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Abstract

We give a simple proof of the strong law of large numbers with rates, assuming only finite variance.
This note also serves as an elementary introduction to the theory of large deviations, assuming only finite
variance, even when the random variables are not necessarily independent.
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1. Introduction and statements

Suppose that X1, X2, . . . are independent, identically distributed random variables with
mean µ and τB E|Xi − µ| <∞. Let S n = X1 + · · · + Xn.

The strong law of large numbers (SLLN) is a fundamental theorem in probability
and statistics. It says that

S n

n
→ µ a.s.,

where a.s. is an abbreviation for almost surely (see (1.2) for an equivalent statement).
There are already, in the literature, elementary treatments of SLLN (for example,
Etamadi’s famous proof [2]), but they do not take into account the rate of convergence.
In applications it is important to quantify the rate of convergence, so that, for a given
n, we can estimate the error between S n/n and µ. For that purpose, it is necessary to
assume the existence of higher moments, say σ2 B E(Xi − µ)2 < ∞. In this note we
will give an elementary proof of the SLLN with rates, when σ2 <∞. In subsection 1.2,
we will also consider a version for not necessarily independent random variables.

It is well known that, when σ2 <∞, Chebyshev’s inequality gives the weak law of
large numbers with rates: for every ε > 0 and n ≥ 1,

P
{ ∣∣∣∣∣1nS n − µ

∣∣∣∣∣ > ε} ≤ σ2

ε2 n
. (1.1)
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The SLLN is equivalent to saying that, for each ε > 0,

P
{

sup
k≥n

∣∣∣∣∣1k S k − µ

∣∣∣∣∣ > ε}→ 0 as n→∞. (1.2)

Note that, even when σ2 <∞, the SLLN does not follow from (1.1) because
∑

1/n is
a divergent series. We will prove the following SLLN with rates.

Theorem 1.1. Assume that σ2 < ∞. Let β > 1 and 0 < ε ≤ 1. There are constants
Cβ, Dβ > 0 (depending only on β) such that, for every n ≥ n(ε, β),

P
{

sup
k≥n

∣∣∣∣∣1k S k − µ

∣∣∣∣∣ > τε} ≤ σ2

τ2ε2 n
(Cβ + Dβ(log n) β−1), (1.3)

where
n(ε, β)B max{6ε−1, exp((9β−1ε−1) β

−1/(1−β−1))}.

Remark 1.2. From the proof of Theorem 1.1, we may take

Cβ = 72 + 72βbβc! and Dβ = 72β + 72(e − 1)βbβc!.

See how the right-hand side of (1.3) is almost as good as the right-hand side of (1.1),
but it gives a much stronger kind of convergence: almost sure convergence instead
of convergence in probability. We have introduced the parameter β > 1 for practical
reasons. When β is big, the right-hand side of (1.3) gets worse but n(ε, β) gets better,
so we may choose the best β according to what is most favourable for a particular
application.

In the specialised literature, there are much better estimates than (1.3) under the
much stronger assumption that the moment-generating function ϕ(t)B E(etXi ) <∞ for
some t > 0. Such estimates were initiated by Cramér, and fall within the theory known
today as large deviations (see [1] for an introduction). We also note that, in this case,
the large-deviation estimates depend heavily on the distribution of Xi.

Our estimates are universal, meaning that they depend only on σ2, not on the
specific distribution of Xi. This could be of practical importance when we are dealing
with fat-tailed distributions, as long as they have finite variance.

1.1. Higher orders of convergence. A simple adaptation to the proof of
Theorem 1.1 allows us to give rates of convergence of

S n − nµ
nα

→ 0 a.s.

for 2/3 < α ≤ 1.

Theorem 1.3. Assume that µ = 0 and σ2 < ∞. Let 2/3 < α ≤ 1. Take any β with
β > (2α − 1)−1, β(1 − α) < 1 and 0 < ε ≤ 1. Then, for every n ≥ (9β2ε−1) β/(1−β(1−α)),

P
{

sup
k≥n

∣∣∣∣∣S k

kα

∣∣∣∣∣ > τε} ≤ 72σ2

τ2ε2

( 1
n2α−1 +

(β(2α − 1) − 1)−1

n2α−1−β−1

)
. (1.4)

Again, there are much better estimates than (1.4), whenever E(etXi ) < ∞ for some
t > 0, which depend heavily on the distribution of Xi (see [3, Section XVI.7] and [4]).
Such estimates (for 1/2 < α < 1) are known as moderate deviations.
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1.2. Dependent random variables. In this subsection, the identically distributed
random variables Xi are not necessarily independent.

Introduce the notation X+i = max{0, Xi}, X−i = max{0, −Xi}, S (+)
n = X+1 + · · · + X+n

and S (−)
n = X−1 + · · · + X−n . For example, if

var(S (+)
n ) ≤ Cσ2n and var(S (−)

n ) ≤ Cσ2n, (1.5)

for some constant C > 0 and every n ≥ 1, then Theorems 1.1 and 1.3 still hold (the
proofs are exactly the same, we just have to multiply the right-hand sides of (1.3) and
(1.4) by C). Condition (1.5) is satisfied if, for example,

|E(X�i X�i+n) − (µ�)2| ≤
D

n(log n)γ
for � = + and � = −,

for some constants D > 0, γ > 1 and every i, n ≥ 1, where µ+, µ− are the means of X+i ,
X−i , respectively. Moreover, a straightforward modification in the proof of Theorem
1.3 gives the following result.

Theorem 1.4. Assume that µ = 0 and σ2 <∞. Let 1 < θ < 2 and assume that

var(S (+)
n ) ≤ Cnθ, var(S (−)

n ) ≤ Cnθ, (1.6)

for some C > 0 and every n ≥ 1. Suppose that (1/3)(1 + θ) < α ≤ 1. Take any β with
β > (2α − θ)−1, β(1 − α) < 1 and 0 < ε ≤ 1. Then, for every n ≥ (9β2ε−1) β/(1−β(1−α)),

P
{

sup
k≥n

∣∣∣∣∣S k

kα

∣∣∣∣∣ > τε} ≤ 72C
τ2ε2

( 1
n2α−θ +

(β(2α − θ) − 1)−1

n2α−θ−β−1

)
.

Condition (1.6) is satisfied if, for example,

|E(X�i X�i+n) − (µ�)2| ≤ Dnθ−2 for � = + and � = −,

for some constant D > 0 and every i, n ≥ 1.

2. Proofs

2.1. Proof of Theorem 1.1. The proof follows the spirit of the proof of Theorem 1
of [5].

Since Xi = X+i − X−i and max{X+i ,X
−
i } ≤ X+i + X−i = |Xi|, we can assume without loss

of generality that Xi ≥ 0 and µ > 0 (we will give the details at the end of the proof).
Let β > 1 and f (x) = exβ

−1

for x ≥ 1. Consider the subsequence nk = d f (k)e, k =
1,2, . . . (where, as usual, dxe is the least integer ≥ x). We will see that ρk B nk+1/nk→ 1
as k→∞.

By (1.1),

P
{

sup
k≥m

∣∣∣∣∣ 1
µnk

S nk − 1
∣∣∣∣∣ > ε} ≤ σ2

µ2ε2

∞∑
k=m

1
f (k)

.
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Using the integral test (and the change of variable y = f (x)), we can estimate this series
from above by

1
f (m)

+ β

∫ ∞

f (m)

(log y) β−1

y2 dy.

Using integration by parts (dβe − 1 times), we see that the expression above is less than
1

f (m)
(1 + βbβc! + (β + (e − 1)βbβc!)(log f (m)) β−1).

Now take any n and let k be such that nk ≤ n < nk+1. Since we are assuming that
Xi ≥ 0,

nk

nk+1

1
nk

S nk ≤
1
n

S n ≤
nk+1

nk

1
nk+1

S nk+1 (2.1)

and so ∣∣∣∣∣ 1
µn

S n − 1
∣∣∣∣∣ ≤ 3ε

if ∣∣∣∣∣ 1
µnl

S nl − 1
∣∣∣∣∣ ≤ ε, for l = k, k + 1, and ρk ≤ 1 + ε, ρ−1

k ≥ 1 − ε.

Let h(x) = xβ
−1

. Then h′(x) = β−1xβ
−1−1, which implies that

f (k + 1)/ f (k) ≤ eβ
−1kβ

−1−1
≤ 1 + 3

2β
−1kβ

−1−1 ≤ 1 + 1
2ε

if k ≥ (3β−1ε−1)(1−β−1)−1
. This implies that ρk ≤ 1 + ε, and ρ−1

k ≥ 1 − ε if also nk ≥ 2ε−1.
Putting all this together (and replacing 3ε by ε) yields

P
{

sup
j≥n

∣∣∣∣∣ 1
µ j

S j − 1
∣∣∣∣∣ > ε} ≤ 9σ2

µ2ε2 n
(1 + βbβc! + (β + (e − 1)βbβc!)(log n) β−1)

for n ≥ n(ε, β).
Let us now explain in more detail why we could assume that Xi ≥ 0. For general

Xi, it is clear that we can assume, without loss of generality, that µ = 0 (by working
with Xi − µ). Then we see that the means of X+i and X−i satisfy µ+ = µ− = 1

2τ. Of
course we may assume that µ+ > 0 (otherwise the random variables Xi are trivial).
Then we apply the above proof twice, once for S (+)

n B X+1 + · · · + X+n and then for
S (−)

n B X−1 + · · · + X−n . The result then follows easily for S n = S +n − S −n .

2.2. Proof of Theorem 1.3. As in the proof of Theorem 1.1, we can assume that
Xi ≥ 0 and µ > 0.

By (1.1),

P
{
n1−α

∣∣∣∣∣ 1
µn

S n − 1
∣∣∣∣∣ > ε} ≤ σ2

µ2ε2 n2α−1 . (2.2)

Let f (x) = xβ, x ≥ 1, and nk = d f (k)e, k = 1, 2, . . . . Then we easily see (by using the
integral test) that

P
{

sup
k≥m

n1−α
k

∣∣∣∣∣ 1
µnk

S nk − 1
∣∣∣∣∣ > ε} ≤ σ2

µ2ε2

( 1
f (m)2α−1 +

(β(2α − 1) − 1)−1

f (m)2α−1−β−1

)
.
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Now if nk ≤ n < nk+1, by (2.1) we see that

n1−α
∣∣∣∣∣ 1
µn

S n − 1
∣∣∣∣∣ ≤ 3ε if n1−α

l

∣∣∣∣∣ 1
µnl

S nl − 1
∣∣∣∣∣ ≤ ε, for l = k, k + 1,

and ρk ≤ 1 + εnα−1
k , ρ−1

k ≥ 1 − εnα−1
k . We see that this last hypothesis is satisfied

whenever k ≥ (3β2ε−1)(1−β(1−α))−1
. Consequently,

P
{

sup
j≥n

j1−α
∣∣∣∣∣ 1
µ j

S j − 1
∣∣∣∣∣ > ε} ≤ 9σ2

µ2ε2

( 1
n2α−1 +

(β(2α − 1) − 1)−1

n2α−1−β−1

)
whenever n ≥ (9β2ε−1) β/(1−β(1−α)).

The general result follows by decomposing Xi = X+i − X−i and arguing as we did at
the end of the proof of Theorem 1.1.

2.3. Proof of Theorem 1.4. This is a straightforward modification of the proof of
Theorem 1.3. For example, instead of (2.2), we have now

P
{
n1−α

∣∣∣∣∣ 1
µn

S n − 1
∣∣∣∣∣ > ε} ≤ C

µ2ε2 n2α−θ .

We leave the details as an exercise.
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