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1. Several years ago H. Hornich suggested the following problem: find the 
minimal number of unit spheres which can hide a unit sphere in the sense that 
each ray emanating from the centre of that sphere meets at least one of the 
hiding spheres, with no two of the spheres overlapping. We shall call any set of 
spheres which hide a given unit sphere a cloud. 

The first result concerning this and related questions can be found in a paper 
of Fejes Tôth (4 ; see also 5, 7, 8, 6, and 1 ). With respect to the original problem, 
Fejes Tôth has given a lower estimate for the minimal number N of the 
spheres of a cloud. His proof of the inequality N > 19 was based on an earlier 
estimate of his, referring to the minimal number of spherical caps of given 
radius which can cover the unit sphere. An upper bound for N has been 
provided by a result of Danzer (2). He constructed a cloud consisting of 42 
spheres. Thus we have 

19 < N < 42. 

The gap between these two bounds is rather broad and our aim is to make it 
somewhat narrower. We shall prove that N > 24. 

2. In the following we shall use the terms middle sphere and shadow of a 
sphere. By the first we mean the sphere to be hidden, and by the second the cap 
of the middle sphere determined by the rays intersecting the hiding sphere in 
question. Obviously no sphere has a shadow of radius larger than 30°. Since the 
shadows together cover the sphere, and on the other hand the area of any 
shadow is <27r(l — cos 30°), we have 

N > 47r/{27r(l - cos 30°)} = 4/(2 - y/%) = 4(2 + V3) = 14.92 

and therefore N > 15. 

3. A sharper inequality can be given by taking into consideration the fact 
that if n caps of radius r form a covering they must more or less overlap. This 
has been done by Fejes Tôth (3). We give here an outline of his method. 

The surface of the sphere can be decomposed into n convex spherical polygons 
in such a way that each polygon is contained in one cap. It may be supposed 
that the decomposition contains only trihedral vertices. Among the spherical 
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k-gons contained in a cap the regular k-gon inscribed in the cap has the greatest 
area. Now the function 

A(k,r) = 2ir — 2k arc tan [cos r-tan(7r/&)] 

describing the area of this regular k-gon is a concave monotone function of the 
variable k. Therefore, using Jensen's inequality, we obtain that the average 
area of a polygon cannot exceed the value A (k, r), where k denotes the average 
number of sides in the polygonal decomposition. Since all the vertices are 
trihedral Euler's formula yields k < 6 — 12/n. Thus n has to satisfy the 
inequality 

4?r < nA (k, r) < nA (6(« - 2)/n, r), 
and hence 

, . 2 arctan[( l / \ /3) cos r] 
{l) U > jarctan[(l /V3) cos r] - TT/6} * 

For r = 30° this gives n > 18.2 . . . . Therefore 

(2) N > 19. 

4. Let us now consider the cloud constructed by Danzer. The 42 spheres can 
be grouped according to the radii of their shadows. Five groups consist of eight 
spheres each with shadow radii 30°, 21°19/, 17°12/, 14°4/, and 11°32'. The radii 
of the remaining two shadows equal 25°46'. The fact that in this cloud more 
than half of the spheres have a shadow of rather small radius (less than 18°) 
suggests that an essentially better lower estimate can be given only if we take 
into consideration that some of the spheres contribute essentially smaller 
shadows to the covering of the middle sphere. 

5. Our estimate will be based on the following lemma. 

LEMMA 1. If three shadow caps have a point in common, then the radius of the 
smallest is < r 0 — arccosV[(3 + V6)/6] < 17°37/56//. Equality holds only if 
two of the spheres touch the middle sphere and each other, while the third is tangent 
to the first two and to the ray through their common point. 

Let us denote the centre of the middle sphere by 0 and the centres of the 
others by Ci, C2, and C3, where OC\ < OC2 < OCz. 

We first show that if there is a common point of the three shadows in the 
interior of the smallest cap, then the position of this third sphere can be changed 
so as to increase its shadow. In this case there exists a ray s starting from 0 and, 
after meeting the first two spheres, going through an inner point of the third. 
Consider a plane p containing the points 0 and C3, which is orthogonal to the 
plane through 0, Ci, and C2. If we move C3 in p, then, obviously, the distance of 
C's from any fixed point P in space depends strictly monotonically on the dis
tance of Cz from the orthogonal projection Pr of P on the plane p. Thus any 
motion of C3 along the boundary of the circle with centre the projection C\ of C\ 
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on p which brings C3 nearer to 0 prevents overlapping of the hiding spheres 
(in Figure 1 C'2 denotes the projection of C2). Therefore in the best arrangement 
of the three spheres there exists a ray which meets all of them and which is 
tangent only to the one with smallest shadow. 

FIGURE 1 

Now we use the following result (4). If a straight line meets three non-
overlapping unit spheres 5i, 52, and 5 3 in this order, then the "level difference" 
of the centres of S\ and Sz, measured in the direction of the line, is at least \/2. 
Equality holds only if the spheres are mutually tangent and the line is tangent 
to all three spheres and passes through the common point of two of them. Since 
the "level difference" between the middle sphere and our first hiding sphere, 
measured along the ray which touches the third sphere, is > V 3 , the "level 
difference" of 0 and C3 is \/2 + \/3. Therefore 

OC > V [ ( V 3 + V2)2 + 1] = V(6 + 2V6) 

and consequently the radius of the smallest shadow cap is 

< arccosV[(3 + V6)/6] = fo-

We remark that a direct application of Fejes Toth's result would give only 
the weaker lower bound \/2 + \/3 for the distance OCz and correspondingly 
the upper bound 18°31'56" for the radius of the smallest shadow. 

6. We next prove the following lemma. 

LEMMA 2. Tc any cloud there belong at least 8 small caps, i.e. caps having a 
radius < r 0 = arccosV[(3 + V6)/6] . 

First we give a polygonal decomposition of the surface ol ihe middle sphere in 
such a way that each i-hcuh •••" r ap will contain a unique polygon. 

Consider a cloud ane1 suppose that there is no superfluous sphere in it. Then 
each cap has interior peints not covered by any other cap. The convex poly
hedron determined bv the planes containing the boundary circles of the indi
vidual caps has as mar y Uces as the number of caps and is contained in the 
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sphere. Therefore the central projection of the edges of this polyhedron 
provides a polygonal decomposition of the sphere into convex spherical 
polygons each lying in the corresponding cap. Since any point of the sphere lies 
in a polygon having a circumcircle of radius <30°, it follows that every point is 
within 30° of some vertex. On the other hand all the vertices of our polygons are 
covered by at least three caps and therefore, by Lemma 1, every vertex has to 
be covered by a small cap. Hence the caps of radius 30° + r0, concentric with 
the small caps, form a covering of the sphere. The estimate (1) for the case 
r = 30° + r0 now yields that this covering consists of 

2 arctan[(l /V3) cos(30° + r0)] ? 
n > arctan[(l /V3) cos(30° + r0)\ - TT/6 > 

caps, which implies that the number of the small caps is at least 8. 

7. Lemma 2 enables us to improve the lower bound (2) by applying the 
simple area-estimate used in §2. The number n of the caps has to satisfy the 
inequality 

2ir[(n - 8)(1 - cos 30°) + 8(1 - cosr0)] > 4TT. 

Since 1 - cos 30° < 0.134 and 1 - cos r0 < 0.047, it follows that 

N > 21. 

8. Further improvement can be attained by taking it into consideration that 
the caps partly overlap. For the sake of simplicity, we first enlarge the caps in 
the following way: we replace each small cap (cap having a radius <r 0) by a 
concentric one of radius r0 and the remaining caps by concentric ones of radius 
30°. The new system of caps forms a covering such that all the vertices of the 
corresponding polygonal decomposition still lie in the small caps. Let us denote 
the number of small caps and large caps by 5 and /, respectively, and the number 
of vertices and edges of the polygonal decomposition by v and *, respectively. 
We may suppose that the decomposition contains only trihedral vertices; 
3^ = 2e. Then we obtain from Euler's formula 

(/ + s) +v = e + 2 
the equation 

(3) 2e = 6(1 + s - 2). 

On the other hand 

(4) 2e = lkl + sks, 

where ki and ks denote the average number of sides of the polygons correspon
ding to the large caps and small caps, respectively. 
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Following the method described in §3, the concavity of the function A(k, r) 
implies the inequality 

z = IA (kh 30°) + s A (ks, ro) > 4TT. 

We shall prove that N > 24 by showing that for / + s = 23 we always have 
Z < 47T. 

In the course of the proof we distinguish two cases according as the average 
number ks of sides in the small polygons satisfies ks > 6 or ks < 6. By Lemma 2, 
5 > 8 in both cases. 

(a) ks > 6. It follows easily from (3) and (4) that in this caseki < 5.2. Since 
A(k, r) is a monotonie function of k and since each cap contains the correspon
ding polygon, this implies that 

z < IA (5.2, 30°) + S2TT(1 - cos r0) < 0.680/ + 0.29535 

< 15 X 0.680 + 8 X 0.2953 = 12.5624 < 4TT. 

(b) ks < 6. In this case A (ks, r0) < A (6, r0). Therefore 

z < lA(khm°) + s A (6, ro) = zf. 

Thus it is enough to prove that z' < 4T. The number 5 of the small caps cannot 
be greater than 12, because for 5 > 13 even the sum of the area of the whole 
caps is 

13 X 0.2953 + 10 X 0.842 < 12.3 < 4TT. 

To settle the remaining cases 5 = 8, 9, 10, 11, and 12 we need an upper bound 
for k i depending on the value of 5. Since all the vertices lie in the small caps, 
sks > v and hence from (4) 

kl = $v - sks)/I < 2v/l = 84//. 

Therefore 

z' < IA (84//, 30°) + sA (6, r0) = z", A (6, r0) < 0.247. 

Table I shows that z" never exceeds 4ir. This completes the proof of our assertion 
that TV > 24. 

TABLE I 

s / 84// ,4(84//, 30°) z" 

8 15 5.6 <i4(5.6, 30°)<0.7017 < 1 2 . 5 0 2 < 4 T T 

9 14 6.0 <i4(6.0, 30°)<0.7195 < 1 2 . 2 9 6 < 4 T T 

10 13 6.5 <A(G.5, 30°)<0.7373 < 1 2 . 0 5 5 < 4 r 
11 12 7.0 <i4(7.0 , 30°)<0.7515 < 1 1 . 7 3 5 < 4 T T 

12 11 7.7 <i4(7.7 , 30°)<0.7670 < 1 1 . 4 0 1 < 4 T T 
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