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Some Estimates for Generalized
Commutators of Rough Fractional Maximal
and Integral Operators on Generalized
Weighted Morrey Spaces

Ferit Gurbuz

Abstract. In this paper, we establish BMO estimates for generalized commutators of rough frac-
tional maximal and integral operators on generalized weighted Morrey spaces, respectively.

1 Introduction and Main Results

The classical Morrey spaces M, ; were introduced by Morrey in [14] to study the lo-
cal behavior of solutions of second order elliptic partial differential equations (PDEs).
In recent years there has been an explosion of interest in the study of the bounded-
ness of operators on Morrey-type spaces. It has been obtained that many properties of
solutions to PDEs are concerned with the boundedness of some operators on Morrey-
type spaces. In fact, better inclusion between Morrey and Holder spaces allows one to
obtain higher regularity of the solutions to different elliptic and parabolic boundary
problems; see [2,6,16,17] for details. Moreover, a variety of Morrey spaces are defined
in the process of study. Mizuhara [13] introduced the generalized Morrey spaces M, 4;
Komori and Shirai [11] defined the weighted Morrey spaces L, .(w), and Guliyev [8]
and Karaman [10] gave a concept of generalized weighted Morrey spaces M, ,(w)
that could be viewed as extension of both M, , and L, «(w). The boundedness of
some operators such as Hardy-Littlewood maximal operator, the fractional integral
operator as well as the fractional maximal operator and the Calderén-Zygmund sin-
gular integral operator on these Morrey spaces can be seen in [8,10,11,13].

Let us consider the following generalized commutator of rough fractional integral

operators:
Q(x -
8o/ = [ 2D R (k) f )y 0<a<n
e =y
and the corresponding generalized commutator of rough fractional maximal opera-
tors:

1
Mé’af(x):sugm[l e |Q(x—y)Rm(A;x,y)f(y)|dy 0<a<mn,
> X=yI|<r
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where Q € L;(S"!)(s > 1) is homogeneous of degree zero in R", m € N, A is a func-
tion defined on R”, and R,, (A; x, y) denotes the m-th order Taylor series remainder
of A at x about y, that is,

Ru(Aix,y) = A(x) = 3 =DYA(y)(x - )",

[yl<m /2

y = (y1,--.,yn), €ach y;(i = 1,...,n) is a nonnegative integer, |y| = X7y, y! =
MmN Yn _ ah"
yil-yal, x?¥ = %" x;", and DY = Firor

Form =1, T§ , and M, , are obviously the commutator operators,

[A, Ta,u]f(x) = A(x) Ta,a f (x) = Ta,« (Af)(x)

Q(x-y)
= J W(A(x) - A(y)) f(y)dy

and
[A, Moo]f(x) = A(x)Mo,af (x) — Ma,«(Af)(x)

ﬁ-y\q'ﬂ(x—y)HA(x) - AW)IIF)ldy,

where rough fractional integral operator Tq , and rough fractional maximal operator
Mg o are defined by

< sup
r>0 1"7%

Touf()= [ R i)y 0<acn

and

1
Mo, f(x) = sup r”“"/\ y 1Q(x =f(P)tldy  O0<a<n.
> x—-y|<r

The weighted (L,, L,)-boundedness and weak boundedness of the operators Tq «
and Mg, , were given in [4] and [5], respectively. On the other hand, if m > 2, then
T4 , and M) , are nontrivial generalization of the above commutators, respectively.
The weighted (L, Ly)-boundedness of the operators T¢, , and M, , have been given
by Wu and Yang in [19], where they proved the following result.

n 1

Theorem 1.1  Suppose that0 < a < n, 1 < p < 7, i % -+, Q is homogeneous
of degree zero with Q € Ly(S"")(s > 1). Moreover, |y| = m —1, m > 2, and D" A €
BMO(R"). Ifs" < p, w(x) € A(L, L), then there exists a constant C, independent of

AN
A and f, such that

H Té,afHLq(wq,]Rn) < Cl ‘Z HDYA”*HfHLP(WP,R")’
yl=m-1

|M&,0fliyuary <C 37 |DY ALl flln, (oo ey

[yl=m~-1

Here and in the sequel, p" always denotes the conjugate index of any p > 1; that is,
% + # =1, and C stands for a constant that is independent of the main parameters,
but it may vary from line to line.
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Let B = B(xy, rp) denote the ball with the center xy and radius r5. For a given
measurable set E, we also denote the Lebesgue measure of E by |E|. Let X be a mea-
surable set in R”. For any given X € R” and 0 < p < co, denote by L, (X) the spaces
of all functions f satisfying

1

1,00 = ([ fG)Pdx) " <o

We recall the definition of classical Morrey spaces M, , as

Y _a
My (R") = { f < | flatpp ey = sup 1 1L, (8xry) < o)
nor>

X€

where f € L}f’c(R"), 0<A<n,and1< p<oo.

Note that M, o = L,(R") and M, = Loo (R"). If A < 0 0r A > 1, then M, ) = O,
where @ is the set of all functions equivalent to 0 on R”".

We also denote by WM, ; = WM, , (R") the weak Morrey space of all functions
fe WL;"C(]R”) for which

_A
I flwnt,, = 1 fllwa,aeny = sup 7| flwe,(sxr)) < o0
xeR", r>0

where WL,(B(x,r)) denotes the weak L ,-space of measurable functions f for which
”f” WL, (B(x,r)) = HfXB(x,r) H WL, (R")
=suptl{y € B(x.r): [f ()] > 1}
>

= sup P(fxy,) (1) <o,

0<t<|B(x,r)|

where g* denotes the non-increasing rearrangement of a function g.

Throughout the paper we assume that x € R” and r > 0 and also that B(x,r)
denotes the open ball centered at x of radius r, B¢(x,r) denotes its complement,
and |B(x, r)| is the Lebesgue measure of the ball B(x,r) and |B(x,r)| = v,r", where
vy = [B(0,1)|. It is known that M, ) (R") is an extension of L,(R") in the sense that
M, = Ly(R").

On the other hand, Mizuhara [13] has given generalized Morrey spaces M, , con-
sidering ¢(r) instead of 7 in the above definition of the Morrey space. Later, we have
defined the generalized Morrey spaces M,, , with normalized norm as follows.

Definition 1.2 (Generalized Morrey space) Let ¢(x,r) be a positive measurable
function on R” x (0, 00) and 1< p < co. We denote by M, , = M, ,(IR") the gener-
alized Morrey space, the space of all functions f € Lg’c (R") with finite quasinorm

[flatpy = sup @(e,r) B )72 | fllL,(mexry)-

xeR",r>0

Also by WM, , = WM, ,(R") we denote the weak generalized Morrey space of all
functions f € WL};’C(R") for which

|flwa,, = sup @Cer) ™ BGe N7 [ flwe, sy < oo

xeR",r>0
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According to this definition, we recover the Morrey space M, and weak Morrey
space WM, ) under the choice ¢(x,r) =77 :

Mp,r = Mp,g | dons WMy =WMy, |

A=n .
p

¢(x,r)=r o(x,r)=r

During the last decades various classical operators, such as maximal, singular, and
potential operators have been widely investigated in classical and generalized Morrey
spaces.

Komori and Shirai [11] introduced a version of the weighted Morrey space L, «(w),
which is a natural generalization of the weighted Lebesgue space L, (w ), and investi-
gated the boundedness of classical operators in harmonic analysis.

Definition 1.3 (Weighted Morrey space) Letl < p < 00,0 < k < landletw bea
weight function. We denote by L, (w) = L, «(R", w) the weighted Morrey space of
all classes of locally integrable functions f with the norm

[flzpecwy = sup w(B(x,7))"7 [ flL,, Bx.r) < -
xeR",r>0

Furthermore, by WL, (w) = WL, . (R", w) we denote the weak weighted Mor-
rey space of all classes of locally integrable functions f with the norm

| FlwLpeqwy = sup w(B(x, 7)) 7 | flwep (B(xr) < -
xeR",r>

Remark 1.4  Alternatively, we could define the weighted Morrey spaces with cubes
instead of balls. Hence, we shall use these two definitions of weighted Morrey spaces
appropriate to calculation.

Remark 1.5 (i) fw=1landx = A/nwith0 <A <n,thenL,;,,(1) = M, 1 (R")
is the classical Morrey space.
(ii) Ifx =0, then L, o(w) = L,(w) is the weighted Lebesgue space.

On the other hand, the generalized weighted Morrey spaces M, ,(w) were intro-
duced by Guliyev [8] and Karaman [10] as follows.

Definition 1.6 (Generalized weighted Morrey space) Letl < p < oo, ¢(x,7) be a
positive measurable function on R"” x (0, c0) and let w be non-negative measurable
function on R”. We denote by M, ,(w) = M, ,(R",w) the generalized weighted
Morrey space, the space of all classes of functions f € Lg’j, (R") with finite norm

1 f s,y = sup @(x,r) ' w(B(x,1)) 7 | fl1,. (B(xr))>
xeR",r>0

where Ly, ,,(B(x,7)) denotes the weighted L, ,,-space of measurable functions f for
which

1 (Bery = 1 XBG L0 (my = (f

s SO DY) "
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Furthermore, by WM, ,(w) = WM, ,(R",w) we denote the weak generalized
weighted Morrey space of all classes of functions f € WL}J",;, (R™) for which

IFlwatypon = sup o, 1) w(B6)) T | flwe,sn) < 00
Sr>
where WL, ,,(B(x, r)) denotes the weighted weak WL, ,,-space of measurable func-
tions f for which

IFlwrpwseen) = 1 Xscen lwiy e = sup tw({y e B, r):f(»)| > 1}) 7 <

Remark 1.7 (i) Ifw =1, then M, ,o(1) = M, 4 is the generalized Morrey space.

(i) Ifp(x,r) =w(B(x,7)) 7 70<Kk<], then M, ,(w) = Lp (w) is the weighted
Morrey space.

(iii) If @(x,7) = v(B(x,7))?w(B(x,7))” 7,0 < x <1, then My o(w) =Ly (v,w)
is the two weighted Morrey space.,

(iv) If w = 1and ¢(x,7r) = r % with 0 < A < n, then Mp,o(1) = M, is the
classical Morrey space and WM, (1) = WM p,1 is the weak Morrey space.

(v) If o(x,r) = w(B(x, r))fi, then M, o,(w) = L,(w) is the weighted Lebesgue
space.

The aim of this paper is to investigate the boundedness of generalized commutators
of rough fractional maximal and integral operators on generalized weighted Morrey
spaces, respectively. Our main results can be formulated as follows.

Theorem 1.8  Suppose that 0 < a < m, 1< p < %, &= =%, Q is homogeneous of

degree zero with Q € Ly(S"™')(s > 1). Moreover, let A be afunction defined on R",
ly| = m -1, m > 2 and D'A € BMO(R"). Ifs' < p, w(x)* € A(L, L), then there
exists a constant C, independent of A and f, such that

==

A T8 o flywanccomy SC X DV AL (wI(B(x0,7)))
lyl=m—-1

o t ~q 1
X[zr (1+ln;)Hf”LP(WP,B(xO,t))(Wq(B(-x0>t))) ;dt

Theorem 1.9 Let0<a<n,1<p<ﬂ,é:l

- 2,Q be homogeneous of degree
zero with Q € Ly(S" ") (s > 1). Suppose that s’ < p, w(x)s € A(Z, 1) and the pair

(91, @2) satisfies the condition

s

s/ S'

(12) f,m(u1 ;)essmfkk‘” p1(7)(w? (B(x, 1)) dt < Copa(x,7),

(w(B(x, 1)) *

where Cy does not depend on x and r. If DYA € BMO(R")(|y| = m —1,m > 2), then
there is a constant C > 0, independent of A and f, such that

(1.3) 1 T80 f |0y, wikry <C D IDYAL] fllat, (o 2y
lyl=m-1

https://doi.org/10.4153/CMB-2016-067-8 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-067-8

136 F. Guirbuz

(14) IMG,ofll sy, wirry C D0 IDY ALl fll iy gy (o -
[yl=m-1
1

Corollary 110 LetO<a<nl<p<?Z, % =5 &, Q be homogeneous of degree

zero with Q € L(S" ™) (s > 1). Also lets' < p, w(x)* € A(%, L), and 0 < « < %. If

DYA e BMO(R")(|y| = m —1,m > 2), then there is a constant C > 0, independent of
A and f, such that

ITaaf e, wa(wigny SC 30 IDY AL f Iy (wrwainys
P [yl=m-1

IM8,0fle, s wary SC 35 DAL fllLyu (e wa,er)-
TP

[yl=m-1

In the case of w = 1 from Theorem 1.9, we get the following new result.

Corollary LI1 (see [1]) LetO<a<mnl<p<?2 é = % - 2, Q be homogeneous
of degree zero with Q € Ly(S"™')(s > 1). Suppose that s’ < p and the pair (¢1, ¢2)

satisfies the condition

oo t . essinf e coo ,T)7T? dt
f (141 Ly SSfcrec il DR dE 0

r ta t

where Cy does not depend on x and r. If DYA € BMO(R")(|y| = m —1,m > 2), then
there is a constant C > 0, independent of A and f, such that

I Tg,uf|‘M,,,¢2(R") <C ). IDY Al £l 6, g, (R7)»
[yl=m-1

MG o fll 1, mr) < c| ‘Z IDY AL f ., -
yl=m-1

2 Some Preliminaries and Basic Lemmas

We begin with some properties of A, (R") weights that play a great role in the proofs
of our main results.

A weight function is a locally integrable function on R” that takes values in (0, o0 )
almost everywhere. For a weight function w and a measurable set E, we define w(E) =
Jgw(x)dx, the Lebesgue measure of E by |E| and the characteristic function of E by
Xz Given a weight function w, we say that w satisfies the doubling condition if there
exists a constant D > 0 such that for any ball B, we have w(2B) < Dw(B). When w
satisfies this condition, we denote w € A,, for short.

If w is a weight function, we denote by L, (w) = L,(R", w) the weighted Lebesgue
space defined by the norm

1

1y = ([ IF@IPw(x)dx)" <o0, whenls<p<oo
f(x)|w(x) when p = oco.

and by | f| ..., = esssup, ga
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We denote by WL, (w) the weighted weak space consisting of all measurable func-
tions f such that

=

< 00.

£ lwry ) = sup tw({x eR":[f(x)] > t)

We recall that a weight function w is in the Muckenhoupt’s class A, (R"),1< p <
0o, if

2.1) (W]a, = S%P[W]AP(B)

:sgp(|11_j)|/Bw(x)dx)(ulg'/Bw(x)lP’dx)P_1 < 00,

where the supremum is taken with respect to all the balls B and % + ﬁ = 1. The
expression [w]a, is called the characteristic constant of w. Note that, by Holder’s

inequality, for all balls B we have

[wI4P = (W12 gy = 1B w8 w2 sy 2 1.

For p =1, the class A;(R") is defined by

1

22 —
22) 5]

/w(x)dx < Cinf w(x)
B x€B

for every ball B ¢ R”. Thus, we have the condition Mw(x) < Cw(x) with [w]s, =

SUP, g N»I:ES;)’ and also for p = oo, we define

A= U Ay [wla, = inf [w]s,, and [w]a, <[w]a,.

1<p<oo 1<p<oo

One knows that A, ¢ A, if 1< p < q < oo, and that w € A, for some 1< p < g if
w e A, with g >1,and also [w]a, < [W]ag-
By (2.1), we have

1
o

2 _1 _1
(w7 (B))*” =|w? |, (s <ClBw(B)

for 1 < p < co. Note that

(2.3) (esxseiélff(x)) - esssup !

xee f(x)

is true for any real-valued nonnegative function f and is measurable on E (see [18,
p- 143]), and by (2.2) we get

< C|Bjw(B)™.

1
-1
w = esssu =
H ”Loc (B) xEBp w(x) eSSinfxeB W(x)

We also need another weight class A(p, q) introduced by Muckenhoupt and Whee-
den in [15] to study weighted boundedness of fractional integral operators.
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A weight function w belongs to the Muckenhoupt-Wheeden class A(p, q) [15] for
l<p<g<ooif

24 Wlag = sgp[W]A@,q)(B)

1 f TR f VN
=sup| — [ w(x)¥dx) | — [ w(x)Pdx)" <oo,
op( 157 Jyw()1dx) (G [ w07 dx)
where the supremum is taken with respect to all the balls B. Note that, by Holder’s
inequality, for all balls B we have

[Wlatpa) 2 Wlacpays) = 1BIP s Il [w L, ) 2 1

Moreover, if 7 = - — & with1< p < % and 0 < a < n, then it is easy to deduce that

w(x) e A(p,q) < w(x)le A@ — w(x)le A1+§-
For p=1,wisin A; 4 with1< g < oo if
[(Wla@,q) = Sl};p[w]A(l,q)(B)
1 a 1
= st;p( ﬁwa(x)qu) (esssup W7x)) < 00,

x€B
where the supremum is taken with respect to all the balls B. Thus, we get
1

(o) <cagocs

for every ball B c R".
By (2.4), we have

(2.5) ([Bw(x)qu)%(wa(x)’P,dx)

We summarize some properties about Muckenhoupt-Wheeden class A(p, q); see
[7,15].

1
o

" < It

Lemma 2.1 Givenl< p < g < oo, the following statements hold:
(i) w(x)eA(p,q) = w(x)TeAa;
p
(i) w(x)eA(p,q) = w(x)? €A y;
q
(111) lfpl < p2 and q1 < 42, then A(pl, Ch) C A(pz, qz)

Let us recall the definition and some properties of BMO(R"). A locally integrable
function b is said to be in BMO if

[b]l« = sup

b(y)-b dy < oo,
xeR", >0 |B(x,r)\ B(")”)| ()/) B(x,r)‘ 4

where

b(y)dy.

.
Bler) = |B(x,7)| JB(x,r)
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Define
BMO(R") = {b € LI*(R") : |[b] < co}.

If one regards two functions whose difference is a constant as one (modulo con-
stants), then the space BMO(RR") is a Banach space with respect to norm | - ..

An early work about BMO(R") space can be attributed to John and Nirenberg [9].
For 1 < p < oo, there is a close relation between BMO(RR") and A, weights:

BMO(R") = {alogw:we Ay, a>0}.

Lemma 2.2 (John-Nirenberg inequality; see [9]) There are constants C;, C; > 0,
such that for allb e BMO(R") and 8 > 0,

[{x € B: |b(x) - bg| > B}| < C,|Ble"CA/Itl- vBc R
By Lemma 2.2, it is easy to get the following.

Lemma 2.3 Letw € Ao and b € BMO(R"). Then for any p > 1, we have
(= [16) - balPw(r)ay) < Clol..
w(B) JB

Lemma 2.4 (see [12]) Let b be a function in BMO(R"). Alsolet1< p < o0, x € R”,
and r1, 12 > 0. Then

(B oo HO - bl ) < {1+ 2 ..

where C > 0 is independent of b, x, 1, and r».
By Lemmas 2.3 and 2.4, it is easily to prove the following result.

Lemma 2.5 Letw € Ao and b € BMO(R"). Letalsol < p < oo, x € R", and
11,12 > 0. Then

1

- b(y) = bgeenPw(3)dy) " <1+ 2| (0],
W(B(X,Tl)) B(x,r1)| (y) B(x, 2)| W()/) y) - ( +‘ nr2|)H H

(2.6) (
where C > 0 is independent of b, w, x, 11, and r,.

At the end of this section, we list some known results about R, (4; x, y).

Lemma 2.6 (see [3]) Let A be a function on R" and DYA € L};’C(R")for ly| = m
and some q > n. Then

1 :
IRm(Asx,y)| < Clx=y" > (=—— [.  |D’A(2)|%dz) ",
|y\=m( 1Q(x, y)|/Q(xy) )

where Q(x, y) is the cube centered at x with edges parallel to the axes and having di-
ameter 5v/n|x — y|.
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Lemma 2.7 (see [3]) For fixed x ¢ R", let

Ax)=A(x) - Y ;(D A)p(xsymx-y)X -

[yl=m-1

Then R, (A;x,y) = R (A5 x, y).

Lemma 2.8 (see [1]) Letx € B(xo,7), y € B(x0,2"'r) \ B(x0,2/r). Then

R (452, y)| < Cle=y"(j Y DAl + Y [DYA(y) = (D A)p(spn])
[yl=m-1 [yl=m-1

3 Proofs of the Main Results

Proof of Theorem 1.8 We write as f = f + fo, where fi(y) = f(¥)XB(x0,2r) ()5
XB(x,2r) denotes the characteristic function of B(xo, 2r). Then

I T4 o f Iz, (weB(x0r) < I TG e filL,(wa.B o)) + 1 TE a2y (wa B(x0r))-
Since fi € L,(w?,R"), by the boundedness of T , from L,(w?, R") to Ly(w?,R")

(see Theorem 1.1), we get

I T4 e fil Ly wa.Bxory) S ITE afilLywarmy C Y DY Al fille, (we.rmy
[y|=m-1
=C Y IDPALf L, (we B(xo2r))-
lyl=m-1

Sincel< p < gand 7 2L then by Holder’s inequality

p(p

_(ﬁ[wa ) (5 [0 7 ar)”

, h Len
q l] —( 75,)d s'p )
(151 fow0rtar) " (157 fwor @ dy)

I~
o
|
-
—

This means

r %< (Wq(B(an r))) w . op (Blxoor))-

(p—s")

Thus,
HfHLP(WP B(x0,21))

< Crv aHfHLP(WP B(xo, z,))[r t7—“+1

1 dt
C(wi(B(x0,7))) “Iw 71 L, (B(xo, r))f Iy wrBe000) S5
(p=s")
] : dt
S (B )) ™ [ 1 Ity ntaoin 1972, a0 et

(p—s")
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Since w(x)* € A(%, ), by (2.5), we get

(3.1 (wi(B(x0,))) "W L, (Bt < Ctv =

(r—s")

holds for all t > 0. Thus,

IT8,afilly w8y SC 35 IDYAL(w(B(x0,7))) *

lyl=m-1
< [T (Wi(B(x0, 1)) " dt.
2 /L, (weB o) t
Let A; = B(xo,2/'r) \ B(x0,2/r) and x € B(xo, r). By Lemma 2.8, we get
|Th,0fo(%))|

< L e R (5 ) [

|x —)/|n a+m—1

—Zf |Q(x - y)f(y)l( Y [D"Al+ 3 [DYA(y) - (DY A)p(en)|) dy

|x y|n * ly|l=m-1 |y|=m-1
Q(x

<c 5 a5 [ PR

[yl=m-1 8 x =yl

Q(x - )0)
oy S [ 1BEDIONnra ) - (074)y00 0y
lyl=m-1 j=1 |x )’|

=L+,

By Holder’s inequality, we have

Q=) fOI f s FO)IF 3
32 — Q(x-y)['d A A Y
62 [ S s ([ atonra) ([ e )

When x € B(xo,s) and y € A;, then by a direct calculation, we can see that 2/~'r <
ly — x| < 2/*'r. Hence,

63) ([ 10Ge=pldy)” < ClOlscsm|Blxa, 2
It is clear that x € B(xo, 1), y € B(x0,2r)€ implies 1|xo — y| < [x — y| < 2|xo - y|.
Consequently,
FOI 5’ 1 N
R . N— ‘a
( A [x = y|(nme)s’ ) |B(x0,27*17)[' ( szorin ) /)
Then

hee ¥ ADALSI@ ([ )Fdy)”

ly|l=m-1 =1 B(x¢,271r)

Since s’ < p, it follows from Holder’s inequality that

/- 4)” < Clfleyuraamy W7, oy

(p—s")
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Then
= 2j+1r a=1 f s d B
e ( s SN @)
z( e 2T ) Q)T iy e ooy WLy (52w

(p=s")

i dt
< CZ/ 1+ln Hf”L,,(wP B(xo, t))”W HL o (B(xO,t))W

(p=s")

e A R e A
By (3.1), we know
(3.4) lw™ . S/P)(B(xo,t)) < Ct?"’f‘x(wq(B(xo’ t)))_a
Then
L€ B DAL f7(1 100U, ()08 BG0))

On the other hand, by Holder’s inequality, (3.2) and (3.3) we have
1Q(x = ) f(¥)]

T

Y y
f Q(x =) d)’ f IDYA(Y) |x(Dy|1(4n)i()? r)f()’)| )/)

|DyA(y) - (DyA)B(xo,r)|dy

1

s

<CR @ ([ IDPAG) = (0 A I D )
j=1 X0, r

Applying Hélder’s inequality again, we get

([ IDPAG) = (D A () dy) <
B(x9,2/r)

Clf Iz, (wr.B(xo2m1 [ (DY A(Y) = (DY A) gy w(-) 2

» (B(x0,27%1r))-
(r—s")
Consequently,
2]+2
L<C Y |D'Al, Zf (s 2T )(zf*lr)“
[yl=m-1
x [(DYA(y) = (DY A) B(x,r) )W(+)~ |\L5,7P(B(x0,t))dt
(r—s")
<C ¥ D AL [ 1 fliyoom 5000
[yl=m-1
y " dt
x [(D?A(y) = (D" A) (o) )W() 'L L, (B, ) TE et
(p—s")
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’ _ S,P
By w(x)* € A(£,2) and Lemma 2.1(ii), we know that w(x)™ &= ¢ AL
(p=s")q

Then it follows from (2.6) and (3.4) that

[(D?AG) = (D7 A)aary) ()| dr

L g, (B(xot)) a9+l
(p—s")

Lo &
([ DA = (D" A)sar)| 7w ()dy)
B(x0,r)

EN( e
SCHID))AH*(I""ln;)(W (P*S')(B(xo,t))) ’

t -
= C||D”A|\*(l+ln ;) lw IHL(S,PI) (B(x0,))

p—s

<C|D"Al.(1+1n f) £ (wi(B(x0, 1)) 1.

Thus,

o t _11]
B<C Y DAL [ (1410 ) f iy omnsoin (w2 (B(xa. 1)) 7 2.

[yl=m-1

Combining the estimates of I; and I, we get

|T£,0¢f2(x)| <

oo t -11
cy HDVAH*[N (1+ln;)Hf||LP(Wp’B(x0,t))(Wq(B(xO,t))) &0

[yl=m-1

Then we get

I Taafoll ey wab(zoryy <C 35 [P AL (w?(B(x0,1))) *

[yl=m-1
00 t 1]
(0 YUy o (9B )

This completes the proof of Theorem 1.8. ]

Proof of Theorem 1.9 We consider (1.3) first. Since f € M, ,, (w?,R"), by (2.3) and
the fact that | f| 1, (wr,B(x,,1)) is @ non-decreasing function of £, we get

If 1L, (we.B(x00)) < esseu If 1L, (we B(x00))

- < es i

essinfocscr<co @1(x0, T) (WP (B(x0,7)))?  O<t<r<co @1(x0, T)(WP(B(x0,7)))?
< esssup | £ 112, (v, Bx0,m) :
0<7<00 §01(X0,T)(WP(B(xO)T)));

<161y g, (wo 7Y
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For s’ < p < oo, since (¢, ¢, ) satisfies (1.2), we have
©° t q _1dt
35) [ 1+ 10 )l 1, urm0sa) (w9 (B30, )75

S/ (1+1n£) ||fHL,,(wP,B(x0,t))

" essinfy<r<oo 91(x0, 7) (WP (B(x0, T)))%

. essinfrcreoe 91(x0, T) (WP (B(x0, 1)))? dt
(wa(B(xo,1)))" t
- tyessinfrcrco ,7) (WP (B(x0,7)))7 dt
SCHf”MP’(pl(WP,R”)[ (1+ln7)essmt <oo 91(%0, T) (WP (B(x0, 7))) at

r (wi(B(xo, 1)) t
< Cfl a1y, (wo,rmyP2(x0, 7).

Then by (1.1) and (3.5), we get

I T80 f 1y, (wezny = sUp @2(x0,7) " (W (B(x0,7))) 7| Ty o f | 1, (w2, BCx0,r))

x0€R",r>0

<C Y |D"Al. sup @a(xoor)”

ly|l=m-1 xo€eR",r>0

() t —ll
<0 )L oo (W (B, 1))
<C Y D AL Lty oz

yl=m-1
Hence, we have completed the proof of (1.3).

We are now in a place of proving (1.4) in Theorem 1.9.

Remark 3.1 The conclusion of (1.4) is a direct consequence of Lemma 3.2 and (1.3).
In order to do this, we need to define an operator by

Q(x -y

anlRm(A;x,y)llf(y)ldy 0<a<n,

Tiapa(IfD(x) =

where Q € L(S"™)(s > 1) is homogeneous of degree zero in R”".

Using the idea of proving [4, Lemma 2], we can obtain the following pointwise
relation.

Lemma 3.2 LetO<a<nand Qe Ly(S"")(s>1). Then we have
Mé,af(x) < j:|?z|o¢(|f|)(x) for x e R".

In fact, for any r > 0, we have

A (D (x) 2 f| ) Q(x - y)|

yl<r |x _ y|n—o¢+m—1

S [ 06 DR A5 D)y

- rn—a+m71

|Rm (A5 2, p)[If(y)|dy
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Taking the supremum for r > 0 on the inequality above, we get
Tt (D (x) 2 MG o f(x)  forxeR".

From the process proving (1.3), it is easy to see that the conclusions of (1.3) also hold
for Tl?ll’ - Combining this with Lemma 3.2, we can immediately obtain (1.4), which
completes the proof. ]
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