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BASIC COMMUTATORS AND MINIMAL MASSEY 
PRODUCTS 

ROGER FENN AND DENIS SJERVE 

The purpose of this paper is to continue the investigation into Massey 
products defined on two dimensional polyhedra, initiated in [13]. It will be 
shown that for many such spaces there is a hyperbolic model which can be 
used to study Massey products. More precisely, Massey products may be 
interpreted as intersections of geodesies in the Poincaré model. These 
elements are called minimal Massey products and are the analogue of 
Massey products over a system considered in Porter's paper. They enjoy 
the property of being uniquely defined (without indeterminacy) and of 
being multilinear and natural. Minimal products also satisfy sym
metry properties generalising the symmetry properties enjoyed by cup 
products. 

A device which will be useful in the proof of the main theorem, 7.4, is 
the introduction of a class of complexes called basic complexes. These 
generalise the notion of a surface and each one houses a standard copy of 
a Massey product. As an example consider the complementary space of 
the Borromean rings. This has a two dimensional spine which is the union 
of three basic complexes of weight three. In [9] it is shown that this space 
has a well defined three fold Massey product. This Massey product can be 
defined by the intersections of a suitable system of geodesies in the 
hyperbolic plane. 

The value of the minimal product will be shown to be an appropriate 
element in the Magnus ring. The relation with the jï-invariants [11] has 
already been shown in [13] and [15]. 

All homology will be with integer coefficients. A later paper will deal 
with more general coefficients. 

1. Preliminary notation. A presentation K = {jq, . . . , xn\rh . . . , rm) of 
a group will be consistently confused with the associated two dimensional 
cell complex with one 0-cell, n 1-cells and m 2-cells attached by the words 
rh i = 1, . . . , w. 

Definition 1.1. The symbol [a, b] in a group means the commutator 
aba~lb~l. A multi index or index for short / = (i\, . . . , i^) is a finite 
sequence of indices 1 ^ ij = n. Two indices / and J can be multiplied by 
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1120 R. FENN AND D. SJERVE 

juxtaposition. If / = I\hh then Ih I2 and 73 are called subindices of /. 
The empty index 0 is allowed and is a subindex of every index. Write 
J —> / if / can be obtained from J by deleting subindices and permuting 
the remainder. Rather more important is the negative J -h I. Note that if 
J = J\Ji, 1 = hh and J -fr I then either Jx -fr I\ or J2 ~h 12. Finally it is 
convenient to define the length /(/1? . . . , ik) of an index to be k. 

2. Massey products. Let K be a cell complex and let CP(K) denote the 
cellular cochain groups defined over some coefficient ring. Assume that K 
is equipped with an associative cochain approximation to the cup product 
written 

le} U [rj] = [£]fo] = M, see [16]. 

Definition 2.1. Given elements ut in HXK, i = 1,. . . , n a defining set 
for the Massey product of length n, (uh . . . , um) or («/), where 
/ = ( 1,. . . , n ), is an upper triangle array 

flu aX2 . . . aXn-\ * 

K ) = û22 . . . 02«-i Û2W 

^«« 

satisfying the following conditions: 
1. ay lies in C 1 ^ ) , 1 ë / ^ y ë « and (/,y) ^ (1, «). 
2. <2/z is a cocycle representation of uh i = 1, 2, . . . , n and 
3. if 

7 - 1 

2 aikak + Xj\ 1 ^ i <j ^ n 
k = i 

then 

3/,- = 8ÛI7, (i,j) ¥* (1, w). 

The element corresponding to the right-hand corner 

n-\ 

ahl = ZJ aikak + i,n 
k=\ 

is then a cocycle representing some class in H2K, written u{atj) and called 
the value of the defining set. The product (uh . . . , un) is defined if there is 
some defining set for it. In this case (uh . . . , un) is the subset of H2K 
consisting of all values u{atj). The submatrices ay, ï = i = j = f define 
Massey products of length/ — /' -f 1 called subproducts. So that in order 
for (u\, . . . , un) to be defined it is necessary (but not sufficient) that each 
of these Massey subproducts, for i' < f, contain zero. If they do contain 
zero and zero only then (uu . . . , un) is defined and is said to be strictly 
defined. The indeterminacy In (u\, . . . , un) of a Massey product is the 
subset 
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{a — b\a, b G (uh . . . , un) }. 

A lemma will now be stated. Its proof can be found in [10]. 

LEMMA 2.2. If (u\, . . . , « „ ) is strictly defined then the indeterminacy 

In (uu . . . ,MW) = {0} 

if and only if each 

(uh . . . , uk-u xk, uk + 2, . . . , «„> = {0}, 

where \ = k = n — \ and xk is any element of H]K. 

Massey products satisfy a naturality condition defined only up to 
inclusion because of indeterminacy. Let / iL —> K be a cellular map and 
suppose that uh . . . , un are elements of Z/1^. 

LEMMA 2.3. If (u\, . . . , MW) w defined then (f*u\, . . . ,f*un) is defined 
and 

f* (uu...,un) c (f*uh...,f*un). 

3. Homology of complexes. The purpose of this section is to introduce 
the notation which will be used in the sequel concerning the cohomology 
of the group presentations. 

Let K = {x\, . . . , xn\R), L = {y\, . . . ,ym\S) be complexes. The 
cellular chain groups C\(K) and C\(L) are generated by the xt and yx 

respectively. Let x* be the cochain defined by 

xt*(xj) = By. 

Then the x* generate Cl(K). Similarly the_yz-* generate the cochain group 
CX(L). The chain groups CjiK) and C2(L) are generated by rt G R and 
st e S. With a notation similar to that above C2(K) and C2(L) are 
generated by rz* and ^* respectively. 

Let cz-(ry-) denote the total exponent of xz in ry. Although xz and >̂z are 
always cycles, x* is only a cocycle if 

C|.(r7-) = 0 for all r} G i^. 

Dually rz* is always a cocycle but rz is only a cycle if 

tjin) = 0 for ally. 

LEMMA 3.1. Let K = {x\9 . . . ,xn\R}9 L = {yh . . . ,ym\S} be 
complexes. Assume that all cz-(/}) and all £i(Sj) vanish. Then with the notation 
above 

(a) HXK is freely generated by the ut = [xz*], 1, . . . , n and Hl(L) is freely 
generated by the vz = [>>/*], / = 1, . . . , m. 

(b) H2(K) is freely generated by the pz = [rz*], rz G R and H2(L) is freely 
generated by the ot = [s*], st G S. 
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Let <t>:L —> K be a cellular map and let [<f>jJ] be the « X m matrix 

Consider also the matrix [Azy] which is given by the total exponent of rl in 

LEMMA 3.2. With the notation above the induced map 
(c) 4>*:Hl(K) -> tf1^) w g/vert fty 

7 

(d) <f>*:H2(K) -> i/2(L) w g/vew 6y 

v 

Proof. For (c) note that 

For (d) suppose that 

<K*j) = I I gjkrjk% 
jk 

Then 

and so 

(4>*(Pi), [sj] ) = (n*, <Xsj) ) = Ay, 
4. Magnus expansions and Fox derivatives. In what follows F will 

always denote the free group on some variables x\, . . . , xn. Its group ring 
will be denoted by Z[F]. The augmentation homomorphism 

e:Z[F] -> Z 
is induced by e(g) = 1 if g e i \ 

For each /, 1 ^ /* ^ w, the Fox or nonabelian derivative 

8/ = d/dxt:Z[F] -» Z[F] 

is uniquely defined by the conditions: 

di(xj) = $ij a n <i 3/(wv) = 9/-(w)e(v) + w3z(v), [3]. 

Given a n y / e Z[.F] there is a Taylor expansion 

/ - 4 = 2 3,/(x; - i). 
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For any index I = (i\, . . . , i^) let 

3,:Z[F] -> Z[F] 

denote the higher order derivative 3Z] o 3/ o . . . o 3; . The composite e o 3/ 
will be written c7. If k = 0 then / = (j> and by convention 3^ is the identity 
and hence e^ = e. The integer et(u) is equal to the total exponent of xl in u 
considered earlier. The 3/ are linear in the sense that 

3/(X + JU) = 37(X) + 3/(ju) and 

37(aX) = ad[(k) if aeZ. 

LEMMA 4.1. For any index I and X, \x e Z[F] 

€7(X/x) = 2 €7l(X)€/2(/x) 
hi2=i 

where the summation is taken over all ordered pairs (I\, I{) such that 
I\Ii = /, including (J, <£>) and (<J>, I). 

Proof. This is obviously true if /(/) = 0. The proof follows routinely by 
induction on /( /) . 

COROLLARY 4.2. 

€7(XiX2 . . . \j) = 2 c7l(Xi)€/2(\2). . . erfy). 

COROLLARY 4.3. If I ^ <j> and g e F, 

€/(g"l)= 2 ( - l)Sfe>/2fe) • • • <//£)> 

w/zere the sum is taken over all I\ . . . Ij = I with Ij ^ <J>, / = 1, . . . ,j. 

Proof Consider the expansion of 0 = £[(gg~l) and use induction on 

Definition. Let H be a subgroup of the group G and let [G, H] denote the 
subgroup of G generated by all elements ghg~xh~x where g G G and 
h G H. The lower central series G = G\ 3 G2 3 . . . is defined inductively 
by G\ = G and Gn+\ = [G, Gn]. 

THEOREM. 4.4. Let F = F(xh . . . , xn) be freely generated by x\, . . . , xn. 
Then g e Fk if and only ifer(g) = 0 for all 0 < /(/) < k. 

The proof of 4.4 can be found in [3], and since the e7 are also the terms 
in the Magnus expansion (see later) a proof can also be found in [8] and 
[18]. The mod/? version of 5.4 in [14] will be used in a later paper. 
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Definition. Let x t>e t n e free associative power series ring in the 
noncommuting variables X\, . . . , Xn and having coefficients in Z. If 
/ = (z ' i , . . . , /^) , where 1 ^ /y ^ n, j = 1, . . . , A: let Xj be the 
monomial 

Xj = Xl{ . . . Xik. 

Thus the elements of x can be expressed uniquely as formal sums 

Q = 2CrXr 

where the summation is over the set of all indices and the Cf lie in Z. The 
dimension of Xj is 

dimA7 = k = 1(1). 

In general the dimension of an arbitrary element Q e X is the minimal 
degree of the monomials occuring in the power series Q. Thus dimO = oo, 
dim/c = 0 if k is a non-zero element of Z, and dimw = 0 if u is a unit in x-
A result in [7] is that the elements 1 4- X\, . . ., 1 + Xn generate a free 
group of rank n. Inverses are given by 

(i + x,yx = i - % + x? - ... . 
The Magnus expansion in the Magnus ring x is the group homomorphism 
M\F ^ X given by 

Mix,) = 1 + Xj. 

The coefficients in the expansion as a power series are just the €/. So 

M(g) = 2 C/(g) Xj. 

This can be seen by repeated use of the Taylor expansion of g. 
If M(g) — 1 has dimension k then the leading polynomial of M(g) is 

defined to be the homogeneous polynomial of degree k in M(g) — 1. For 
example the leading polynomial of M(xyx~xy~x) is XY — YX. An 
application of 4.4 is that the leading polynomial of M(g) has dimension k 
if and only if g lies in Fk but not Fk + \. 

The proof of the following can be found in [3]. 

LEMMA 4.5. (a) Suppose/ e Fh g G FJ and 1(1) ^ min (i,j). Then 

ii(fg) = €/( /) + c7(g). 

(b) SK/^ase /(/) = 1(f) = i, l(J) = 1(F) = j \ IJ = FT and f G Fh 

g e Fj. Then 

iiAL g] = ti(f)ij(g) ~ er(g)eAf). 

Definition. Let F be free on xh . . . , xm G free on y\, . . . , y m and let 
<t>:G —» F be a homomorphism. Let <#>/y be the n X m matrix 
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and let <̂ -|; ; ; ; fk be the 'tensor' « f ^ . . . </>|-*. 

The following important rule describes how the €j behave under 
homomorphisms. 

THEOREM 4.6. (The chain rule) With the notation above 
(a) for g e G, 

e,(Mg) ) = 2 */ye,-(g); 
7 = 1 

(b)/org e G*, 

(7i, - - - ,A) 

Proof (a) Note that both the mappings 

m 

g -* «/(«Kg) ) and g -» 2 <M*/(g) 
7 = 1 

are group homomorphisms G —» Z. Thus it is only necessary to consider 
the special case g = yi where the result is obvious (tj(yi) = Sjj). 

(b) Once again by 4.5 (a) it is only necessary to consider the case 
g = [g\, gi\ where gx e= Fkl, g2 e Fk2 and kx + k2 = k. 

To shorten notation use the summation convention that repeated 
indices are summed over. I\,J\, K\ will denote general indices of length k\, 
and I2, J2, K2 of length k2. 

€/ (* [g l , gl] ) = C/[*(gl), <Kg2) ] 

= ^«Kgi) )€/2(<Kg2) ) - */'2 (<Hg2) )€/', W>(gi) ) by 4.5 (b) 

= */fr,(gl)*/2
2€tf2(g2) ~ $JfejiZ2)$I\*Kx(g\) 

(by induction on /c) 

= */(*/,(glX/2(g2) - ^2(g2)€ri(gi)) 

= <J>A/[gb g2]
 by Lemma 4.5 (b). 

5. Commutators with weight. First we recall the definition of a bracket 
arrangement [8]. 

Definition 5.1. A bracket arrangement consists of brackets and asterisks 
(which act as place holders) and comes assigned with a weight. The only 
bracket arrangement of weight 1 is fi = [*] = *. To define bracket 
arrangements of higher weight we proceed inductively. Thus suppose we 
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have defined them for all weights < k. Then the bracket arrangements of 
weight k are ft = [/?1? /32] where /}1? /?2 are bracket arrangements of weights 
kh k2 and k = k\ + /c2. The weight of /? is denoted by <o(/3). 

For example the bracket arrangements of weights 2 and 3 are [*, *], 
[*, [*, *] L [ [*> *L *]• To any /? we associate a tree T{p) with a root 
(distinguished vertex) as follows. If <o(/?) = 1 then T(yS) is a single vertex 
which is the root. Now assume we have defined these trees for all weights 
< k and that /? = [/}b /?2] has weight k. Then T(fi) is the tree in figure 1 
and v is its root, where v\ and v2 are the roots of T(/î\), 7X/?2). We always 
orient the trees so that left-right ordering is preserved and so that the new 
root is at the bottom. The weight of T(fi) is defined to be <o(/?). In figure 2 
the trees of weight ^ 3 are exhibited. 

T(Pù . %
 r(ft) 

V V V 
V p = * fi = [*,*] JB = [[*,*]*] yS = [*,[•,*]] 
Figure 1 Figure 2 

It is clear that there exists a one to one correspondence between bracket 
arrangements and trees of a certain type; namely those finite non-empty 
trees for which there is a left-right, up-down ordering as above and 
satisfying: 

The highest vertices are each connected to the tree below by a single 
edge if the weight > 1. 

the root is connected to the tree above by 2 edges if the weight 
is > 1. 

each in-between vertex is connected to the tree above by 2 edges and to 
the tree below by one edge. 

Let the class of such trees be denoted ^7 If v is a vertex in some T e & 
we can pick out an upper tree U(v), a left-hand tree L(v) and a right-hand 
tree ^(v); see figure 3. 

In order to have an independent set of commutators we work with the 
so called basic commutators. They have both weight and ordering. 

Definition 5.2. The basic commutators of weight 1 are x\9 . . . , xn and the 
ordering is x\ < . . . < xn. Now assume we have defined the basic 
commutators together with their ordering for all weights < k. Then the 
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U(v) = L(v) U R(v) 

v = L(v) n #(v) 

vL = left hand vertex 
vR = right hand vertex 

Figure 3 

basic commutators of weight k are the elements of the form c = [c\, c2] 
where ch c2 are basic commutators of weights kh k2 and k = k\ + /c2-
Moreover we require c\ < c2, and if c2 = [C3, C4] we also require that 
c\ = C3. The ordering is such that anything of weight k is greater than 
commutators of lower weight, whereas two basic commutators of weight k 
are ordered lexicographically, i.e., [c\, c2] < [c\\ c2] if and only if either 
c\ < c\\ or c\ = c\ and c2 < c2. 

THEOREM 5.3. [6] and [4]. Suppose w e F and k = 1. Then there is a 
unique expression 

w = u cm
Um. . . c\n\ 

where 
(a) u G i ^ + 1 

(b) //Î^ cz are basic commutators of weights = k 
(c) cx < c2 < . . . < cm. 

Note that the tail of the sequence is of the form 

Xn Xn— \ . . . X\ 

where cz- is the total exponent of xt in w. 
Say that cm

nm. . . c\nx is m collected form. 
Now suppose Ŝ and I = (ih . . . , i^) are given with co(/2) = /:. Let fi(I) 

denote the commutator element in Fk obtained by substitution of 
X;,. . . , Xj in consecutive locations. 

Assume that /?(/) e Fk — Fk + h which would be the case if /?(/) were 
basic. To such a pair we now associate a labelled tree T(/i, I) which will 
just be T(j3) with each vertex having a label from the free group F. The 
labelling is defined inductively as follows: 

if w(j8) = 1 and / = / then T(p, I) = x' 

Assume the labelling has been accomplished for all trees of weight < k 
and that /? = [/?i, P2] has weight k. If /(/) = k we break / up as / = I\ • I2, 
where 

L(y)f R(v) 
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/(/,) = coGS,) and 1(I2) = (o()82). 

Thus T(/?i) and T(fi2) are labelled and this gives the labelling for the 
corresponding sub-trees of T(j5). Finally the root of T(fS) is labelled with 
the commutator [Lh L2], where L\ and L2 are the labels for the roots of 
7X/?i), T(P2)- Notice that [Lh L2] = /?(/) since by induction 

L, = ^,(7,), L2 = &(/2) 

and therefore 

[L^L2] = fi8,(/1),)82(/2)] = )8(/). 

The index 7 and the monomial w(T) 
defined by 

A7 of a labelled tree T are 

u(T) = Xix . . . Xh = Xj. 

Definition 5.4. The allowable operations o n l e ^ a r e generated by the 
following elementary moves: for some vertex F £ Twe interchange L(v) 
with R(v), keeping the left-right and up-down orderings within L(v), R(v) 
the same, while leaving v, T - U(v) fixed (see figure 4). The sign of such a 
move is — 1 and the sign of an allowable operation is the product of the 
signs of its elementary moves. If T has labels then so does every tree 
obtained from it by allowable operations. 

L(v) R(v) R(y) L(v) 

elementary 

move 

Figure 4 

Given an element / G F we let «£?(/) denote the leading polynomial of 
M(f). By (4.4) and the equation 

M(f) 2 € / ( / ) * / 

it follows that 
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KD=k 

LEMMA 5.5. Suppose /3 is a bracket arrangement of weight k and 
I = (/*i,..., ifr) is an index such that fi(I) G F^ — ^A + I- Then 

-WO ) = 2 ?(7>(r) 
/ 

where the summation is over all labelled trees T obtained from T(fi, I) by 
allowable operations and Ç(T) is the sign of the allowable operation. 

Proof This is trivially true for weight 1. Thus suppose it has been 
proven for all weights < k and that ft = [/3h fi2] has weight k = k\ + k2, 
where k\ = w(/?i), k2 = w(/?i). Now 

j8(/) = [LUL2] G Fk - Fk + X 

and so by (4.5) 

J S W ) ) = 2 *r[Ll9L2]Xr 
i(i)=k 

= 2 { c ^ L ^ L , ) - tjx{L2yj2(L,) }Xj 
l(i)=k 

where 

I = h h = J \ - Ji, 1(h) = 1(h) = kh 1(h) = l(Jx) = k2. 

Thus 

- W O ) = ^(Lx)el2(L2)Xf]Xh - ^{LfrjjJ.ÙXj^ 

= <?(LX)<?(L2) - £>{L2)<?{LX). 

By induction we now have 

J ^ L O J S ^ ) = ^ t(h)u(h) 2 ft^M^) = 2 S(T)u(T) 
T] T2 T 

where the last summation is over all T arising from applying allowable 
operations within T(/S\) and T(fi2) with no flip about the root of T(/3). The 
term — ^{L2)^{LX) corresponds exactly to similar allowable operations 
after a flip about the root of T(fl). 

Example 5.6. As an illustration of 5.5 consider 

P = [ M M * , *]]] and / = (2, 1, 1,2). 

There are 8 allowable operations (see figure 5). Thus we have 

&\x2, [xx, [xh x2]]] = -2 X2X2X - XXX22 + X22XX + 2XX2X2. 
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X2 X\ X\ X2 X2 X\ X2 X\ X2 X\ X2 X\ X\ X\ X2 X2 

X2 X2 X\ X\ X\ X2 X\ X2 X\ X2 X\ X2 X2 X\ X\ X2 

WW 
+ + + 

Figure 5 

Finally, we have 
LEMMA 5.7. Suppose c = /?(/). Then ej(c±]) = 0 if I (J) > 0 and 

J -h I. 
Proof. This is trivially true for weight 1. Thus assume it is true for all 

weights < k and that c = [c\, c2]. By (4.2) we have 
£j(c) = 2 IJX(C\YJ2(C2YJ,(CX~X)<LJA(C2-

X). 
J \J2J3J4 =J 

Then the proof proceeds by a case by case examination, the cases 
being: 

(a) none of the Jt are empty 
(b) exactly one of the Jt is empty, etc. 
For example, if J2 = J4 = 0 and J\ # 0 ^ / 3 we have the 

contribution 

2 € y |(C lX/ 3(cr ' ) = "«/(ci) - O ( f r ' ) by (4.1) 

J2 = J4= 0 

and the fact that 

0 = €,(<:, - c r 1 ) . 

Likewise we have the contribution — ej(c2) — £j(c2~
l) coming from 

j x = J3 = 0? j 2 ^ 0 = / 4 . If exactly 3 of Jx,. . . , J4 are 0 the contribution 
is 
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Assuming that J -fr> I all other cases give 0. A similar argument works for 

6. Basic complexes and hyperbolic defining sets. 

Definition 6.1. A basic complex of weight oo(AT) > 1 is defined to be a one 
relator complex K = {x\,. . . , xn\/3(I) } where ft = [/?], /?2] is a bracket 
arrangement of weight o:(K) and / = I\I2 is so that /?(/), fi\(I\ ) and fl2(I2) 
are basic commutators. Write 

K = [Kh K2] 

where 

Ki = { J d , . . . , ^ ^ / , - ) } . 

6.2. Geometric cohomology. Before pursuing the main result a geometric 
picture of the various cochains which can be used for calculating the 
product structure of any 2-complex will be given. See also [2]. Consider as 
an example the complex 

{Xh X2\X\2X2Xi~XX2~X} 

and some simplicial subdivision K. If a is a simplex than a* will denote 
the 1-cochain with value 1 on a and value zero elsewhere. The orientation 
of a 1-cochain is pictured as an arrow —> and the orientation of a 
2-cochain as a curved arrow 

Figure 6a Figure 6b 

Consider figure 6(a) which is a representation of part of K with some 
cochains. Then 

«Il = <jf, « 2 = Éi U fc = a2* 
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(with appropriate orderings) and S£2
 = 0- These cochains may be pictured 

symbolically as in 6(b) which also admits the following interpretation. 
Embed K as the spine of some «-manifold M with boundary dM. Then 

Hl(K) <- Hl(M) 

is an isomorphism for all i. But by Lefschetz duality 

H\M) = Hn-j(M, 3M). 

If /' = 1, 2 elements of Hn-l(M, dM) may be represented by properly 
embedded submanifolds meeting K transversely in geometric pictures of 
cocycles. If these submanifolds are in general position with respect to K 
then their intersection with any cell will be a codimension / submanifold 
with boundary in the boundary of the cell. Cochains which are not 
cocycles also admit a similar interpretation as submanifolds with 
non-proper boundary. 

Alternatively the symbolic picture in 6(b) is the 'limit' as the size of the 
simplices tend to zero. For more details see [1], [5] or [17]. 

6.3. Cocycles as line elements in the hyperbolic plane. In this section a 
collection of geodesies and part geodesies is defined in the hyperbolic 
plane which will be the underlying space of a defining set for Massey 
products in basic complexes. 

Represent the hyperbolic p l a n e r a s the open unit disc \z\ < 1. As usual 
the lines of Jfare the arcs of circles in ^orthogonal to the boundary circle 
dJtf! Any one relator complex can be obtained by making identifications on 
dJ^ This identification is specified by the relator written anticlockwise 
around the boundary. 

Consider the torus {x, y\xyx~ly~1}. The generating cocycles u\, uj can 
be represented by the x-axis as in figure 7. 

x2 

X\ 

the orientation of 
the axes is towards 
positive from 

— X2 Figure 7 negative 
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Figure 8 

The cup product u\u2 is represented by the intersection of the axes at the 
origin 0 and has positive sign. For orientable surfaces of genus larger than 
1 the cocycles may be represented by geodesies as in figure 8. The cup 
product structure can be read off from the meeting of the geodesies. This 
notion is behind the proof of the main theorem 7.4. Choose a point 0' on 
the x-axis in 3tf This will be chosen sufficiently far along the positive end 
of the x-axis as circumstances dictate. Consider now the hyperbolic 
transformation \p which translates 0 to 0' and then rotates about 0' 
clockwise through an angle 377/4. Let ^ be the set of transformations 

The effect of these four transformations on the x-axis is shown in 
figure 9. 

Notice that 0' is chosen so that the four clusters of lines are disjoint. 

Definition 6.4. Let fi = [/}ls p2] be a bracket arrangement. A system of 
lines and points H (ft), called a hyperbolic defining set (h.d.s. for short), will 
now be constructed. If /? = * is the trivial bracket then H(fi) is defined to 
be the x-axis. Assume that H(f3\) and H(fi2) have been defined 
inductively. Let yx be the line joining — 0' to 0' and let yv = i yx. There 
are four cases 

if ft = *, & = * let 

H(P) = H{fix) U iH(/32) = U axes 

if P\ = *, $2 * * let 

H(fi = H(fix) U i*JïG82) U - i^HiPi) U yy 
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x3 — x4 

Figure 9 

if 0, ^ j82 = * let 

#08) = ^ / / (A) U - f / Z ^ O U / / / (&) U yx 

if /^ ^ *, 02 ^ * let 

/ / (£) = ip/7060 U - ^ 7 / ( ^ 0 U tyH(fi2) U - / ^ ( f o ) U y, U yv. 

Examples of H(fi) are given by figure 9, if 

P = [ [* ,*] , [* ,*]] 

and by figure 10 if 

p = [*5 [*5 [*? *j j j A l s o F i g u r e 7 g i v e s #^ w h e n ^ = [*? *j 

Notice that //(/?) is invariant under reflexions in the x-axis and in the 
/-axis and these symmetries are preserved under further commutation. 

The line elements of H = H(fi) are the arcs 

a = i//!i//2. . .\l>r(z) 

where z is one of the axes or y^ or yy and 
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Figure 10 

i/// e * , i = 1, . . . , r. 

If z is an axis then a is called a cocycle element. Notice that the line 
elements have orientations as the image of an axis or part axis. The points 
of H are the corresponding images of 0, a = ^ . . . \pr(0). If a is not a 
cocycle element then it has an initial end point i(a) and a final end point 
/ ( a ) , both points of H. Thus the line elements form a system of geodesies 
meeting in the points of H. 

The cochain complex C* and its products which will now be defined 
correspond naturally to a representation of the cohomology of K. Let 
Cl(H) be the free abelian group on the line elements of H and C2(H) be 
likewise on the points of H. C0<KH"> is infinite cyclic. Coboundary operators 
are defined as follows: 8:Co(H) -> CX{H) is zero and 8:C](H) -> C2{H) is 
given by 

jw , _ f 0 if a is a cocycle element 
\f(cc) — i(oc) otherwise. 

It is easy to see that C1 = A] © B\ where Bl = ker ô is freely generated 
by the cocycle elements. 
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Every line element a = \p\ . . . \pr(z), assuming co(yS) > 1, has a 
perpendicular adjoint a* passing through à. If r > 0 the mate of a is 

â = ypi . . .i/v_i<Mz), 

where <f>r = — \pr if z lies in the x-axis and <j>r = \pr otherwise. If r = 0 the 
mate of z is z itself. Every point P = a has a mate given by P = â. Notice 
that 0 = 0 for the origin. Intersection induces a product Cl ® Cl -> C2 

given by 

a - a* = ct* • a = zha and a\ • a^ = 0 

otherwise, see figure 11. 

a* a a a* 

Figure 11 

The sign is chosen so that 

y* • Yv = ô = o. 

Note that â* • a = a a* and so in general c\ • c2 = c2 • ~c\. 
A chain c = 2AZ«Z in C1 is said to be equivariant if 

~c = 2A/«Z
 = c-

Likewise a chain J = 2/jt//?/ in C2 is said to be equivariant if 

d = 2/U/Â = —d. 

Notice that if J in C2 is equivariant there is a unique equivariant element a 
in ^4] such that 8a = d (see figure 11). 

An index / = (/j, i2, . . . , /w) is called distinct if all the elements i^ are 
distinct, /c = 1, . . . , n. 

LEMMA 6.5. If K = [x\, . . . , xn\fi(I) } is a basic complex with weight 
> 1 where I is distinct and if I (J) = co(/3), then there is a defining set for the 
Massey product (uf) with corresponding cocycle ej(/3(I) )0*. 

Proof The complex K may be thought of in the usual way as a bouquet 
of circles xh . . . , xn with a 2-cell^T = 3tf\J ^ a t t a c h e d by the word /?(/). 
Consider the h.d.s. H(fi) and a cocycle element a. The end points of a can 
be identified with the centre point of a 1-cell xt in a unique way. The 
orientation of a is determined as in figure 12. 
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Figure 12 

If «i, . . . , ak are associated with xt then a\+ . . . + ak is a geometric 
cocycle representing the class u{ of H\K). 

A defining set (0^) for the Massey product (uJr . . . , wyA) using the 
product structure of C*(H(fi) ) will now be constructed as follows: Let atj 
represent Uj. as above. Note that ait is equivariant. The products u\ • w/+i 
can now be identified with the intersection of the appropriate arcs and the 
product defined for the h.d.s. At this stage we are not using the hypothesis 
that / is disjoint. 

Assume now that atj are constructed for all 0 ^ j' — i < r and are 
equivariant. This means that the products a y • a.j+\j+r are also equivariant 
and hence there is a unique equivariant element aii + r in Ax such that 

8cij + 1 

i + r-\ 

7 = 1 

This completes the inductive step. We must now check that the geometric 
cochain corresponds appropriately. This is where the hypothesis of the 
distinct / is used. 

The only non-zero product w.v of a geometric cochain with support an 
h.d.s. can occur in the two cases illustrated by figure 13. 

(*) 

Figure 13 

Because / is distinct type (a) is the only case which can occur and this 
corresponds to our built in product in the h.d.s. 

The value of the defining set is 
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k-\ 

à a\iai + \,k-
/ = 1 

Each evaluation (au, ai+\k, [K] ) is zero except when i = k\ or /c2 and in 
these cases writing c = /?(/) = [c\, c2] 

{a\kfikx + \,fr [K]) = C7,(ci)cy2(c?) 

(a\klakl+x^[K]) = - c / ^ c O e ^ f o ) 

by induction on A:. Hence the value of the defining set on [K] is tj(c) 
by 4.5(b). As a geometric cocycle it consists of tj(c) times the central 
point 0. 

THEOREM 6.6. If K = [x\,. . . , xn\ft(I) } is a basic complex of weight 
cô(fi) > 1 and J is an index with l(J) â a)(fi) then the Massey product (uf) is 
defined and only has one element, given by the rule 

(<« /> , [* ] ) = €,(£( /)) . 

In particular if l(J) < <o(/?) the Massey product (uj) vanishes. 

Proof If / = (ih . . . , /^) let / ' = (1, 2, . . . , £), so F is distinct. If 

^ = {*,,..., X„|j8(/')} 

let <£:^' —> K be defined by the rule 

/ - > / / , / = 1 , . . . , £ . 

Then <£* is the identity on //2 . Assume the truth of (6.6) by induction for 
all J' with /(/ ') < l(J). This means that (uj) is both strictly and uniquely 
defined. 

Then 

( <«,-,.. . , uik), [K] ) 

= ( <!/,-, . . . , Uik), HK'] ) 

= (**<«,-,. . . , u,k), [K] ) 

= ( <<;>*«„,..., <#>%>, [*'] ) 

(by naturality and the fact that («,-,,.. . , w,- ) is uniquely defined) 

= ( <2<«,-,,..., 2<«A>» [^ ) b y L e m m a 3-2 

= ( 2 < ; ; ;£<«,•,... . , «A>, [*'] ) by linearity 

= 2$/] ; I ;•/*£,-, (A, by 6.5 since / ' is distinct 

= «,-,...fc(j8(/)) by 4.6(b). 
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The next result considers the case when the length of the Massey 
product is greater than u(K). 

THEOREM 6.7. Suppose K = {x\,. . . , xn\p(I) } is a basic complex and J 
is an index such thai J -/> I. Then (uj) is defined and contains the value 
zero. 

Proof. Using the notation of the previous theorem start to construct a 
defining set (atj) for (uj) with underlying set an h.d.s. for ft. By hypothesis 
and the above result there will be no obstruction when /( /) ^ u(K). 
Assume that atj is defined for j — / < r. A product a y • aj + \j + r defines 
subindices/i , /2 of J such thatJ\J2 is a sub-index of/, see figure 14. Then 
by induction one of (uJx) in K\ or (uj2) in K2 contains zero which is 
defined using an h.d.s. So the set {atj) may be defined for7 — / = co(K) by 
putting atj = 0. 

\ - 1 (U) 

^ U+hi + r) 

Figure 14 

It is worthwhile pointing out that if K = {x\, . . . , xn\f$(I) } is a basic 
complex weight k > 1 then the Massey products (wj), where /( /) = /c, are 
given by the coefficients in the leading polynomial J?(fi(I) ). More 
precisely 

• * W ) ) = 2 6 ,08(7))* ,= 2 ((uj)AK])Xj. 
l(J) = k KJ) = k 

Thus all Massey products of length k can be computed by applying 
allowable operations to the labelled tree T(ft, I) (see 5.5). As an example 
consider the basic complex 

K = {xh x2\ [x2, [xh [xh x2] ] ] }-

Then from 5.6 we can read off the following Massey products 
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( <M2, «i, «2» wiX [^] ) = _ 2 > ( (uu "b w2. w2>, [#] ) = - 1 

( <W2, «2» "b wl>> [^1 ) = 1, ( <"b w2, "b w2>, [K] ) = 2^ 

and all other ( (Uj)9 [K] ) = 0 if /(J) = 4. 
Notice that these products do not satisfy symmetry with respect to 

allowable operations. As an example consider 

( (u2, «i, uh u2), [K]) = 0; 

whereas 

( (w2, Mb w2, Wi>, [ # ] ) = - 2 . 

On the other hand the following symmetry result generalizes the skew 
symmetry of the cup product 

U\ U 1/2 + u2 U «i = 0. 

Let / and / be sequences I = (ih . . ., ir) and J = (jh . . . Js). Then a 
shuffle of / and / is a sequence 

L - (/:,,. . .,kr+s) 

with indices 

1 â «i < a2 < . . . < a r ^ r + 5, 1 â j8j < j82 < . . . 

< ft ^ r + s 
such that 

^«„ = hv n = 1, . . . , r and /c^ = ym, m = 1, . . . , s. 

For example 2113 arrives as a shuffle of 21 and 13 in two ways. We write 

L = I\J to denote a shuffle of / and / . 

THEOREM 6.8. Let K = [x\, . . . , xn\/3(IJ) } be a basic complex where 
1(1) > 0, l(J) > 0. Then 

2 (uL) = 0 
L 

where the sum is taken over all L = I\J obtained by shuffling I and J. 

Proof. Since 

( (uL), [K] ) = €LWJ) ) 

the result follows from the shuffle identities of [4]. 

So for example writing (1, 1, 2) = (1) • (1, 2) we see 

2 (u\, u\, u-i) H- (wi, U2, u\) = 0. 
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Definition 6.9. In view of the above results the following definition may 
be made. Let K = {x\,..., xn\P(I)} be a basic complex of weight o) and 
let J be an index. Then the minimal Massey product ( (uj) ) is defined in 
any of the following cases 

1. / ( / ) ^ <o 

2. J -hi. 

In these cases ( (uj) ) is the element of (uj) given by the defining set 
constructed above. Its value on the top dimensional cycle is given by 

( < (uj) >, [K] ) = cj(MI) )• 

It is not immediately clear that the definition is independent of the 
complex K chosen to represent the homotopy type. This will follow after 
the discussion on naturality in Section 8. 

Since the uh . . . , un form a basis for Hl the general minimal Massey 
product ((vj> > where 

may be defined by linearity 

< (vj) > = < <2x/«/> > = 2 V < {uj) >, 

assuming all the ( (uj) ) are defined. 

7. Massey products in general two-dimensional complexes. Let 

r = i 8 1 ( / 1 ) . . . ^ ( 4 ) 

be a word in F(x\, . . . , xn) where ^(7/), /' = 1, . . . , k are basic 
commutators. Then write the complex 

K = {xu . . . yxn\r} 

formally as K = K\ . . . K^ where 

K, = { Jc 1 , . . . , JcJf t ( / , - )} , /= 1 , . . . , * . 

The Massey products of K can be calculated from those of Kt as 
follows: 

Suppose the 2-cell of K is obtained by making identifications on the 
boundary of J^ D i v i d e d into k sectors using k radii from the origin to the 
£ th roots of unity. Suppose that ( (uj) > is defined in each Kt with 
underlying space an h.d.s. Then an element of the Massey product (uj) 
can be defined in K by means of the h.d.s. lying in the k sectors in turn. 

k 

The value of this element on [K] is given by the formula 2 0/ where <j>/ 
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is the value of the corresponding Massey product in Ktfor / = 1, . . . , k. If 
these conditions are satisfied then the minimal product ( (uj) ) is defined 
to be the above sum. 

If all the /?/(//) e Fi we can compute ( (uj) > in the terms of Fox 
derivatives. Assuming / ( / ) ^ / it follows from 6.5 that 

k k 

(((uj))AK]) = 2 <t>> = 2 (((uj) ),[%]) 
i=\ l=\ 

k 

= 2 €,(&(/,•) ) = €,08,(7,) • . • Mh) ) = «y(r). 
i = \ 

THEOREM 7.1. Let K = {*,,. .., xn\r} where r G FU, CO > 2. Then all 
Massey products of length less than co are defined and vanish. 

Proof. The relator r can be written r = c\ . . . cv where each q is a 
commutator of weight greater than co — 1. Then it is easy to construct 
basic commutators &(//) in new variables y\,... ,ym9 i = 1 , . . . , v, of 
weights = co, a complex 

L = {yx,...,ym\fa{I{)...PAIv) = s) 

where /?,(/,) . . . /?„(/„) is in collected form, and a map/:L —» A which is an 
isomorphism on H2. Now for L all Massey products of length less than co 
vanish by the arguments given above and (6.6). The vanishing of the 
Massey products in A follow by naturality. 

Definition 7.2. Call a complex A = {xh . . . , xn\r) in collected form if 
r = c\ . . . ck is a product of basic commutators in collected form. In this 
case write 

r = rp . . . rx 

where either 

n = 1 or r, G F - 7""+1 

and put 

A' = Kp . . . A, 

where 

^ = {x,, . . . ,-xJr,}, / = 1, . . . ,p. 

Now any element r ^ F can be written as coc, . . . c^ where co e Fm+ ,, 
c, . . . c^ is in collected form, each c, has weight = m, and m is arbitrary. 
By the above results the complex { x , . . . , xn\r} has the same Massey 
products up to size m as {x\9 . . . , x jc , . . . c^}. In other words it may be 
assumed that any complex is in collected form in calculating its Massey 
products. 
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Definition 7.3. Let K = Kp . . . K2 be in collected form as above where 
r G F2. If / is an index of length q the minimal Massey product ( (uf) ) is 
defined if ( (uf) > is defined on Kh i = 2 , . . . , q and 

(<<*/>>,[*/]) = 0 for/ = 2 , . . . , ? - 1. 

THEOREM 7.4. Ĥ /7/z //*£ notation above if the minimal Massey product is 
defined its value is given by 

( < <"/> >, [K] ) = £,(r). 

7.5. Calculation of the Massey product when K has more than one 2-cell. 
Let 

K = {xi,. . . , x > b . . . , r m } 

and consider the n X m matrix 

^ = [ti(fj) ], / - 1, • • •, n; j = 1, . . . , m. 

The move xz- --» X/Xy performs a row sum operation on ^4. The move r, —> r,^ 
performs a column sum operation. These moves do not change the 
homotopy type of K. By a sequence of such operations combined with 
permutations K may be replaced by {y\,. . . ,yn\s\,. . . , sm} in which A 
now takes the form 

m\ m — m\ 

r ° 0 

o D 

where D is a diagonal matrix with non-zero diagonal entries. 
Therefore H] is generated by uh . . . , unx and the free part of H2 by 

s\, . . . ,sm. The value of any Massey product on the 2-cell corresponding 
to st follows as before. 

8. Multilinearity, naturality and symmetry of Massey products. In 
general Massey products are far from linear. Consider Example 1 given in 
the next section. Here (u\ + u& u2 + w5, 1/3 + wg, u4 + ui) is defined 
whereas products such as (u\, w2, «3, w4> are not defined. However 
statements about linearity can be made provided all Massey products are 
defined and are minimal. Let 

K = { x b . . . ,xn\r} 

and let 
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n 
it = 2 \jur x^itàk. 

7 = 1 

Let A; be the set of integers j such A/y ¥= 0. Suppose 

( (uvv uV2, . . . , uVk) ) 

is defined where (v\, v2, . . . , ?k) is any index with ^ G ,4,. Then the 
Massey product (£i, . . . , £^) is defined and we put 

( <£i, . . . , & > > = 2 AUlA2,2. . . A^A. ( <>„,, w„2, . . . , uVk) ). 

This definition will make sense if it can be shown that the minimal 
product is natural. 

Let f.L —> K be a cellular map and assume that 

f.:H2{L) -* H2(K) 

is an isomorphism. Let 

( (ah . . . , an) > and ( ( /*« , , . . . ,/*«„> > 

be defined minimal Massey products. 

THEOREM 8.1. With the notation above 

/ * < < « , , . . . , « „ > > = < < / * « , , . . . ,/*<*„> >• 

Proof. Since the value of a minimal Massey product on the 2-cell is €y(r), 
the result will follow from a naturality argument similar to that given in 
6.6. 

The following theorem shows that minimal Massey products satisfy 
symmetry properties akin to those enjoyed by the cup product. For 
example, 

2 < (uh U2, U2, U3) > + ( <W2, " 1 , «2» w3> > + < < " b "2, "3» w2> > 

+ ( (w2 , U3, Mi, W2> > + ( <^2, " 1 , " 3 , W2> > = 0. 

THEOREM 8.2. Let ( {UJJ) > be a minimal Massey product defined on the 
two dimensional complex K, 1(1) > 0, / ( / ) > 0. Then 

2 < (uL) > = o 

where the sum is taken over all shuffles L of I and J. 

Proof. Since the result is true for basic commutators, 6.8, it is true in 
general by addition. 

9. Some examples. Finally some examples of Massey product behavior 
are given below. 
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1. Let 

K = {xh . . . , . . . , x8| [xh x2][x3y x4][x5, x6][xl9 x8] } 

be the closed orientable surface of genus 4. Then w i , . . . , M8 is a standard 

symplectic basis for i/1. The Massey product 

exists and has indeterminacy the whole of H2. A defining set for the 
generator of H2 is given in figure 15. 

U\ U3 U5 U7 

«23 = «13 = «24 = 0 

Figure 15. 

2. Let 

K = {x\, X2, X3, X4I [X\, [x2, X3] ][X], X4] } . 

Then (wb u2, u3) = H2 and ( (uh u2, u3) ) generates H2. 

3. The following example is due to O'Neill [12]. Let K be the complex 

{ * 1 , . . . , JC5| [Xh [x2, X3] ][XU X5], [x2, [X3, X4] ][X4, X5) } 

with two 2-cells. Then (uh u2, u3) and (u2, u3, u4) both contain zero, (due 
to indeterminacy). But (u\, u2, u3, u4) is undefined. However note that 
both ( («J, u2, u3) ) and ( (u2, u3, u4) > are non-zero. 

4. Consider 

K = {xh . . . , x5\ [xh [x2, [x3, x4] ] ][xh [x2, x3] ][xh x5] } . 

Here (u\, u2, u3, u4) is defined but not strictly defined. Note that 
( (u\9 u2, u3) > is non-zero. 

5. Let T be the torus 

T = {xh x2\ [xh x2] } 
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then the Massey product (u\, u\,u\,u\) is defined and has indeterminacy. 
The minimal product ( (u\, U\, u\, U\) ) is zero. 
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