BULL. AUSTRAL. MATH. SOC. VOL. 11 (1974), 225-229.

An integral representation for a generalised variation of a function

A.M. Russell

In this note we present sufficient conditions for the continuity of the total kth variation of a function defined on a closed interval [a, b]. We also give an integral representation for total kth variation, thus obtaining an extension of the classical result

$$V(f; a, x) = \int_{a}^{x} |f'(t)| dt , a \le x \le b$$

The results presented in this note will be a continuation of results obtained in [2], and unless otherwise stated, all definitions and notation will be taken from [2].

THEOREM 1. If $f \in BV_k[a, b]$, $k \ge 2$, and f has a (k-1)th Riemann* derivative throughout [a, b] (one-sided, of course, at a and b), then $V_k(f; a, x)$ is a continuous function of x.

Proof. Let $\varepsilon > 0$ be arbitrary, and let $V_k(x)$ denote $V_k(f; a, x)$. Then there exists a π subdivision $a = y_0, y_1, \dots, y_n = x$ of [a, x] with $y_{n-1} = x'$ arbitrarily close to x, such that

$$\sum_{i=0}^{n-k} |Q_{k-1}(f; y_i, \ldots, y_{i+k-1}) - Q_{k-1}(f; y_{i+1}, \ldots, y_{i+k})| > V_k(x) - \frac{\varepsilon}{2} ,$$

and

Received 17 May 1974.

$$|q_{k-1}(f; y_{n-k}, \ldots, y_{n-1}) - q_{k-1}(f; y_{n-k+1}, \ldots, y_n)| < \frac{\varepsilon}{2}$$

Therefore,

$$\begin{split} v_{k}(x') &\geq \sum_{i=0}^{n-k-1} |q_{k-1}(f; y_{i}, \dots, y_{i+k-1}) - q_{k-1}(f; y_{i+1}, \dots, y_{i+k})| \\ &= \sum_{i=0}^{n-k} |q_{k-1}(f; y_{i}, \dots, y_{i+k-1}) - q_{k-1}(f; y_{i+1}, \dots, y_{i+k})| \\ &\quad - |q_{k-1}(f; y_{n-k}, \dots, y_{n-1}) - q_{k-1}(f; y_{n-k+1}, \dots, y_{n})| \\ &\geq v_{k}(x) - \frac{\varepsilon}{2} - \frac{\varepsilon}{2} = v_{k}(x) - \varepsilon \end{split}$$

Consequently we have $V_k(x) \ge V_k(x') > V_k(x) - \varepsilon$, and so it follows that $V_k(x') \rightarrow V_k(x)$ as $x' \rightarrow x - 0$. Similarly it can be shown that $V_k(x') \rightarrow V_k(x)$ as $x' \rightarrow x + 0$, and this now completes the proof.

We make two observations.

The result of Theorem 1 is an extension of the classical case in which the total variation V(f; a, x) of a continuous function f is continuous.

The hypothesis of existence of the (k-1)th Riemann* derivative is necessary, as shown by the following example. Let f(x) = |x|, $-1 \le x \le +1$. If k = 2, then $V_2(f; -1, 0) = 0$, whereas $V_2(f; -1, x) = 2$ for all $x \ge 0$.

We now obtain an integral representation for the total kth variation $V_k(f; a, x)$. This will be a generalisation of the classical result

$$V(f; a, x) = \int_a^x |f'(t)| dt ,$$

when f has an integrable derivative.

We make use of the following

THEOREM 2. If f is a real-valued function whose kth derivative exists and is bounded on [a, b], then $f \in BV_k[a, b]$.

The proof follows readily from [1, Section 1.2].

THEOREM 3. Let f be a function whose kth derivative is continuous in [a, b]. Then $f \in BV_k[a, b]$, and

$$(k-1)!V_k(f; a, x) = \int_a^x |f^{(k)}(t)| dt , a \le x \le b .$$

Proof. It follows immediately from Theorem 2 that $f \in BV_k[a, b]$. Let us denote $V_k(f; a, x)$ by $V_k(a, x)$. Then, using [2, Theorem 7], and noting that f has a (k-1)th Riemann^{*} derivative in [a, b], we obtain

$$\frac{1}{h} \left[V_k(a, x+h) - V_k(a, x) \right] = \frac{1}{h} V_k(x, x+h) \quad \text{when} \quad h > 0$$

Let y_0, y_1, \ldots, y_n be a π subdivision of [x, x+h] such that $x = y_0 < y_1 < \ldots < y_n = x + h$ and all sub-intervals $[y_i, y_{i+1}]$ are of equal length l, so that nl = h. Then, using [1, Section 1.2], we obtain

$$\geq \inf_{\substack{x \leq t \leq x+h \\ (k-1)!}} |f^{(k)}(t)| \frac{1}{k!} \sum_{i=0}^{n-k} (kl)$$

$$= \frac{h}{(k-1)!} \inf_{\substack{x \leq t \leq x+h \\ x \leq t \leq x+h}} |f^{(k)}(t)| \cdot \left(1 - \frac{k-1}{n}\right) .$$

Letting n tend to infinity gives us the result

(1)
$$V_k(x, x+h) \ge \frac{h}{(k-1)!} \inf_{\substack{x \le t \le x+h}} |f^{(k)}(t)|$$
 when $h \ge 0$.

We now consider any $\pi(x_0, \ldots, x_n)$ subdivision of [x, x+h] and use [1,Section 1.2] again to show that

$$\sum_{i=0}^{n-k} (x_{i+k}-x_i) |Q_k(f; x_i, \dots, x_{i+k})| \leq \sup_{\substack{x \leq t \leq x+h \\ k \leq t \leq x+h}} |f^{(k)}(t)| \frac{1}{k!} \sum_{i=0}^{n-k} (x_{i+k}-x_i) \leq \frac{h}{(k-1)!} \sup_{\substack{x \leq t \leq x+h \\ x \leq t \leq x+h}} |f^{(k)}(t)| .$$

Consequently,

228

(2)
$$V_k(x, x+h) \leq \frac{h}{(k-1)!} \sup_{x \leq t \leq x+h} |f^{(k)}(t)|$$

Combining inequalities (1) and (2) gives

(3)
$$\inf_{\substack{x \le t \le x+h}} |f^{(k)}(t)| \le (k-1)! \frac{V_k(x,x+h)}{h} \le \sup_{\substack{x \le t \le x+h}} |f^{(k)}(t)|$$
.

Similar inequalities would be obtained when h < 0, so we conclude that $\frac{d}{dx} V_k(a, x)$ exists, and equals $\frac{1}{(k-1)!} |f^{(k)}(x)|$. The required result now follows.

REMARK. Continuity of $f^{(k)}$ in the preceding theorem is not necessary. If $f^{(k)}$ is bounded and continuous almost everywhere, then $V_k(f; a, x)$ is absolutely continuous by (3), and at a point x of continuity of $f^{(k)}$ we can show, as before, that

$$(k-1)! \frac{d}{dx} V_k(f; a, x) = |f^{(k)}(x)|$$

Consequently, the integral representation still holds, the integral of course being Lebesgue.

We conclude with the following

THEOREM 4. Let f be a function whose kth derivative is continuous. Then $f^{(k-s)} \in BV_s[a, b]$, s = 1, 2, ..., k, and

$$(k-1)!V_{k}(f; a, x) = (s-1)!V_{s}(f^{(k-s)}; a, x), \quad a \le x \le b,$$

$$s = 1, 2, ..., k.$$

Proof. It follows immediately from Theorem 3 that $f \in BV_k[a, b]$. That $f^{(k-s)} \in BV_s[a, b]$, s = 1, 2, ..., k follows from [2, Theorem 12]. The required result now follows readily by an application of Theorem 3.

References

- [1] L.M. Milne-Thomson, The calculus of finite differences (Macmillan & Co., London, 1933).
- [2] A.M. Russell, "Functions of bounded kth variation", Proc. London Math. Soc. (3) 26 (1973), 547-563.

Department of Mathematics, University of Melbourne, Parkville, Victoria.