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1. Introduction

The purpose of this paper is to discuss non-linear boundary value problems for
elliptic systems of the type

Akuk-X[uk=gk(x,uu...,u,J, xeG, lg/cgm
(1.1)

0, xedG, l^fcgm

where Ak is a second order uniformly elliptic operator and l\ e R is such that the
problem

= k\uk, xeG
(1.2)

Bkuk = 0, xedG

has a one-dimensional space of solutions that is generated by a non-negative function.
The boundary dG is supposed to be smooth and the functions gk,l^k£m, are defined
on GxRm and are continuously differentiate (usually, Bk represents Dirichlet or
Neumann conditions and X\ is the first eigenvalue associated with Ak and such
boundary conditions).

We shall consider classical solutions of (1.1) and thus no previous assumptions
concerning the growth of non-linearities gk are necessary. Moreover, this allows us to
obtain some conditions of asymptotic nature which are expressed in terms of non-strict
inequalities and extend to the vector case those given by Kazdan and Warner [10] and
Landesman and Lazer [11]. At the same time, we generalize the main results in [7, 12].

In Section 2 we obtain a general existence theorem for equations in some normed
spaces which is related to a previous theorem of Ortega and the author [5] . In Section
3 we apply the results of Section 2 to the problem (1.1) and we give some examples
which show the obtained generalizations.

The main tool we use is the Leray-Schauder degree.

2. Abstract results

Let X and Z be normed spaces and L:domLcX-»Z a linear Fredholm mapping of
index zero. We assume that the spaces X and Z are included into some space of
functions L°°(G, Rm), where G is a bounded domain in an euclidean space Rn.
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258 A. CANADA

Let us consider the equation

Lu = Nu (2.1)

where N.X^Z is a given mapping.
It can be shown that u is a solution of this equation if and only if

u = Pu + K(I-Q)Nu + JQNu (2.2)

where P:X-*X and Q:Z-*Z are projectors such that ImP = kerL, ImL=kerQ, K is the
generalized inverse of L and J is an isomorphism from Im Q into ker L. Suppose that
the mappings QN:X^Z and K(I — Q)N:X^X are compact on bounded subsets of X
(i.e., continuous and QN(B), K(I — Q)N(B) are relatively compact for each bounded
Be X) and that K is continuous.

As a standing hypothesis on the ker L we have

(H)

where the functions <t>k:G-*R are continuous, positive on G and

\uk(x)\^c<l>k(x)\\u\\x V x e G (2.3)

for all u — (ul,...,um)eX and each k, 1 ^kr^m (c is a positive constant independent of u
and k). Also, we suppose that the functions <f>k are normalized in the sense that

The main result is the following theorem.

Theorem 2.1. Suppose (H) holds and that:

(i) There exists a mapping £:X-*Z* and constants a ^ O , /?^0, such that

where Z* is the normed dual space of Z and <Nu, £u> =(£u)(Nu) for every ueX.

(ii) There exists a bounded (<J> takes bounded sets into bounded sets) and continuous
mapping <&:X-*lmQ such that

(ii.l) Every possible solution ueX of the equation

satisfies the relation <A/u, £ M > ^ 0 .

(ii.2) There exists r > 0 such that for all ueX, u = (uu...,um) with \uk(x)\^.r<j>k(x),
V x e G for some k, l^k^m, one has for some j , 1 ^j^m, that (QN)j(u)(<t>)j{u)^.O and that
the second factor is not zero.
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(ii.3) dB(J<I>\tctL,Bx(s)nkerL,0)^=0 for every s^r, where dB means the Brouwer degree
and Bx(s) is the open ball of centre zero and radius s in X.

Then, if a is sufficiently small, equation (2.1) has at least one solution.

Proof. We know (from the Leray-Schauder degree theory) that equation (2.1) will
have a solution if we prove that there exists an open bounded subset fi of X of the form
Q = Bx(r1), rj ̂ r , such that

u - T(u, l) = u-Pu-XK{l-Q)Nu- XJQNu - (1 - A) J<Pu =/= 0 (2.4)

for each Ae[0, l[ and each uedil. In fact, if this is the case and u— T(u, l) = 0 for some
uedCl, we have, from the equivalence between (2.1) and (2.2) that (2.1) has a solution. If
u — T(u, 1)^0 VwedQ, we deduce from the homotopy property of the Leray-Schauder
degree that

dL_s(i-T(;i),n,o)=dL_s(i-T(;O),n,o)=dL_s(i-p-j<t>,n,o).

But as lm(P + JO) c kerL is finite dimensional,

= dB(-JO|k e r i ,OnkerL,0)

and this degree is different from zero because of (ii.3).
Also, we must remark that the previous assumptions do not depend upon the choice

of P (see [13]) and, for convenience, we take P:X-*X defined by (Pu)k(x) =

To prove (2.4), let ueX and Ae]0, l [ such that

M - Pu = XK(1 - Q)Nu + UQNu+(1 - A) JQu. (2.5)

Then applying P to both parts of (2.5) we obtain

(2.6)
Nu + {l-X)J^>u = 0.

By using assumption (i), we have

(2.7)

(2.8)

where k{ is the norm of the continuous linear operator K(I — Q).
Now, if u satisfies (2.6), Lu = kNu + (\ -A)<Du and therefore, from (2.7) and (ii.l),
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Also, it follows from hypothesis (ii.2) that for all k, 1 g k g m , there exists xkeG such
that \uk(xk)\<r(t>k(xk). In fact, if it is not the case, then \uk(x)\^r(j>k(x), VxeG, for some k,
l^k^m and, by assumption (ii.2), {QN)J{U){<^)J{U)^0 for some), 1 ^j£m. As

we have (QN)j(u) = ($)/«) = 0 and this contradicts (ii.2) ((<l>)j(u) is not zero).
Therefore

\(Pu)k(x)\<t>k(xk)S \uk(x)<l>k(x)dx

^k2\(Pu)k(xk)\^k2(\uk(xk)\ + \(I-P)k(u)(xk)\) (from (2.3))

^ /c2r(/.t(xk) + c ||(/ - P)u\\x<pk(xk), VxeG.

Thus

and since all the norms in a finite dimensional space (Im P) are equivalent, we deduce

\\Pu\\x^k3 + k3c\\(I-P)u\\x (2.9)

for a certain fe3 > 0. Therefore

Then, if/c1a(l + fe3c)<l, we obtain

x- _
=

Lastly, if A=0 in (2.5), then M — P M = J O U and therefore, u = Pu, 4>M = 0. AS U = PU,
uekerL, i.e., u(x) = (al<f>l(x),...,am<t>m(x)) for some (au...,aJeRm. From (ii.2), \ak\<r
for all l^k^m.

Taking Q = Bx(ri), r, > max {ro,r}, the proof is finished.

Remarks. (1) As we shall see, the mappings L that satisfy (H) include a great class of
linear elliptic operators together with suitable boundary conditions.

(2) Theorem 2.1 is very general and we may take different functions <J> to obtain some
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existence theorems for equation (2.1). In view of the applications we consider only two
cases. We begin with a corollary which is related to a result obtained by the author and
Ortega [5] and the author and Martinez-Amores [4].

Corollary 2.1. Assume (H) holds and that:

(a) Conditions (i) and (ii.3) of Theorem 2.1 hold.

(b) <L«,£U>^0for all uedomL.

(c) There exists r > 0 such that for all ueX, u = (ui,...,um) with |ufc(x)|^r0t(x), VxeG
for some k, l^k^m, one has QNu =£0.

Then, if a. is sufficiently small, equation (2.1) has at least one solution.

Proof. Take <!> = QN in Theorem 2.1.

Corollary 2.2. Assume (H) holds and that N is uniformly bounded, i.e., | |Nu| |z^/9/or
every ueX. Also, we suppose that

(H,) { ( 1 j J k ( ) W ) j
J

where the functions i/̂ rG—>R, 1^/c^wi, are continuous, positive on G and normalized

Then, if hypothesis

(a) There is r > 0 such that for all ueX, u = {u1,...,um) with \uk(x)\^.r<f>k(x) V xeG,for
some k, l^k^m, one has signuk(QNu)a(k)g0 (where a is a permutation of the indices
l,...,m), is satisfied, equation (2.1) has at least one solution.

Proof. (Hj) allows us to take Q:Z->Z defined by

(Qz)k(x) = <M*) 1 zk(x)ipk(x) dx,

Now, take in Theorem 2.1 a>:X->ImQ defined by (<3>u)k= -{Qu)a-nk), l ^ f c ^
Trivially hypotheses (i), (ii.l) are verified with £ = 0.

On the other hand, if \uk(x)\^r4>k(x) VxeG, then either uk(x)^r4>k(x) VxeG or
ut(x)g -r<j>k(x) VxeG. In the first case by taking j = a(k) in (ii.2), we have that (ii.2)
becomes

(QNu)a(k)(<t>u)a(k) = (QNu)aik)( - Qu)k

This implies that (QNu)a(k) g 0.
Analogously if uk(x) ^ — r<j>k(x) VxeG, one obtains (QNu)a(k) ^ 0. Therefore (a) of
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Corollary 2.2 becomes the same as (ii.2) of Theorem 2.1. Also

rfB(-/4>|kerL, Bx(s) n ker L, 0)+0<>dB(F, BRm(s), 0) + 0

where F:Rm^Rm is defined by

(F{a))k = aa-Hk) J 4>k(
G

As (F(a))k = aa_l(kck,ck>0, lrS/cgm, the last degree is different from zero and the
corollary is proved.

Let us think now in the non-resonance case, i.e., kerL is trivial. Then P = 0, Q = 0 and
K = LTl. Assuming that 17l is continuous and that L~1N is compact on bounded
subsets of X, we have the following result. (The proof is very similar to the proof of
Theorem 2.1.)

Theorem 2.2 ([5]). Let us suppose that there exists a mapping l;:X->Z* verifying
(Lu, £,u)^0 for all uedomL and that ||Nu||zg <Nu, £u>+ a||u||x + /? for all ueX and
constants a^O, /J^O. Then, if a is sufficiently small, equation (2.1) has at least one
solution.

3. Applications

In this section we use the results of the previous one to study some non-linear
boundary value problems for elliptic systems.

Let G c R ' b e a bounded domain, p a natural number, p>n, and aeR such that
0 < a < l—n/p. We shall deal with the classical solvability of non-linear elliptic boundary
value problems of the type

-X\uk = gk{x,ul,...,uJ, xeG,
(3.1)

Bkuk = 0, xedG, l^k^m

where Ak is a second-order uniformly elliptic operator

with a*j = a*,. The boundary dG and the coefficients of Ak, 1 g k ^ m, are supposed to be
smooth, let us say a'lj, a)e C2a(G), dGeC2", with

where \ik > 0 is a constant and 1 ^ fc ̂  m.
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We restrict ourselves to linear homogeneous boundary conditions Bkuk = 0, which will
be either Dirichlet type {uk=0 on dG) or Neumann type duJdvAk = 0 on dG, where v^ is
the unit outer conormal vector field on dG and d/dvAt is the outer conormal derivative
on dG).

For the sake of simplicity we shall assume that the functions gk:Gx Rm-*R, l^ /c£m,
are continuously differentiable.

From the above hypotheses it follows that the problem

Akuk = kuk, xeG
(3.2)

Bkuk = 0, x e dG

has a unique normalized positive solution <f>k on G which corresponds to a simple real
eigenvalue X\ (A*=0 and <f>k = constant under the Neumann boundary condition).

Taking into account the properties of (j>k it is possible to prove the following
statement ([10]): Given any bounded set Xo of functions in Cl{G,R), if Bkuk = 0, for all
uk e Xo, then

0L<t>k{x) < uk(x) < fi<t>k{x) o n G (3.3)

for some constants a, /? independent of uk.
Now, the following important result is easily established:

Lemma 3.1. There exists ck>0 such that

|«*«|^ct<Mx)|k| |i onG (3.4)

where

W i = I sup\D"uk(x)\
I0|S1 xeG

for all ukeC\G,R) satisfying Bkuk = 0.

Proof. Take

in the inequality (3.3).
The adjoint problem to Akuk —X\uk = 0, xeG; Bkuk = 0, xedG, has also a one-

dimensional space of solutions generated by a normalized positive function ij/k on G and
such that i f / e C O a ( G , R), the problem

Akuk-X\uk=f, xeG

Bkuk = 0, xedG
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has a solution ukeC2"(G, R) if and only if Jc /(x)^(x) dx = 0 (also, \j/k = constant under
the Neumann boundary condition).

We put

X = {ueC1-"(G, R)x •"• xC^'iG, R),u=(uu.. .,um):Bkuk = 0, l^fc^

with the norm

ll«lli.. = (JkIII«*ll?..)1"

where for each k, l^k^m,

_up \D\(x)-D^k(y)\
§1 x.yeG \X — y\"

and

(m)

= {zeC°-a(G,R)x---xC°-x(G,R)}

with the norm

/ m \1/P

where for each k, l^k^m,

If we define L:domLc^-»Z by

dom L={ueX:ueC2x{G,R)x-mxC2%G,R)},

(Lu)k = Akuk — X\uk, and N:X->Z by (Nu)k(x)=gk(x,ut(x),...,um(x)), for all «eX, and
xeG, then our problem (3.1) is equivalent to solving the operator equation

Lu = Nu. (3.5)
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NowkerL={weAr:M=(a101)...,am</.J,(a,,...,aJei?m},

and L is a linear Fredholm mapping of index zero.

It is trivial that P:X->X, (Pu)k(x) = <t>k(x)|Guk(x)4>k{x)<fx, lgfc^m and Q.Z-+Z,
(Qz)k(x) = ^t(x) j G zt(x)^*(x) dx, 1 ^ /c ̂  m, are projectors such that Im P = ker L, Im L= ker Q
and if X is the generalized inverse of L(K:ImL-»domLnkerP), there exists c(p)>0
such that

\\(Kf)k\\W2.P(G,R)^c(p)\\fk\\p, l^k^m

(see [2]). As the inclusion W2-"(G,R)c+ Clx(G,R) is compact ([1]), K:(Im L, ||-||p)->
(A",||-||lia) is compact.

Now, we are in position to apply the results of the previous section to system (3.1).
Firstly we assume that gk, l^k^m, are bounded.

Theorem 3.1. Suppose that:

(1) There is r>0 such that for all ueX, u = (u1,...,um) with \uk(x)\^r(j)k(x), V xeG,for
some k, l^k^m, one has

sign uk J {gaW(x, u , ( x ) , . . . , um{x)))\pk{x) dx^O
G

where a is a permutation of the indices \,...,m.
Then, (3.1) has at least one solution.

The proof is trivial from Corollary 2.2.

Remarks. (1) Theorem (3.1) is still true if the inequality in hypothesis (i) is reversed.

(2) Let m= 1 and g=g(x, u) satisfying:

(i') There is r>0 such that ^Gg(x,u(x))\l/l(x)dxjGg{x,v{x))ij/l(x)dx<0 for all u,veX
with u(x)^n£,(x), v(x)^ -rcp^x), VxeG.

Then, assumption (i) of Theorem 3.1 is satisfied. In fact, if uoeX verifies
uo(x)^r4>l(x), VxeG and JGg(x,uo(x))i^1(x)dx<0, one has \Gg(x,u{x))4il(x)dx<0 for
all ueX verifying u(x)^r0j(x), VxeG. (The set /4 = {ueA":u(x)^r0,(x),VxeG} is
connected and the mapping from X into R defined by u-*\Gg(x, u(x))\j/t(x)dx is
continuous.) Hence, \Gg(x,v(x))tj/l(x)dx>0 for all veX verifying v(x)^ — r<£,(x), VxeG,
and therefore (i) of Theorem 3.1 is verified with a strict inequality.

If \Gg(x,uo(x))\jii(x)dx>0, we should consider the previous remark.
Hypothesis (i') has been considered by de Figueiredo and Ni [7]. Thus, our Theorem

3.1 generalizes, yet in the scalar case, the main result of these authors.
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(3) Let gk, l^k^m, be such that galM(x, uu ...,um)uk^O for all x e G ,
(«!,...,«„,)eRm, l^k^m. Then, assumption (i) of Theorem 3.1 is satisfied. (The
inequality can be reversed.)

(4) Let gk, l^k^m, satisfy the following conditions:
(A + ) There exist S1eR and a bounded continuous mapping g\:GxRm-*R, l^k^m,
such that for all ueX, « = («„... ,«„) with uk(x)>Si(f)k(x), VxeG, one has
gk(x,uy{x),...,um(x))^g\(x, M,(X),...,ujx)), VxeG and

J g \ ( x , u t ( x ) , . . . , um(x))«M*)dxS0.
G

(A — ) There exist S2eR and a bounded continuous mapping g*_:G x Rm-^R, lgfcrgm,
such that for all ueX, u = (u1, . . . ,um) with Mt(x)<S20t(-

x:X VxeG, one has
gk(x, wj(x),..., um(x))^g*_(x, w,(x),..., ujx)), Vx e G and

J jr*_(x, U l (x ) , . . . , «m(x))«At(x) dx g 0.
G

Then, condition (i) of Theorem 3.1 is again satisfied (see [6], where the details are given
for the ordinary case).

Therefore, Theorem 3.1 extends and generalizes, for systems with bounded non-
linearities, the results given by Kazdan and Warner [10] in the scalar case.

Example 1. The B.V.P.

xeG

xeG

has at least one solution assuming that JG/;(x)i^(x)dx = 0, I g i g 2 , and

This example cannot be studied from the results mentioned in the previous remarks,
because it is a vector problem. Yet in the scalar case, we may consider the B.V.P.

, xeG
(3.6)

u = 0, xe<5G

where h:R-*R is of class C1 and bounded, f:G-*R is continuous and jG/(x)i/»(x) dx = 0.
If h(u) • u > 0 for all M e R, all conditions of Theorem 3.1 are satisfied (with the reversed

inequality) and (3.6) has a solution. However, (3.6) does not satisfy (A + ) and (A—). In
fact, if g(x,u) = h(u)+f(x) and ueX is such that u(x)>S1</>(x), VxeG with u(x)>0
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V x e G, one obtains

0 £ | g+(x, u(x))*(x) dx ̂  1 g(x, u(x)W(x) dx = J Ku(x)Mx) dx
G G G

which is a contradiction. Also (A—) is not satisfied.
Let us consider now the case where gk, If^k^m, can have a growth of some

superlinear type. First we need a lemma.

Lemma 3.2. Let A be a second-order uniform operator of the form

where the coefficients of A satisfy the same regularity assumptions considered at the
beginning of this section for Ak and let ueC2''(G,R) be such that du/dvA = 0 on dG. Then,
ifweCl(R,R) verifies w'{t)<L0for all teR,we have that w°ueC°-x{G,R) and

$Au(x)w(u(x))dx^O (3.7)
G

Proof. It is triviaMhat w°ueCl(G,R). But as dGeC2-", C\G) c> C°-*(G) (see [8])
and then w°u6C0a(G).

On the other hand, by using the Green's formula ([9, p. 69]), we deduce (v( denotes
the ith component of the unit vector of the outward normal v to dG),

" d ( " 3u(xW
1 Au(x)w(u(x)) dx = - X 1 — £ aij{x) - A i W(u(x)) dx
J
G i = i G dXi \ j f ! dxj )

1
dG

dG i . j = l

When the boundary conditions are of Dirichlet type, an analogous result may be
proved by the same way.
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Lemma 3.3. Let ueC2a(G,R) be such that w = 0 on dG and W6C'(/?,R) satisfying
w'(t)^Ofor all teR and w(0) = 0. Then w°ueCOll(G,R) and

$Au(x)w(u(x))dx^O. (3.8)
G

Remarks. (1) A similar inequality to (3.7), (3.8) has been proved by Brezis and
Strauss [3] for elliptic B.V.P. in L1.

(2) It is not possible to obtain an analogous result to the previous lemmas for
problems whose linear part is of the form Au(x) — Xlu(x), xeG, u(x) = 0, xedG. (Take
the Dirichlet problem for n=\, G = {0,n). Then, Au(x)-X1u(x)=-u"(x)-u(x), u(0) =
u(7t) = 0, and w:R->R defined by

TO if r<0

l - r 2 if t^O.

Then, if u(x) = — (x2 — nx), we have

f Au(x)w(u{x)) dx = ] - (x2 - nx) [ - 2(2x - n)2 + (x2 - rcx)2] dx = ns (^— - -^ ] > 0).
G o \140 15/

Theorem 3.2. Let us suppose that:

(i) There exists a mapping w:Rm^>Rm of class Cl, w(ul!...,um)=(w1(ul),..., wm(wj)
such that wk:R->R, lg/c^m, verifies w'k(t)^0 for all teR, and constants a ' ^0 , /?i^0,
satisfying:

k=l
\ik(x,«i, • • •, MJ|pSKwK,...,um),g(x,«!,..., uj) + a\\u\+P\

for all (x,u) = (x,ul,...,um)eGxRm (where (•,•) denotes the usual inner product in Rm),
g = (gu...,gm).

(ii) There exists r>0 such that for all ueX, u = (uu...,um) with \uk(x)\^r for each
xeG and some k, l^k^m, one has JG g(x, u^x),..., um(x)) dx £ 0.

(iii) dg{F,BRm(s),0)^=0 for every s^r, where F:Rm^Rm is defined by

Then, the B.V.P. (3.1), where each Ak has the form

and Bkuk = duJdvAk, l^k^m, has at least one solution provided <x\ is sufficiently small.
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Proof. Take in Corollary 2.1 £:X->Z* defined by

««)(z)=I lWk(uk(x))zk(x)dx.
k=l G

It is obvious that (H) is satisfied with (f>k = l/\o\(G), l^k^m. On the other hand, using
(i) we have

for all ueX. Since there is y>0 such that t^tp + y for all t§;0 we have condition (i) of
Theorem 2.1.

Also, taking into account Lemma 3.2 we have hypothesis (b) of Corollary 2.1.
Lastly, condition (ii.3) of Theorem 2.1 and (c) of Corollary 2.1 are respectively the

same as (iii) and (ii) in Theorem 3.2.
Then all conditions of Corollary 2.1 are satisfied and the theorem is proved.

Example 2. Let us consider the B.V.P.

xeG ' (3.9)

where /:G->R, /i,:GxR2->R are of class C1, /i,(x,M)^0 for all xeG, ueR2 and /i, are
bounded and satisfy lim|lii| + |U2|^0O/ii(x,u1,u2) = 0 uniformly in xeG, I g i g 2 .

Then, (3.9) has one solution if, and only if, j c / (x )dx>0 , i= 1,2.
The above condition is clearly necessary and is also sufficient. In fact, let p>n be an

odd number and w,:R-+R, 1 ^ i ^ 2 , defined by

O if rgO

.(-e' + t+l)" if £>0.

Then

\gi(x, uu u2)\" = \ -e-' + h^x, ult

^(-eu' + ui+m-eUi + hi(x,u1,u2)+fi{x)) + P' if u,>0

and therefore, (i) of Theorem 3.2 is satisfied with a i=0.
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Hypothesis (ii) of this theorem is trivially verified. Also F:R2-*R2 is now defined by
F(ci,c2) = (F1(ci,c2), F2(cuc2)), where

It is easily proved that there exists rx>0 such that F1(c1,c2)c,^0, with |c,|^/"l5 i= l ,2 .
Then, taking into account the Poincare-Bohl theorem [14], (iii) of Theorem 3.2 is also
verified.

Remarks, (1) If wk = 0, l^k^m, condition (i) may be substituted by

(i') \gk(x,ul>...,um)\Sa'k\uk\ + p'k, l^kSm.

Therefore, Theorem 3.2 generalizes the main result obtained by Mawhin in [12], not
only with respect to the growth of the non-linear term but also because we consider
systems of equations.

(2) In the scalar case, B.V.P. of type (3.9) may be studied using the method of upper
and lower solutions [10], but the use of this method in the case of vector problems is
very restrictive. (We know that either certain monotone properties on the components
gk of the non-linearity g are required or a stronger definition of upper and lower
solutions is needed.)

Finally and as an application of Theorem 2.2 we can study the existence of solutions
of the Dirichlet problem

Akuk=gk(x,ul,...,uJ, xeG, l^k^m
(3.10)

uk=0, xedG, l^k^m.

Theorem 3.3. Let us assume that there exists a mapping w:Rm->Rm verifying the
hypotheses of the previous theorem and, moreover, wk(0) =0, 1 ^ k ̂  m. Then, if (i) of
Theorem 3.2 is satisfied, equation (3.10) has at least one solution provided ct\ is sufficiently
small.

Example 3. The B.V.P.

1 = — uf + ft^x,«!, M2), xeG

-uf2 + /i2(x,w1,u2), xeG

xedG
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where p,, 1 f£ i ̂  2, are odd numbers greater than one, hh 1 ^ i ̂  2, are bounded and
k,neR has at least one solution. (We must take wl(t)=(-t"l)p, w2(t) = (-tP2)p and p an
odd number, p>n.)

Final remark. Our main result (Theorem 2.1) can always be applied to problems
where condition (H) is satisfied and not only to the problems considered in this section.
For instance, if we have the B.V.P. (ordinary case)

u'[-2ul-3u2=gl(x,ul,u2), xe(0,7i)

u2 + 2u2 + u1=g2(x,u1,u2), xe(0,n)

11,(0) = Ul(n) = u\(0) + u\(n) = 0; u2(0) = u2{n) = u'2(0) + u'2(n) = 0

then, it is not difficult to prove that 0t(x) = <p2(x) = (sin x)y/{2/n) and consequently (2.3)
is satisfied.

Also we may consider systems of the form (3.1) with some boundary conditions of
Dirichlet type and the others of Neumann type.
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