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Steady doublet-type flow takes place in a porous formation, where the log-transform Y =
In K of the spatially variable hydraulic conductivity K is regarded as a stationary random
field of two-point autocorrelation py. A passive solute is injected at the source in the
porous formation and we aim to quantify the resulting dispersion process between the two
lines by means of spatial moments. The latter depend on the distance ¢ between the lines,

the variance 03 of Y and the (anisotropy) ratio A between the vertical and the horizontal
integral scales of Y. A simple (analytical) solution to this difficult problem is obtained by
adopting a few simplifying assumptions: (i) a perturbative solution, which regards o)% asa
small parameter, of the velocity field is sought; (ii) pore-scale dispersion is neglected; and
(iii) we deal with a highly anisotropic formation (1 < 0.1). We focus on the longitudinal
spatial moment, as it is of most importance for the dispersion mechanism. A general
expression is derived in terms of a single quadrature, which can be straightforwardly
carried out once the shape of py is specified. Results permit one to grasp the main features
of the dispersion processes as well as to assess the difference with similar mechanisms
observed in other non-uniform flows. In particular, the dispersion in a doublet-type flow
is observed to be larger than that generated by a single line. This effect is explained
by noting that the advective velocity in a doublet, unlike that in source/line flows, is
rapidly increasing in the far field owing to the presence there of the singularity. From the
standpoint of the applications, it is shown that the solution pertaining to 4 — 0 (stratified
formation) provides an upper bound for the dispersion mechanism. Such a bound can
be used as a conservative limit when, in a remediation procedure, one has to select the
strength as well as the distance ¢ of the doublet. Finally, the present study lends itself as
a valuable tool for aquifer tests and to validate more involved numerical codes accounting
for complex boundary conditions.
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1. Introduction

We consider a steady flow taking place in a horizontally unbounded, three-dimensional
domain £2 of thickness D. The velocity field is generated by a doublet (a pair of
injecting/pumping lines of given strength Q[L?/T]). The source and the sink are
at (—€/2,0,x3) and at (£/2, 0, x3), respectively, where |x3| < D/2 (figure la). This
configuration is typical of field-scale procedures to determine the properties of aquifers
or in in situ remediation (typically pump and treat) strategies. Common to these
methodologies is the injection at the well of a solute (either passive or reactive), and the
recovery of the flux-averaged concentration (the so-called breakthrough curve, BTC) at
the pumping well (figure 15). The pumped water may be eventually used (after treating)
to recharge. The question of relevance here is whether a doublet represents a realistic
model for a system of injecting/pumping wells. It is well known (Dagan 1978) that this is
authorized when the well radius r,, is much smaller than the well length. Because r,, ~
0O(1-10cm), whereas the aquifer thickness is O(1-10m), replacing a well with a line
of singularity is a reasonable approximation. As a consequence, the theoretical study of
transport in a doublet-type flow becomes of definite interest for applications. The drawback
attached to the doublet is the non-uniformity of the flow field, which makes the simulation
(and the successive interpretation) of the BTC very complicated. As it will be clarified
later on, such a difficulty is tremendously enhanced by the heterogeneity of the aquifer,
and this is (partly) the reason for the very limited analytical studies on such a topic.

The simplest approach to the problem at hand consists of regarding the formation
as homogeneous with constant conductivity (a comprehensive overview of the existing
analytical solutions can be found in Bruggeman 1999). In this case, flow is characterized
by streamlines connecting the source with the sink. In particular, Koplik, Redner & Hinch
(1994) have shown that the homogeneous advective field: u = ug r/ r4=1 (where d = 2,3
is the space-dimensionality) greatly influences transport causing, in particular, huge
differences in the mass arrivals along different streamlines and ultimately producing a
persistent tailing (modulated by the scaling parameter ug) in the BTC.

However, natural porous formations are, as a rule, heterogeneous, with K varying in the
space by several orders of magnitude (Rubin 2003). Especially in sedimentary formations,
heterogeneity manifests as elongated inclusions (lenses) of different permeabilities, which
result in a layered pattern. This sets up de facto ‘shortcuts’ connecting the lines through
high conductivity zones, which lead to BTCs earlier than in an homogeneous medium
(Kurowski et al. 1994). As a consequence, dispersion is tremendously augmented, as has
been detected in a few field-scale transport experiments (Ferndndez-Garcia, Illangasekare
& Rajaram 2004; Ptak, Piepenbrink & Martac 2004).

To account for its erratic variations and the associated uncertainty, it is customary to
model the hydraulic conductivity K as a random field. Thus, the log-conductivity ¥ = In K
is regarded as stationary and normal, defined completely by the geometric mean Kg =
exp((Y)) (hereafter, the symbol () will denote the ensemble average operator), variance 03
and two-point autocorrelation py. The latter is anisotropic, with the horizontal integral
scale, 1, larger than the vertical one, I,.

Transport in doublet-type flows, where the spatial variability of the hydraulic
conductivity is accounted for, has been scarcely studied, its theoretical and practical
importance notwithstanding (Kurowski et al. 1994). With the exception of a few analytical
studies (Dagan & Indelman 1999; Zech et al. 2018), to our knowledge, there are only
numerical studies simultaneously accounting for the heterogeneity of the aquifer and
the non-uniformity of the flow pattern (see Bianchi et al. 2011, and references therein).
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Figure 1. (a) Sketch (lateral view) for solute transport generated by an injecting/pumping well-system of
radius r,, through a porous formation §2 of thickness D. (b) Schematic pattern (plan view) of the streamlines,
as determined by the spatially variable advective velocity.

However, the strong coupling between the spatially variable hydraulic conductivity and the
non-uniformity of the flow poses serious numerical issues. Very dense grids are required
in the regions of the flow domain where streamlines converge, which therefore prevent
the ability to achieve accurate solutions (especially for highly anisotropic formations).
Instead, analytical tools lead to simple (i.e. closed form) solutions. These provide
explicit relationships between the input parameters and the model output, therefore giving
physical insight into the problem, without resorting to computationally heavy (sometimes
prohibitive) numerical simulations.

We aim to investigate the dispersion mechanism in a doublet flow by means of spatial
moments. While the dispersion of both passive and reactive solutes in uniform mean
flows has been studied extensively in the past (see, e.g. Dagan 1984; Cvetkovic & Dagan
1994), much less has been done at the conditions typical of source flows (a review of
recent results can be found in Severino, Leveque & Toraldo 2019) and we are not aware
of any theoretical derivation of spatial moments for a doublet-flow configuration. Before
proceeding, we wish to clarify the difference between the present study and that of Dagan
& Indelman (1999) (similar conclusions can be drawn for the study of Zech et al. 2018).
In these studies, the aim was: (1) to compute the BTC at the sink given the input at the
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source; and (2) to assess how the heterogeneity of the formation impacts the shape of
the BTC. However, such a methodology does not allow for quantification of the dispersion
process in the intermediate zone between the two lines (figure 1). In fact, the approach
of Dagan & Indelman (1999) relies on the quantification of the probability distribution
function of the arrival times of solute particles at the source, and therefore it does not
account for the entire history of the spatial dispersion between the release and recovery
of the solute. From the standpoint of applications, an important implication concerns the
identification of the heterogeneous nature of the conductivity. In fact, unlike the BTC,
spatial moments are affected per se by the distribution of the advective velocity between
the injecting and pumping lines. As a consequence, the match between the theoretical
second-order spatial moments (derived in the present study) and the experimental ones
leads to a robust identification of the conductivity field.

The paper is organized as follows: after recalling the general expression of spatial
moments, we employ an analytical approximate solution, which ultimately leads to a
simple (closed form) expression for the first- and the second-order spatial moments. Then,
we discuss the main differences in the dispersion mechanism with transport taking place
in other non-uniform flows and we end with our concluding remarks.

2. The transport problem
A passive solute is injected injected in £2 through the sink (figure 1) at a

concentration Co = Cp(a). We assume that £2 is initially solute free. Spatial dispersion
can be quantified by means of the first

Rn0) = f da (X,u(r: @) Cola) (m = 1,2,3). @.1)
and second
O
(Smn()) = v f da (X;,(1; @)X, (1; @)) Co(@) (m,n=1,2,3), (2.2)

order spatial moments (where the constants M = ¢ f da Cy(a) and ¥ are the injected
mass and the porosity, respectively). For a pulse of constant concentration Cp, moments
(2.1)—(2.2) are written as

Rn(D) = X (D), (Smn(®) = (X (DXL (D)) = X (1) (2.3a,b)
(Dagan 1989). These expressions rely upon two fundamental hypotheses.

(i) Pore scale dispersion D is neglected. To discuss the feasibility of this approximation,
it is instrumental to recall that advection results in the fragmentation of the
plume into spots moving quicker/slower than the mean velocity. This produces a
concentration gradient between adjacent spots, which ultimately leads to a Fick-type
mixing. While this mechanism determines a reduction (dilution) of the local
concentration (Fiori & Dagan 2000), the matter here is whether D is also influential
on second-order moments (2.2). This can be easily established by comparing the
characteristic advection time, t,, relative to the characteristic mixing time, fp.
In particular, if #, is larger than #p, then local dispersion is expected to have
a ‘non-negligible’ impact, otherwise it can be ignored. Because typical values
of the above characteristic times are such that #,/tp < 1 (see, e.g. Dagan 1989;
Rubin 2003), one concludes that pore-scale dispersion can be neglected in the
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majority of the applications (see also Severino, Santini & Sommella 2011; Severino
et al. 2012a; Zech et al. 2018);

(i1) Ergodicity, the condition which de facto allows for replacing spatial averages with
their statistical counterparts in (2.3a,b), is fulfilled within the present study. More
precisely, to invoke the ergodic argument, the thickness D is required to be much
larger than the vertical integral scale /,, (for details, see Dagan 1989, ch. 1.10).
Because D ~ O(1-10m), whereas I, ~ O(1072=1 m) (see, e.g. tables 2.1-2.2 in
Rubin 2003), ergodicity is met in most of the real-world situations. As indirect
consequence, we can also neglect the effect of the lower/upper boundaries on flow
and transport, therefore assuming £2 = R3.

Overall, determining the higher-order statistics (typically skewness and kurtosis) would be
worthwhile to comprehensively capture the behaviour of the plume. However, logistic as
well as economic limitations in the experiments (see, e.g. Ferndndez-Garcia et al. 2004)
do not allow for acquiring the proper dataset needed to compute skewness and kurtosis.
For this reason, stochastic tools for the analysis of transport experiments taking place in
randomly heterogeneous porous formations generally employ second-order statistics. The
usefulness of adopting moments (2.3a,b) to characterize the plume spreading is that they
depend directly upon the mean (X) and the fluctuation X’ = X — (X)) of the trajectory X’
of a fluid particle which, in turn, are determined by the kinematic equation

ditX =ulX), X(0;a) =a. (2.4a,b)
Thus, central to quantifying transport is the velocity field u. The latter is not exactly
solvable, even for the case of a mean uniform flow (an extensive treatment on this topic can
be found in Dagan 1989). In the following, we adopt an approximation for the flow field
leading to a simple solution for the transport problem, thereby avoiding heavy (sometimes
prohibitive) numerical simulations. Although approximate, the solution for the flow field
keeps the salient features of the problem.

2.1. Approximate solution of the velocity field
The system of injecting/pumping wells is replaced by a point-like source/sink (dipole).
Such an approximation is valid when the radius r,, of the wells is much smaller than the
distance ¢ between them (figure 1a). Because r,, ~ O(1-10cm), whereas £ ~ O(1-10m),
this is a reasonable approximation.

We adopt a first-order approximation in the fluctuation ¥ = Y — (Y), which has been
shown to be quite a robust hypothesis (see, e.g. Firmani, Fiori & Bellin 2006). Hence,
the flow variables (specific energy, flux, etc.) can be expanded in an asymptotic series
of Y’ and, for each of them, up to the o*%—order, one retains the leading-order term (mean)
and the first-order (fluctuation) approximation (an approach similar to the ‘frozen field’
approximation in turbulent flows). Owing to its importance for the transport problem, we
focus in the following upon the velocity field. In particular, at the leading order, one has

40 (€% — 4x2)

0 21 p2)2 , M= L,
4xz + £ — (4ex
WO ) = -2 | 7+ )= @) 2.5)
27tn 320 x1 x2 _5
(4ex))? — (42 + €2)° ’
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(Dagan & Indelman 1999), where x, = 1/x% —i—x% is the magnitude of the vectorial
position x, = (x1, xp) in the horizontal plane. Thus, at the leading order, the velocity
field u® is de facto two-dimensional, although transport is still three-dimensional (the
fluctuation X" obeys the three-dimensional (2.12)).

To simplify the computational burden, we deal with a formation having the anisotropy
ratio A = I,,/I much less than one. This heterogeneous structure is typical of those (highly
anisotropic) formations where the fluctuation ¥’ along the vertical direction is much larger
than that in the horizontal plane (see, e.g. Sudicky 1986; Zinn & Harvey 2003). This
authorizes the replacement of the vertical autocorrelation with a ‘white noise’ signal,
ie. py(x) = py(x,) d(x3) (for details, see e.g. Fiori, Indelman & Dagan 1998). This
approximation has two fundamental implications.

(1) The fluctuation of the velocity is written as
uV(x) ~ Y (x) u®(x,) (2.6)

(Dagan & Indelman 1999; Indelman & Dagan 1999). In fact, adopting (2.6) was
found to yield accurate results for the dispersion mechanism already for 4 < 0.2
(Dagan & Indelman 1999). More generally, it has been recently shown that the
approximation (2.6) becomes an exact result for 4 — 0 (stratified formation), even
in unsteady non-uniform flows (Severino & Cuomo 2020). Because numerous
(typically sedimentary) formations are such that I, < I/10 (see e.g. tables 2.1-2.2 in
Rubin 2003), the above approximation is applicable to many situations of practical
interest.

(i1) Transport variables become stationary along the vertical and, therefore, they depend
only on x;.

Based on this, we proceed with the computation of moments and, in particular, with the
quantification of the dispersion pattern in the zone between the source and the sink.

2.2. Longitudinal dispersion along the central strip delimited by the source/sink
We consider a solute injected at the source (figure la). For ¢ > 0, the plume is
advected outwards and it is distorted owing to the Y-heterogeneity (figure 1b). It is seen
from (2.3a,b) that to characterize the migration of the plume, it suffices to compute
the second-order statistics of the trajectory X = (X1, X2, X3) of a fluid particle. In

particular, because the average velocity is identical to that in an homogeneous medium
of conductivity K¢, the mean trajectory (X) results from (2.4a,b) as follows (chain-rule of
derivation):

0)
dXp/de (X0, X)) dX) 0 @7

dXo)/dr WO ((xy), (o)) d(X2)’
Then, accounting for the velocity field (2.5) leads to the nonlinear first-order equation,
d(X2)
(X2)

2(X1) d(X1) = (X1)? — (X2)* = £%) (L =1¢)2), (2.8)

which is transformed into a linear one after introducing ) = (X )2 and Z = In(X»), i.e.
d - _
FY=Y-epD) - = X)) =040 - ) 29)
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The second part of (2.9) corresponds, for any C € R, to a streamline originating at
the source. It is easy to show that all the streamlines belong to a bundle of circles
(Apollonius), passing by the sink and the source, with centres and radii given by (0, C)

and v/ C? + £2, respectively. In particular, the trajectories within a tiny strip between the
source and the sink are such that (X>) < (X1) (figure 1) and, therefore, the longitudinal
trajectory (X1) = (X 1(?)) can be obtained by expanding in Taylor series the right-hand side

of (2.4a,b), with u g1ven by the first part of (2.5). This leads to

d 40002 —4((X1)* + (X 1
X = [ -4 (ex0)” ) )] = ? /(“”)2, (X1 (0)) = —
! [2+4((X1)2+ (X2)?)]” — @exg)* =X
(2.10)
Solving the above Cauchy problem provides
1(X) = t—c(z +3X X%, .= Jmg X = ﬂ (2.11a—c)
3 ’ 0’ ¢

Thus, the central normalized trajectory X is an increasing function of the time, and it takes
time 7(1) = 4/3 ¢, to reach the sink.

We are now in position to compute the trajectory variance (X, X)), which in turn is
related to the fluctuation X” by means of

%X’ =uV (X)) + (X -V)u? (X)), X0)=0 (2.12)
(Indelman & Rubin 1996). We restrict the analysis to the trajectories along the xj-direction,
because they are of most interest for the spreading mechanism. In fact, the spreading of
the plume is advection dominated (see, e.g. Severino, Cvetkovic & Coppola 2005) and
therefore dispersion is enhanced along streamlines where the advection velocity is larger.
To establish which is the streamline with higher velocity, in the spirit of the employed
perturbation approach, one can look at the leading-order approximation u® of the flow
field. Toward this aim, it is convenient to switch to the new variables (¢, 6) that are related
to x, as

¢ sinh ¢ B ¢ sin6

= oshd +cos’ 27 oshd + coso’ R, 6 €]lo0, 2.13a,b
cosh¢ + cos ¢ 2 cosh ¢ + cos 6 ¢ € €10, =l (2.13a.b)

(where, in particular, 6 is the attack angle of the outgoing trajectory). Thus, in the new
framework, the magnitude of the velocity results from (2.13a,b) as |u® | ~ cosh ¢ + cos 6,
which shows that the streamline exhibiting the largest dispersion is the one along the x;
direction (0 = 0). For this trajectory, the probability that X /X1 ~ O(1) is quite small, and
concurrently the fluctuation X/l results from (2.12) as

d

—x; =l ((x1),

" u? ((X1),0),  X|(0) =0. (2.14)

3( 1)
The solution of (2.14) is

WV [(X1 (1)), 0]

(2.15)
0) [(X; (7)), 0]

X, () = ul” (X (1)), 0] f
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and thus the variance X () = (X/ 2(0) along the central streamline reads as
dr; doo Gy, (71, T2)
O 1 o) ul” 1X (1)

X = u® [ )16 [0 ()] / /0 2.16)

where, for the sake of brevity, we have replaced u [(X1 (n),0] — u(o)[(Xl (0))]. In the

expression (2.16), Cyy, (11, 12) = (" [(X1 (1)) ]u{"[(X1 (22))]) is the covariance of the
velocity field u that is computed by the approximation (2.6) as

Cuyy (11, 12) = ol X1 ()1 LX) oy (X1 (1)), (X1 ()] (2.17)

Then, substitution into (2.16) leads to

t t
X0 = opul? 10 )1l [(X) ()] /0 /0 dry dry py [(X1 (7)), (X1 (2))]. (2.18)

It is worth noting that for a mean uniform flow, i.e. uﬁo) = const, one recovers from

(2.18) the same expression (see (3.10) in Dagan 1987) valid for a groundwater flow.
For convenience, we switch to the coordinate (X1) = (X (¢)) by virtue of the kinematic

equation d(X(¢)) = ”1 [(X1 (n)]dt, ie.

X1 rX1) o d _
X ((X1) = [Gyu(o)( (X1)) / / a(O),B pr (g) ﬁ). (2.19)
Uy () Uy B)

Introducing the new variables u = o — 8 and v = S enables one to write

0 2 i) ) dv
X ) = [ond® @] [ dwpr [ S
0 u Ml (U —u— 2)

1 1
4 . 2.20
XLEO) (v-9) uﬁo)(v—Zu—@} e

Thus, if the leading-order term uﬁO) makes it possible to express in closed form the inner

quadratures in (2.20), the computation of Xi; is reduced to the evaluation of a single
integral. This latter is then carried out (either analytically or numerically) once the shape
of the autocorrelation function py is selected. This is just the case for the problem at hand,
and the final result reads as

m\ 2 )
Xn ((X1)) = | oy oi )" ((X1) /o du py (u) Ps(u; (X1)), (2.21)

where we have set

Ps(u; £) = lg +4&ut §(952—522>u3+%(5%)(752—755—2@2)#

2 —0)2E+0)u+ %(g +0)’3E>2—9£0+8E%). (2.22)

In what follows, we shall discuss the combined effect upon solute dispersion of the
heterogeneity of the medium and the flow configuration.

931 A2-8
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3. Discussion

We wish to illustrate and discuss the results achieved so far. To show, in a simple manner,
the main features of the dispersion between the two lines, we regard the fluctuation Y’
as a white noise signal (in analogy with the §-approximation of the energy spectrum
in the theory of homogeneous turbulence). This simplifies tremendously computing the
right-hand side of (2.21), and the final result is

XnX) 2 1+X
o2 151 —X%)?

(3X* —9X +8) (3.1

(for convenience, we have taken ¢ as the characteristic length scale). It is seen that X

grows monotonically with the scaled travel distance X €] — 1, 1[ (and ultimately with the
time 7). Such a behaviour has a straightforward mechanical explanation by recalling that
the variance (3.1) is computed from the outset of the advective velocity field. In fact, close
to the release zone, transport is affected by the boundary condition and, concurrently,
dispersion is negligible there (it is reminded that the pore-scale dispersion is neglected).
Instead, as the travel distance X increases, the random fluctuations of the velocity field
overtake over and over and this justifies the increase of Xj;. Ultimately, the latter becomes
unbounded owing to the fact that the velocity at the sink becomes singular. The transitional
behaviour from the near (i.e. X ~ —1) to the far (i.e. X ~ 1) field is in agreement with
Indelman & Dagan (1999) and Severino (2011), who have investigated transport generated
by source-type flows. B

In figure 2, we have depicted the scaled longitudinal moment X1y /(1 Ea%) obtained from
(2.21) by considering the exponential py(x) = exp(—x/I), i.e.

~ £ 72 (Y T ney . _
Xll()f? _ MO+ Tepl=X A+ D/NXX) 5 e (3.2)
Iio} (1-X)2(1 4 X)?

2 R R . o -
xX7E) = 555 —20E* + 5(712 — 1E> —4I(91% — 1)E% + 2(481* — 61% + 1)
2 75 73 72 7
—75(9601° — 1501° + 207 + 151 — 8), (3.3)

XME) = (T + DE* + 21 + 1)%6 +321° + 3217 + 111 + 1 (3.4)

(a similar result, although much more cumbersome, is obtained by adopting
Gaussian py) as a function of the distance R = tan[n((X1) + €)/(4€)]. The utility of the
mapping (X1) €] — £, [ — R € [0, oo relies upon the fact that, in this way, one can
compare with similar results in source-/line-type flows. The most evident feature detected
from figure 2 is the increasing dispersion (for a given R) with the smaller I, ultimately
reaching the upper bound corresponding to a stratified formation (red line). In fact, to
pass through a low conducting inclusion, a fluid particle has to cover a large distance,
therefore increasing the correlation length, and hence the velocity covariance Cy,,. As
a consequence, the second-order moment Xq; will also grow owing to its dependence
(see (2.16)) upon C,,,. Such an increase is enhanced by the smallest I values, because
a formation with / < ¢ implies a longer correlation distance.

In addition to the computational simplification, the expression (3.1) lends itself as
an upper bound for the dispersion mechanism, which in turn can be conveniently

931 A2-9
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Figure 2. The normalized trajectory variance X1;/ (Ifa)%) for exponential autocorrelation (black lines) as a

function of R and a few values of the non-dimensional integral scale I = I/¢. For comparison purposes, the
trajectory variances for a line (blue) and source (green) flow (Indelman & Dagan 1999) have also been included.
Finally, the red line depicts (3.1), which corresponds to a stratified formation.

accounted for when designing remediation strategies. More precisely, one can select the
injecting/pumping flow rate Q as well as the distance £ such that dispersion at a certain
distance x* €] — £, £[ is less than a given (regulatory) threshold. It is therefore clear that
dealing with a stratified formation, and thus by accounting for the simple expression (3.1),
would lead to a conservative estimate.

At the other extreme, line (and a fortiori source) flow constitutes a lower bound for
dispersion in a dipole. This is clearly observed in figure 2, where we have also depicted
the trajectory variance for a line and source flow, i.e.

2 2 .
X §R - R2 [1 -+ R)exp(—R)] (line), (3.5)
P |2 d 8 4 (2 2N -
= R—-1+ R RA + 72 1+ R + 72 exp (—R) (source),

(Indelman & Dagan 1999). The different behaviour of (3.2) as compared with the
latter is explained by noting that the velocity, i.e. (u(R)) = (2R)~!, in a line-type flow
and that, i.e. (u(R)) = 4R*>~ !, in a source-type flow are decreasing with the scaled
distance R (figure 3), whereas in a dipole flow, the velocity

B (/4)?
w(R)) = arctan R (/2 — arctan R) (3.6)

(which is obtained by replacing (X;) — (4¢/m) arctan R — ¢ in (2.10)) is unbounded at
the source (i.e. R = 0) and at the sink (i.e. R — 00). As a consequence, the fluctuation
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Figure 3. Non-dimensional (i.e. scaled by £/f.) mean velocity (1) = (u(R)) as a function of the normalized
distance R = tan[m((X;) + £)/(4¢)] for a (i) doublet, (ii) single line and (iii) point source type flow.

of the velocity (which, in the spirit of the perturbation expansion employed in the present
study, slightly differs from the mean velocity) is unbounded both at the release and at
the recovery of the solute, therefore producing a larger dispersion as compared with that
detected in source/line flows.

4. Summary and conclusions

Solute transport in a doublet-type flow through a heterogeneous porous formation
has received, in the past, very little attention, its importance in the applications
notwithstanding. The main difficulty, which renders this problem very complex, is
the coupling between the spatially variable hydraulic conductivity and the strong
non-uniformity of the flow field. Even worse, the numerical approach does not seem
computationally affordable for highly anisotropic formations of a three-dimensional
structure.

In the present study, we have focused on the dispersion process occurring in the
strip delimited by the source and the sink (figure 1). An analytical (closed form)
expression for the longitudinal spatial moment has been derived. It has been achieved
by adopting a few approximations: (i) the log-conductivity is a stationary random field
of axisymmetric anisotropy; (ii) a perturbation solution for the flow field is sought;
and (iii) pore-scale dispersion is neglected. Dealing with a highly anisotropic formation
simplifies considerably the computation of the statistics of the flow field and concurrently
the evaluation of the longitudinal spatial moment. The latter is expressed in closed form for
any autocorrelation function py, which can be straightforwardly evaluated once the shape
of py is specified. The major difference between transport in a doublet and other similar
(typically source and line type) flows is that dispersion in the former is larger than in

931 A2-11


https://doi.org/10.1017/jfm.2021.929

https://doi.org/10.1017/jfm.2021.929 Published online by Cambridge University Press

G. Severino

the latter. This effect arises from the advective velocity (3.6) which, unlike that in
source/line flows, is rapidly increasing in the far field owing to the presence there of the
singularity.

In addition to the theoretical aspects, expression (2.21) is also useful for the applications.
In fact, by taking the limit A — O (stratified formation) provides an upper bound for the
dispersion mechanism (figure 2). Thus, it can be adopted as an (conservative) estimate
to select the strength O and the distance ¢ of the doublet, when designing remediation
strategies. In addition, it is shown that dispersion arising from a single injecting well
(Indelman & Dagan 1999) constitutes a lower bound for the same mechanism. This is
clearly owing to the fact that, unlike the doublet, the advective velocity decays like R~
Even such a lower bound finds use in the applications concerning the use of chemicals to
neutralize dissolved pollutants. In this case, one has to maximize the dispersion to enhance
reactions (Di Dato et al. 2018), and therefore the design accounting for the lower bound
certainly provides another conservative estimate of the efficiency of the procedure.

Although the study has focused on dispersion of a passive scalar, it can be extended
straightforwardly to reactive solutes along the lines developed by Cvetkovic & Dagan
(1994). Even in this case, if one is interested in global quantities (like BTCs or spatial
moments), then pore-scale dispersion can be neglected. In fact, the involved reaction
equation very often overtakes local mixing (Severino, Dagan & van Duijn 2000; Severino
et al. 2012b). Nevertheless, to assess the efficiency of certain remediation procedures
(specifically those relying upon the concentration values), the above global quantities
may not result in an appropriate tool. In this case, the computation of the probability
distribution function of the concentration value(s) would be preferable and dispersion
can not be neglected anymore. Finally, the present study lends itself as a benchmark for
validating more involved numerical codes.
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