substantially more work is needed to establish soundness of equational

reasoning with respect to our dynamic semantics (even for something as unsurprising

as β-equivalence).

A Basic properties of the type system

This sections recalls basic facts about the type system for the higher-order λ-calculus.

In general, signatures Σ and contexts Γ are sequences of declarations. The notation

Σ � Σ′ means that the sequence Σ is a prefix of Σ′. In some cases, we are interested

in whether a sequence Σ, viewed as a set, in included in another sequence Σ′, also

viewed as a set. We write Σ ⊆ Σ′ to describe this situation. (It is always possible to

view a well-formed signature or context as a set of declarations, since well-formed

signatures and contexts do not allow multiple declarations of the same constant or

variable.) A judgment J is either empty, or of the form u:K , or of the form e: τ. The

set of declared variables in a context Γ is denoted as DV(Γ).

Proposition A.1

< .1
Σ,Σ′ `

Σ ` < .2
Σ,Σ′; Γ ` J

Σ ` < .3
Σ; Γ,Γ′ ` J

Σ; Γ `
Proposition A.2 (Thinning)

T .Σ

Σ; Γ ` J
Σ′ `
Σ′; Γ ` J Σ ⊆ Σ′ T .Γ

Σ; Γ,∆ ` J
Σ; Γ′ `
Σ; Γ′,∆ ` J Γ ⊆ Γ′ ∧DV(Γ′) ∩DV(∆) = ∅

Proposition A.3 (Substitution)

S.X

Σ; Γ1, X:K,Γ2 ` J
Σ; Γ1 ` u:K

Σ; Γ1,Γ2[X: = u] ` J[X: = u]
S.x

Σ; Γ1, x: u,Γ2 ` J
Σ; Γ1 ` e: u

Σ; Γ1,Γ2 ` J[x: = e]

Proposition A.4 (Proper Typing)
Σ; Γ ` e: τ
Σ; Γ ` τ: ∗

Proposition A.5 (Generation Lemma for Terms)

The following implications hold:

1. Σ; Γ ` c: τ implies exists τ′ s.t. Σ; Γ ` , c: τ′ ∈ Σ and τ =u
βη τ

′
2. Σ; Γ ` x: τ implies exists τ′ s.t. Σ; Γ ` , x: τ′ ∈ Γ and τ =u

βη τ
′

3. Σ; Γ ` λx: τ1.e: τ implies exists τ2 s.t. Σ; Γ, x: τ1 ` e: τ2 and τ =u
βη τ1 → τ2

4. Σ; Γ ` e1 e2: τ implies exist τ1, τ2 s.t.

Σ; Γ ` e1: τ1 → τ2 , Σ; Γ ` e2: τ1 and τ =u
βη τ2

5. Σ; Γ ` ΛX:K.e: τ implies exists τ′ s.t. Σ; Γ, X:K ` e: τ′ and τ =u
βη ∀X:K.τ′

6. Σ; Γ ` e[u]: τ implies exist X, K , τ′ s.t.

Σ; Γ ` e: ∀X:K.τ′ , Σ; Γ ` u:K and τ =u
βη τ

′[X: = u]

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 623

B Proofs of type safety and compatibility

Proof

Proof of Theorem 5.6. By induction on the derivation of an evaluation judgment,

and by applying the generation lemma to the typing assumption. We consider a few

cases in detail:

• (1) ∆|Σ; e =⇒ ∅|Σ′; or[u]
∆|Σ; e[u] =⇒ ∅|Σ′; or[u, u] |u| < �o

by assumption ∆,Σ |= e[u]: τ and the generation lemma exist X, K , τ1 s.t.

(2) ∆,Σ |= e: (∀X:K.τ1) (3) ∆,Σ |= u:K (4) τ =u
βη τ1[X: = u]

from (2) and the IH for (1) exists τ2 s.t.

(5) ∆,Σ′ |= or[u]: τ2 (6) (∀X:K.τ1) =u
βη τ2 (7) Σ ↪→ Σ′

from (5) and (6) by the formation rule (conv) one has

(8) ∆,Σ′ |= or[u]: (∀X:K.τ1)

from (3) by thinning one has

(9) ∆,Σ′ |= u:K

from (8) and (9) by the formation rule (∀E) follows

(10) ∆,Σ′ |= or[u, u]: τ1[X: = u]

from (4), (10) and (7), taking τ′ ≡ τ1[X: = u], follows the thesis.

• (1) ∆|Σ; e =⇒ ∅|Σ′; v
∆|Σ; e[u] =⇒ err

v /∈ run | or[u] with |u| < �o
by assumption ∆,Σ |= e[u]: τ and the generation lemma exist X, K , τ1 s.t.

(2) ∆,Σ |= e: (∀X:K.τ1) (3) ∆,Σ |= u:K (4) τ =u
βη τ1[X: = u]

from (2) and the IH for (1) exists τ2 s.t.

(5) ∆,Σ′ |= v: τ2 (6) (∀X:K.τ1) =u
βη τ2 (7) Σ ↪→ Σ′

from (5) and (6) by the formation rule (conv) one has

(8) ∆,Σ′ |= v: (∀X:K.τ1)

however (8) contradicts the side-condition v /∈ run | or[u] with |u| < �o.
In fact the remaining possibilities for v, i.e.

λx: u.e | `r,m | run[u] | or[u](e) with |u| = �o and |e| 6 #o

can only have a type of the form τ1 → τ2 , Rr[τ] or Mr[τ].

Therefore the thesis follows, because this case cannot occur, more precisely

the side-condition for applying the rule is not satisfied.

• (1) ∆, Ca:K|Σ; e[X: = Ca] =⇒ ∆′|Σ′; v
∆|Σ; ΛX:K.e =⇒ Ca:K,∆

′|Σ′; v (2) a fresh

by assumption ∆,Σ |= ΛX:K.e: τ and the generation lemma exists τ1 s.t.

(3) ∆,Σ;X:K |= e: τ1 (4) τ =u
βη (∀X:K.τ1)

from (3) and (2) by the substitution lemma

(5) ∆, Ca:K,Σ |= e[X: = Ca]: τ1[X: = Ca]

from (5) and the IH for (1) exists τ2 s.t.

(6) τ1[X: = Ca] =u
βη (∀∆′.τ2) (7) ∆, Ca:K,∆

′,Σ′ |= v: τ2 (8) Σ ↪→ Σ′
from (4) and (6) by properties of =u

βη

(9) τ =u
βη (∀Ca:K,∆′.τ2)

from (9), (7) and (8), taking τ′ ≡ τ2, follows the thesis.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


624 E. Moggi and A. Sabry

• (1) ∆|Σ; e =⇒ ∅|Σ′; ret r[τ
′](e′)

∆|Σ; µ, e
r

=⇒ Σ′; µ, e′
by assumption ∆,Σ |= e:Mr[τ] and the IH for (1) exists τ1 s.t.

(2) Mr[τ] =u
βη τ1 (3) ∆,Σ′ |= ret r[τ

′](e′): τ1 (4) Σ ↪→ Σ′
from (2) and (3) by the generation lemma and properties of =u

βη

(5) ∆; Σ′ |= e′: τ′ (6) τ′ =u
βη τ

from (3), (4) and the assumption ∆,Σ |=r µ follows that

(7) ∆,Σ′ |=r µ

from (5) and (6) by the formation rule (conv) one has

(8) ∆,Σ′ |= e′: τ
from (4), since Σ ↪→ Σ′ implies Σ

r
↪→ Σ′, follows that

(9) Σ
r
↪→ Σ′

from (9), (7) and (8) follows the thesis.

q

Proof
Proof of Theorem 5.8. The implications are proved by lexicographic induction on

the derivation of an evaluation judgment |e| =⇒ d′ and |µ|, |e| =⇒ d′ for the

dynamic semantics, and the size of e and (µ, e). We consider in detail one case, to

illustrate why we need the lexicographic induction. Suppose that |e| ≡ e′1 e′2 and

e′1 =⇒ λx.e′ e′[x: = e′2] =⇒ d′

e′1 e′2 =⇒ d′
there are three possibilities for e

• e ≡ e1 e2, therefore |e1| ≡ e′1 and |e2| ≡ e′2.

In this case we apply the IH to ∆, Σ, e1 and (λx.e′). In fact, the derivation of

the dynamic evaluation judgment e′1 =⇒ λx.e′ is shorter.

Therefore we have a d s.t. ∆|Σ; e1 =⇒ d and (d′ ≡ |d| or d ≡ err).

If d ≡ (∅|Σ1; λx: u.e0) and thus |e0| = e′, then we proceed (and reach the desired

conclusion) by applying the IH to ∆, Σ1, e0[x: = e2] and d′. In fact, |e0[x: =

e2]| ≡ e′[x: = e′2] and the derivation of the dynamic evaluation judgment

e′[x: = e′2] =⇒ d′ is shorter.

In all the other cases, namely d ≡ err or d ≡ (∆′|Σ1; λx: u.e0) with ∆′ 6≡ ∅, we

get ∆|Σ; e1 e2 =⇒ err.
• e ≡ ΛX:K.e0, therefore |e0| ≡ e′1 e′2.

In this case we apply the IH to ∆, Ca:K (with a fresh), Σ, e0[X: = Ca]

and d′. In fact, we have reduced the size of the term (from ΛX:K.e0 to

e0[X: = Ca]), while the dynamic evaluation judgment is unchanged (since

|ΛX:K.e0| ≡ |e0[X: = Ca]|).
Therefore we have a d s.t. ∆, Ca:K|Σ; e0[X: = Ca] =⇒ d and (d′ ≡ |d| or

d ≡ err).

If d ≡ (∆′|Σ′; v) and |d| = d′, then ∆|Σ; ΛX:K.e0 =⇒ Ca:K,∆
′|Σ′; v, and

obviously |Ca:K,∆′|Σ′; v| ≡ d′. Otherwise we get ∆|Σ; ΛX:K.e0 =⇒ err.
• e ≡ e0[u], therefore |e0| ≡ e′1 e′2.

In this case we apply the IH to ∆, Σ, e0 and d′. In fact, we have reduced the

size of the term (from e0[u] to e0), while the dynamic evaluation judgment is

unchanged (since |e0[u]| ≡ |e0|).

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 625

Therefore we have a d s.t. ∆|Σ; e0 =⇒ d and (d′ ≡ |d| or d ≡ err).

If d ≡ (Ca:K,∆
′|Σ′; v) and |d| = d′, then ∆|Σ; e0[u] =⇒ ∆′|(Σ′; v)[Ca: = u], and

obviously |∆′|(Σ′; v)[Ca: = u]| ≡ d′. Otherwise we get ∆|Σ; e0[u] =⇒ err.

q

C Adding run to Haskell

Section 4.2 outlined a way of defining run using runST . This definition can be

made more concrete via an implementation in Haskell (using some non-standard

extensions for rank-2 polymorphism in Hugs).

The first step is to encode the necessary types. The type of run is:

run: ∀X: ∗.(∀ΓM.XM[X])→ X , where

ΓM ≡ XM,XR: ∗ → ∗ ,

xret : ∀X: ∗.X → XM[X] ,

xdo: ∀X,Y : ∗.XM[X]→ (X → XM[Y ])→ XM[Y ] ,

xnew : ∀X: ∗.X → XM[XR[X]] ,

xget : ∀X: ∗.XR[X]→ XM[X] ,

xset : ∀X: ∗.XR[X]→ X → XM[XR[X]]

The operations in ΓM can be grouped in a record with polymorphic fields as

follows:

data GammaM m r =

GammaM { xret :: forall a. a -> m a,

xdo :: forall a b. m a -> (a -> m b) -> m b,

xnew :: forall a. a -> m (r a),

xget :: forall a. r a -> m a,

xset :: forall a. r a -> a -> m (r a)

}

It follows that the construct run would have the following type in Haskell:

run :: forall a. (forall m r. GammaM m r -> m a) -> a

Section 4.2 gives the following definition of run:

run
def≡ ΛX: ∗. λx: (∀ΓM.XM[X]). runST [X] (Λα: ∗.x (|Σ′M | (α)))

which can be transliterated as follows:

run x =

let gammaST = GammaM { xret = returnST,

xdo = thenStrictST,

xnew = newSTRef,

xget = readSTRef,

xset = \r v -> do writeSTRef r v

return r

}

in runST (x gammaST)

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


626 E. Moggi and A. Sabry

Intuitively, given an expression parameterized by generic monadic operations, these

operations are first specialized to those of the built-in state monad, and runST is

applied to the result. For example, one can use such a run construct as follows:

test = run (\ gammaM ->

let retM = xret gammaM

doM = xdo gammaM

newM = xnew gammaM

getM = xget gammaM

setM = xset gammaM

in doM (newM 0) (\ x ->

doM (setM x 7) (\ _ ->

doM (getM x) (\ v ->

doM (retM "hello") (\ _ ->

retM (v+v))))))

which produces 14 using hugs -98 after importing the module ST. Note that

operation retM is used polymorphically, and hence must be let-bound. In general,

one cannot use pattern-matching to extract the monadic operations from the record

since this would λ-bind the operations to a monomorphic type.

Acknowledgments

We thank John Launchbury for enlightening discussions. We also thank Miley

Semmelroth and Fabrizio Palumbo for earlier contributions, and Steve Ganz for

helpful comments. An anonymous referee, Martin Elsman, and Philip Wadler all

provided valuable comments and suggestions.

References

Barendregt, H. P. (1991) Lambda calculi with types. In: Abramsky, S., Gabbay, D. M. &
Maibaum, T. S. E. (eds.), Handbook of Logic in Computer Science. Oxford: Oxford University
Press.

Cardelli, L. (1996) Type systems. In: Tucker, A. B. (ed), Handbook of Computer Science and
Engineering. CRC Press.

Chen, K. & Odersky, M. (1994) A type system for a lambda calculus with assignment. Theor.
Aspects of Comput. Software: LNCS 789. Springer-Verlag.

Geuvers, H. (1993) Logics and type systems. PhD thesis, Computer Science Institute,
Katholieke Universiteit Nijmegen.

Harper, R. (1994) A simplified account of polymorphic references. Information Processing
Letters, 51(4), 201–206. See also note (Harper, 1996).

Harper, R. (1996) A note on: “A simplified account of polymorphic references” [Inform.
Process. Lett. 51 (1994), no. 4, 201–206; MR 95f:68142]. Information Processing Letters,
57(1), 15–16, See (Harper, 1994).

Harper, R. & Lillibridge, M. (1993) Explicit polymorphism and CPS conversion. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 206–219.
ACM Press, New York.

Launchbury, J. & Peyton Jones, S. L. (1994) Lazy functional state threads. ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 24–35. ACM Press,
New York.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154


Monadic encapsulation of effects 627

Launchbury, J. & Peyton Jones, S. L. (1995) State in Haskell. Lisp Symbol. Comput., 8,
193–341.

Launchbury, J. & Sabry, A. (1997) Monadic state: Axiomatization and type safety. ACM
SIGPLAN International Conference on Functional Programming, pp. 227–238. ACM Press,
New York.

Lucassen, J. M. & Gifford, D. K. (1988) Polymorphic effect systems. ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 47–57. ACM Press, New York.

Mitchell, J. C. & Plotkin, G. D. (1988) Abstract types have existential type. ACM Trans.
Programming Languages and Systems, 10(3), 470–502. (Preliminary version appeared in
Proc. 12th ACM Symp. on Principles of Programming Languages, 1985, ACM Press, New
York.)

Moggi, E. (1989) Computational lambda-calculus and monads. IEEE Symposium on Logic in
Computer Science, pp. 14–23. IEEE Press, Los Alamitos, CA. (Also appeared as: LFCS
Report ECS-LFCS-88-86, University of Edinburgh, 1988.)

Moggi, E. (1991) Notions of computation and monads. Inf. Comput., 93, 55–92.

Moggi, E. & Palumbo, F. (1999) Monadic encapsulation of effects: A revised approach.
Electronic Notes in Theor. Comput. Sci. 26, 119–136.

Odersky, M., Rabin, D. & Hudak, P. (1993) Call by name, assignment, and the lambda
calculus. ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 43–56. ACM Press, New York.

Rabin, D. (1996) Calculi for functional programming languages with assignments. PhD thesis,
Yale University. Technical Report YALEU/DCS/RR-1107.

Reynolds, J C. (1978) Syntactic control of interference. ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pp. 39–46. ACM Press, New York.

Reynolds, J. C. & Plotkin, G. (1993) On functors expressible in the polymorphic typed lambda
calculus. Inf. Comput., 105(1), 1–29.

Riecke, J G. (1993) Delimiting the scope of effects. Conference on Functional Programming
and Computer Architecture. pp. 146–155. ACM Press, New York.

Riecke, J. G. & Viswanathan, R. (1995) Isolating side effects in sequential languages. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 1–12. ACM
Press, New York.

Semmelroth, M. & Sabry, A. (1999) Monadic encapsulation in ML. ACM SIGPLAN Interna-
tional Conference on Functional Programming, pp. 8–17. ACM Press, New York.

Swarup, V., Reddy, U. & Ireland, E. (1991) Assignments for applicative languages. Conference
on Functional Programming and Computer Architecture, pp. 192–214. ACM Press, New York.

Talpin, J.-P. & Jouvelot, P. (1992a) Polymorphic type, region and effect inference. J. Functional
Programming, 2(3), 245–271.

Talpin, J.-P., & Jouvelot, P. (1992b) The type and effect discipline. IEEE Symposium on Logic
in Computer Science, pp. 162–173. IEEE Press, Los Alamitos, CA.

Tofte, M. (1990) Type inference for polymorphic references. Inf. Comput., 89(1), 1–34.

Tofte, M. & Talpin, J.-P. (1997) Region-based memory management. Inf. Comput., 132(2),
109–176.

Wadler, P. (1990) Comprehending monads. ACM Conference on Lisp and Functional Program-
ming, pp. 61–78. ACM Press, New York.

Wadler, P. (1992) The essence of functional programming (invited talk). ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pp. 1–14. ACM Press, New
York.

Wadler, P. (1998) The marriage of effects and monads. ACM SIGPLAN International Confer-
ence on Functional Programming, pp. 63–74. ACM Press, New York.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput.,

115(1), 38–94.

https://doi.org/10.1017/S0956796801004154 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004154

